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Antimicrobial resistance (AMR) is a significant global threat to both public health and
the environment. The emergence and expansion of AMR is sustained by the enormous
diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of
horizontal gene transfer (HGT), including conjugation, transduction, and transformation,
have facilitated the accumulation and dissemination of ARGs in Gram-negative and
Gram-positive bacteria. This has resulted in the development of multidrug resistance
in some bacteria. The most clinically significant ARGs are usually located on different
mobile genetic elements (MGEs) that can move intracellularly (between the bacterial
chromosome and plasmids) or intercellularly (within the same species or between
different species or genera). Resistance plasmids play a central role both in HGT and
as support elements for other MGEs, in which ARGs are assembled by transposition
and recombination mechanisms. Considering the crucial role of MGEs in the acquisition
and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs.
This review discusses current progress on the development of chemical and biological
approaches for the elimination of ARG carriers.
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INTRODUCTION

The discovery of antibiotics and their clinical use is one of the greatest achievements in medical
history. However, the acquisition and dissemination of antimicrobial resistance genes (ARGs) is
a severe global problem that emerged in the post-antibiotic era (Friedman et al., 2016; Thaden
et al., 2017). The acute limitation of currently available therapeutic options against common
infections is responsible for increased rates of morbidity and mortality, longer treatment duration,
higher hospitalization costs, and distrust in the efficacy of modern medical practices (Bennett,
2008; Shokoohizadeh et al., 2013; Jiang et al., 2017; Sultan et al., 2018). The most common
antimicrobial-resistant bacterial pathogens associated with nosocomial infections were initially
gathered under the acronym “ESKAPE” (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which
was subsequently proposed to be updated to “ESCAPE” (E. faecium, S. aureus, Clostridium difficile,
A. baumannii, P. aeruginosa, and Enterobacteriaceae) (Grundmann et al., 2006; Santajit and
Indrawattana, 2016; Penes et al., 2017; World Health Organization [WHO], 2017).
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The phenomenon of antimicrobial resistance (AMR) is not
new as ARGs have evolved over millions of years (Shlaes et al.,
1997). However, AMR is amplified in the presence of the selective
pressure exerted by antibiotics (Pelgrift and Friedman, 2013).
Between 2000 and 2010, global antibiotic use increased by 36%,
and in the case of carbapenems reached 45% (Van Boeckel
et al., 2014). Inappropriate use of antibiotics in animals also
contributes to rising AMR. The global consumption of antibiotics
in animal feed was estimated to be 131,109 tons in 2013, and is
expected to reach 200,235 tons in 2030 (Van Boeckel et al., 2017).
Incomplete microbe elimination, facilitated by microbiostatic
drugs that inhibit multiplication of microbes without killing
them, favors the development of drug resistance. Furthermore,
incorrect administration of microbicidal drugs in terms of dosing
intervals and concentration also contributes to the occurrence
of AMR. The dosing interval is essential for antibiotics with a
short elimination half-life, such as beta-lactams, tetracyclines,
clindamycin, and the majority of macrolides; while concentration
is a critical parameter for antibiotics such as vancomycin,
aminoglycosides, azalides, ketolides, and quinolones (Gao et al.,
2011). Genetic resistance of clinically significant pathogens is
amplified by the ability of bacteria to form biofilms on viable
tissues or inert substrates; these biofilms exhibit high phenotypic
resistance or tolerance to high doses of antimicrobial agents
(Giedraitiene et al., 2011). As a result of the selective pressure
exerted by antibiotics, bacterial genomes are reshaping, and
bacteria adapt and survive in the presence of antibiotics (van
Elsas and Bailey, 2002). There are multiple mechanisms of
adaptation of resistant bacteria to antibiotics and elucidating
these mechanisms will enable the development of effective novel
therapies to tackle the increasing threat of resistance.

An important strategy for combating AMR is to diminish the
mobilization and persistence of ARGs in bacterial populations.
This review highlights current progress in the development
of chemical and biological approaches for the elimination of
resistance plasmids. Such plasmids play a central role both in
horizontal gene transfer (HGT) and as support for other mobile
genetic elements (MGEs), in which ARGs are assembled through
transposition and recombination mechanisms; the resulting
MGEs can then move between chromosomes and plasmids
or between plasmids. We will first describe the main MGEs
involved in the global dissemination of antibiotic resistance,
and then discuss current progress on the development of novel
antimicrobial strategies aimed at elimination of MGEs, with a
focus on resistance plasmids.

ROLE OF MGEs IN THE ACQUISITION
AND TRANSMISSION OF AMR

Resistance to antimicrobials can be acquired through
spontaneous mutations in chromosomal genes or by HGT
of ARGs. The bacterial genome includes the genomic backbone
or core genome, to which a variety of MGEs, termed the accessory
genome, is added, and together this comprises the bacterial pan-
genome (Guimaraes et al., 2015). The term resistome refers to the
part of the pan-genome that contains ARGs, both in commensal

and pathogenic bacteria (D’Costa et al., 2006; Landecker, 2016).
Many ARGs can move between the bacterial chromosome and
plasmids, within the same species or between different species
or even genera, through different mobilization mechanisms
(conjugation, transduction, and transformation) (Figure 1).
HGT is the primary driver of multidrug resistance (MDR) in
both Gram-negative and Gram-positive bacteria. MGEs (except
for gene cassettes and miniature inverted-repeat transposable
elements; MITEs) are DNA fragments encoding enzymes
and other proteins that mediate intracellular or intercellular
mobility. Intracellular mobility occurs within the same cell, from
a chromosome to a plasmid or between plasmids. This type
of mobility can be achieved by non-conjugative transposons,
gene cassettes, and insertion sequence common region (ISCR)
elements. These MGEs are mobilized by recombination but can
involve replication. Intercellular mobility is achieved by MGE
elements that are capable of self-replication and conjugative
transfer, such as plasmids and conjugative transposons (Frost
et al., 2005; Bennett, 2008; Ilangovan et al., 2015; Partridge
et al., 2018). The versatility of MGEs justified the replacement
of the constant genome paradigm with that of the fluid genome
(Shapiro, 1985; Pinilla-Redondo et al., 2018).

The majority of clinically significant ARGs are located on
MGEs. To effectively fight AMR, we need to unravel the role
of MGEs in the dissemination of antibiotic resistance among
clinically important pathogens.

Plasmids
Plasmids have a vital role in the accumulation and transfer of
ARGs, mainly in Gram-negative bacteria, and are involved in
the acquisition of resistance to most antibiotic classes, including
β-lactams, aminoglycosides, tetracyclines, chloramphenicol,
sulfonamides, trimethoprim, macrolides, polymyxins, and
quinolones (Carattoli, 2013; Shintani et al., 2015). Plasmids,
either circular or linear, are stable replicons with a complex
replication apparatus (Shintani et al., 2015). Generally, plasmids
are physically distinct from the primary bacterial chromosome
and replicate independently; however, most of the components
required for replication are provided by the host (Garcillan-
Barcia and de la Cruz, 2008; Guglielmini et al., 2014). Plasmids
conferring MDR are usually conjugative, capable of initiating
not only their own transfer but also that of other plasmids, and
possess mechanisms to control their copy-number in the cell
and/or replication ability (Frost et al., 2005; Nordstrom, 2006).
Plasmids guarantee transmission through different mechanisms
like active partitioning systems, random segregation, or post-
segregational killing (Million-Weaver and Camps, 2014).
Besides conjugative plasmids, another category of plasmids
are mobilizable plasmids, which are smaller in size and not
self-transmissible, but they can transfer DNA to a particular host
in the presence of conjugative plasmids; this transfer occurs both
vertically and by HGT (Bennett, 2008).

The first classification of plasmids was based on
incompatibility (Inc) groups (the mechanism that prevents
the existence of plasmids with the same replication mechanism
within the same bacterial cell); specific incompatibility groups
were described in Enterobacteriaceae, Pseudomonas spp., and
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FIGURE 1 | Schematic representation of the predominant HTG mechanisms involved in the acquisition and dissemination of genetic material such as ARG. From top
to bottom: Conjugation, DNA transfer between a donor cell (left) and a recipient cell (right) mediated by plasmids; Transduction, transfer of bacterial DNA between a
donor cell (left) and a recipient cell (right) mediated by phages; Transformation, release of DNA by a donor cell (left) and uptake by a recipient cell (right).

Gram-positive staphylococci (Frost et al., 2005). In MDR strains
of P. aeruginosa, a series of plasmids (pS04 90, pBM41, p14057
A, and p14057 B) encoding carbapenemase resistance have been
highlighted (Liu et al., 2018; Shi et al., 2018; van der Zee et al.,
2018). Strains of A. baumannii show plasmid-encoded resistance
to carbapenems (Cameranesi et al., 2018; Leungtongkam et al.,
2018; Silva et al., 2018), aminoglycosides (armA) (Upadhyay
et al., 2018), colistin (Jaidane et al., 2018), sulfonamides, or
streptomycin (Hamidian et al., 2016). In addition, plasmids
conferring resistance to various classes of antibiotics have
been found in Staphylococcus spp. (Mugnier et al., 2009; Ruiz-
Martinez et al., 2011; Hamidian et al., 2016; Holmes et al., 2016;
Liu et al., 2016, 2018; Becker et al., 2018; Cameranesi et al.,
2018; Fessler et al., 2018; Jaidane et al., 2018; Leungtongkam
et al., 2018; Shi et al., 2018; Silva et al., 2018; Upadhyay et al.,
2018; van der Zee et al., 2018). Resistance plasmids exhibit a
high degree of plasticity, which is translated into an increased
frequency of insertions, deletions, and changes in DNA (Kado,
2014). Plasmids may also harbor ARGs encoding efflux pumps
that confer an MDR phenotype such as quinolone resistance
(Jacoby et al., 2014).

Further to their direct role in HGT, plasmids can also
contribute to the acquisition and dissemination of ARGs to
other MGEs in which ARGs are assembled via transposition

and recombination mechanisms (Stanisich, 1988; Bennett, 2004,
2008). Some of the MGE frequently involved in the acquisition
of clinically relevant ARGs are briefly described below and
summarized in Figure 2.

Insertion Sequences
Insertion sequences (IS) are the smallest (0.7–2.5 Kb) and
simplest transposable elements found in bacteria (Mahillon and
Chandler, 1998; Aminov, 2011). These elements are usually
flanked by short, mostly inverted repeats, which sometimes
generate direct target duplications (DR) when they are integrated
into the target DNA (Siguier et al., 2015). IS differ from
transposons by the absence of cargo or passenger genes, which
are responsible for functions other than mobilization. Currently,
there are more than 4500 IS listed in dedicated databases like
ISFinder (Siguier et al., 2015; Vandecraen et al., 2017). IS are
involved in AMR through their ability to transfer ARGs, but
also by their ability to modulate the expression of ARGs; this
occurs following integration of IS within the ARGs, or by the
IS providing an active promoter for ARGs (Siguier et al., 2006;
Partridge et al., 2018). For example, IS can increase expression
of efflux pumps (Olliver et al., 2005; Siguier et al., 2015).
The role of IS in antibiotic resistance has been highlighted
by numerous studies, particularly those related to resistance to
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FIGURE 2 | Schematic representation of the predominant MGEs involved in acquisition and dissemination of ARGs. (A), IS element (IR: inverted repeats; tnp:
transposase gene). (B), Tn3 complex transposon (tnpB: resolvase gene; ARG-antibiotic resistance gene). (C), composite transposon. (D), class I integron and the
acquisition of a gene cassette (Int1: integrase gene; att1: recombination site of the integron; qacEδ: truncated segment belonging to a gene that encodes resistance
to quaternary ammonium compounds; sul1: sulfonamide resistance gene; orf5/orf6: open reading frames, attC: recombination site of the gene cassette). (E), the
mechanism of acquiring adjacent DNA by ISCR elements (oriIS: origin of replication; terIS: end of replication; a second stop sign is located after the ARG, allowing
transposition of the entire segment by recombination). (F), complex class 1 integrons (Int1: integrase gene, followed by the attI site; VR1/VR2: variable regions e.g.,
ARGs, followed by the attC site).
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colistin and carbapenem. The most common mechanism for the
development of colistin resistance is inactivation of the gene
mgrB in K. pneumoniae, following the transposition of different
types of IS, such as IS903, ISKpn26, IS10R, and IS5 (Cannatelli
et al., 2014; Berglund et al., 2018). In colistin-resistant strains
of Klebsiella sp., alteration of mgrB and phoP gene sequences by
different IS, such as ISKpn14, ISKpn28, IS903, IS5, and IS3, can
sometimes induce a pandrug-resistance phenotype (Giordano
et al., 2018; Uz Zaman et al., 2018). IS also play a vital role in
carbapenem resistance through a mechanism similar to that of
colistin resistance but involving the inactivation of oprD and omp
genes (Lev et al., 2017; Bocharova et al., 2019). The oprD gene is
inactivated by the insertion of ISPpu-21 (Shariati et al., 2018). In
addition to the IS themselves, there are other similar transposable
elements (TEs) that harbor transposase genes (autonomous) or
depend on host cell elements (non-autonomous) (Siguier et al.,
2015). When IS elements are carrying passenger genes, they are
termed IS transporters (tISs) (Siguier et al., 2006). In contrast to
complex transposons that exist only as a single copy in a specific
replicon, IS can be present as multiple copies, thus contributing
to the accumulation of ARGs (Rankin et al., 2011).

Resistance Transposons
Transposons (Tn) are a category of MGEs that carry ARGs.
Many Tn have the ability to jump from/to different locations
in the genome, and are capable of mediating the mobility of
both intramolecular and intermolecular ARG (Bennett, 2004,
2008; Babakhani and Oloomi, 2018). Bacterial Tn can be
divided into two types, composite (two IS elements flanking a
central gene) and complex (containing the tnpA gene encoding
transposase, the tnpR gene encoding resolvase, as well as one
or more cargo genes) (Genilloud et al., 1988; Bennett, 2008;
Partridge, 2011). MITEs and palindrome-associated transposable
elements (PATEs) are included in the category of non-
autonomous derivatives (Siguier et al., 2015). The predominant
ARG-containing Tn whose transmission is a challenge when
treating infections are Tn5 (encoding resistance to neomycin
and kanamycin in A. baumannii and P. aeruginosa), Tn10
(encoding tetracycline resistance), Tn9, Tn903, Tn1525, and
Tn2350 (Genilloud et al., 1988; Partridge, 2011).

Integrons
Integrons are MGEs that have the ability to accumulate gene
cassettes, including ARGs, and to disseminate them through
other MGEs. Sedentary integrons are DNA elements found in
the chromosomes of many species and were initially discovered
due to their association with AMR (Mazel, 2006; Partridge et al.,
2009). In contrast to sedentary integrons, mobile resistance
integrons are often found in plasmids (Ponce-Rivas et al., 2012).
The role of these elements in the acquisition and dissemination
of ARGs is crucial, especially in Gram-negative bacteria (Ponce-
Rivas et al., 2012), but they are also present in Gram-positive
bacteria (Nandi et al., 2004). Integrons contain the gene encoding
integrase (IntI), an enzyme that allows the incorporation of
circular DNA segments by site-specific recombination (Cambray
et al., 2010). They also harbor a specific integration site, at which
one or more gene cassettes can be inserted by the integrase

(Recchia and Hall, 1995; Bennett, 2008; Partridge et al., 2009).
Gene cassettes are usually small DNA fragments of 500–1000
base pairs, which can be mobilized by integrase. Generally, the
gene cassettes comprise a single open reading frame (ORF)
followed by a short recombination site termed attC (formerly
“59 bases element”). Since the majority of these cassettes are
promoterless, expression of their genes depends on the integron
promoter (Bennett, 1999, 2008). Gene cassettes contain ARGs
encoding resistance to different antibiotic classes (Recchia and
Hall, 1995; Nordmann and Poirel, 2002), as well as antiseptics and
disinfectants (Recchia and Hall, 1995; Bennett, 2008). Integrons
are divided into several classes (class 1, class 2, and class 3)
depending on the amino acid sequence of the IntI enzyme. Class
1 integrons, which are typically associated with plasmids, are
most commonly encountered in clinical isolates from hospitals
and elderly care facilities, but have also been found in food
production chain isolates (e.g., cattle farm isolates) (Belaynehe
et al., 2018; Faghri et al., 2018; Rajpara et al., 2018). ISCRs are
transposable elements that are a similar size to IS elements,
are often associated with class 1 integrons, and are capable
of mobilizing adjacent DNA via a rolling-circle mechanism
(Bennett, 2008). When ISCR elements are associated with class
1 integrons, they form complex class 1 integrons (Bennett, 2008;
Toleman and Walsh, 2008, 2011).

Genomic Islands
In addition to classical MGEs, such as conjugative plasmids
or resistance transposons, an additional category of MGEs is
a series of genomic islands that are capable of mediating their
own excision, called integrative and conjugative elements (ICE)
(Burrus et al., 2002; Burrus and Waldor, 2004; Dobrindt et al.,
2004; Juhas et al., 2009; Wozniak and Waldor, 2010). The concept
of pathogenicity islands (PAIs) was first described in 1980 by
Hacker et al. (1983) who analyzed the virulence mechanisms
of strains of E. coli isolated from urine cultures and observed
the presence of unstable chromosomal regions bearing different
virulence characteristics. Studies on multiple genomic islands
have identified several common and essential features of these
chromosomal regions: they are DNA segments with a size of
10–200 kb; they insert within tRNA genes; they contain directly
repeated recognition sequences; and they contain cryptic genes
encoding factors involved in integration, insertion, or transfer
(Hacker et al., 1990).

Integrative and Conjugative Elements
Integrative and conjugative elements (ICE) were first described
in 1946 by Lederberg and Tatum (1946), and are responsible
for HGT of most resistance and virulence factors (Llosa et al.,
2002; Burrus and Waldor, 2004; Fernandez-Lopez et al., 2006;
de la Cruz et al., 2010; Smillie et al., 2010). ICE are 18–600 kbp
in size and share several common characteristics with genomic
islands, including insertion at a specific site, association with
phage integrase genes, and being flanked by inverted repeats
(Toleman and Walsh, 2011). Excision and integration of ICE
are accomplished through a recombinase, often termed an
integrase. The integrases associated with ICE are tyrosine or
serine recombinases, and are homologous to the integrases
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found in temperate phages (Wozniak and Waldor, 2010). The
insertion site for ICE in the bacterial chromosome is attB and
is usually located in the gene encoding tRNA, hence the ICE
attachment site is termed att (Grindley et al., 2006). Some
ICE have low specificity for the att site, and thus may have
an affinity for other sites (Bedzyk et al., 1992; Roberts and
Mullany, 2009). Similar to conjugative plasmids, the excision
and transfer of ICE are mediated by a type IV secretion system,
but in contrast to the conjugative plasmids, which are capable
of autonomous replication, ICE integrate into the chromosome
and replicate with it (Burrus, 2017). However, some ICE are
capable of autonomous plasmid-like replication (Johnson and
Grossman, 2015). When ICE are mobilizing bacterial DNA, such
as genomic islands, they are termed integrative mobilization
elements (IME) (Gonzalez-Candelas and Francino, 2012). In
terms of ICE conjugation, the transfer mechanism is similar
to that encountered in plasmids. In the case of plasmids, the
relaxase enzyme binds to the DNA and introduces a break
in oriT to initiate rolling-circle replication. Relaxase remains
bound to the single-stranded DNA and forms a complex with a
specific coupling protein that allows the translocation of DNA
into the recipient cell (Lanka and Wilkins, 1995). ICE mediate
the acquisition of genes conferring selective advantages such
as resistance to antibiotics or heavy metals, degradation of
some compounds, increased bacterial fitness, ability to achieve
symbiosis, use of alternative carbon sources, expression of
virulence factors such as type III and IV secretion systems,
which play an essential role in regulating contact with host cells,
disruption of signal transduction, or promotion of apoptosis
(Roberts and Smith, 1980; Shoemaker et al., 1980; Mays et al.,
1982; Magot, 1983; Hochhut et al., 1997; Ravatn et al., 1998; Nishi
et al., 2000; Dobrindt et al., 2004; Schmidt and Hensel, 2004).

Integrative and conjugative elements play a vital role
in the acquisition and intercellular transmission of ARGs.
Through their own integration and mobilization apparatus,
these elements have the ability to mobilize adjacent sequences,
including genomic islands or composite transposons carrying
ARGs (Delavat et al., 2017). Examples include Tn10 found
in ICEHpaT3T1 from Haemophilus parainfluenzae and
ICEHin1056 from H. influenzae, containing tetracycline
and chloramphenicol resistance genes (Juhas et al., 2007);
R391, a plasmid of the SXT ICE family that carries kanamycin
resistance genes (Pembroke et al., 2002), and ICEPmiJpn1
described in Proteus mirabilis and encoding resistance to
broad-spectrum beta-lactamases (Harada et al., 2010; Mata
et al., 2011). There are also a number of ICE encountered
in H. influenzae (ICEHin1056, ICEHin299, ICEHin2866,
ICEHpa8f, ICEHin028, ICEHinB) (Juhas et al., 2007). ICEEc2,
identified in E. coli, contains Tn7, which can be mobilized
independently, and class 2 integrons. Tn7 carries dfrA1,
sat2, and aadA1, which are responsible for resistance to
trimethoprim, streptothricin, and streptomycin/spectinomycin,
respectively (Roche et al., 2010). Another large ICE family
is ICETn4371 found in Beta- and Gamma-Proteobacteria.
Members of this ICE family, such as ICETn43716061 found in
P. aeruginosa, display transfer mechanisms similar to IncP
plasmids and carry different ARGs (Castanheira et al., 2007).

The Tn21 transposon subfamily, containing pKLC102/PAPI-1
and PAGI-2/PAGI-3 (P. aeruginosa-pathogenicity island-
type ICE) carbapenem resistance genes are integrated
into tRNALys and tRNAGly (Klockgether et al., 2007). The
Tn4371 family in P. aeruginosa (e.g., ICETn43716061) also
carries carbapenem ARGs (Fonseca et al., 2015). Tn916-type
elements that encode tetracycline or minocycline resistance,
via the tet(M) gene, may embed additional ARGs for other
antibiotics such as macrolides, lincosamides, and streptogramins
(MLS) and kanamycin/neomycin in the case of Tn1545
(Cochetti et al., 2008). Roberts et al. (2008) observed that
the majority of transposable elements, including composite
transposons, mobilizable transposons, ICE, and genomic islands,
possess similar transposition mechanisms (serine or tyrosine
recombinases). Consequently, it was suggested that all these
elements capable of integration and conjugation should be
called conjugative transposons, even though most of them
integrate into a single specific site (Roberts et al., 2008). The term
“conjugative transposon” was first used by Franke and Clewell
(1981) when characterizing the Tn916 element from E. faecalis
(Franke and Clewell, 1981; Brochet et al., 2009).

TARGETING MGEs TO COMBAT
ANTIBIOTIC RESISTANCE

The ability of bacteria to adapt to all currently available antibiotics
has led to an acute need for new, more effective antibiotics
or the development of alternative therapeutic strategies (Seal
et al., 2018). MGEs, especially those containing resistance
plasmids, transposons, and integrons, play a crucial role in the
accumulation and dissemination of ARGs in both the clinical and
environmental sectors. Consequently, there is a strong argument
for considering that one potential strategy to control AMR is
through the elimination of these MGEs. In the field of medicine,
the concept of “curing” refers to various clinical techniques
applied to repair a defective system (Kennedy, 1981; Dow, 1990).
In terms of AMR, “curing” is predominantly used to describe
the process of removing ARGs from bacterial populations, and
compounds used for this purpose are called “curing agents.”
Considering that most ARGs and virulence factors are located
on plasmids, the term “curing” has been associated with the
removal of plasmids since 1971 (Bouanchaud and Chabbert,
1971). Over the past half-century, several studies have focused
on testing antibacterial compounds, such as detergents, biocides,
intercalary agents, and nanoparticles (Table 1), bacteriophage-
and microbiota-based therapies, or the CRISPR system for curing
resistance plasmids (Buckner et al., 2018).

Chemical Strategies for Removing MGEs
Chemical agents used for the elimination of resistance elements
in bacteria act through several mechanisms, including replication
blockage, DNA breaks, or inhibition of conjugation (Tables 1, 2).
The effectiveness of the agent varies depending on the bacterial
strain, presence of plasmids, and growth conditions.

Detergents have been used to remove resistance plasmids
since 1972. Sodium dodecyl sulfate (SDS) has shown excellent
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TABLE 1 | Plasmid curing compounds.

Curing agent Species of interest Plasmid target References

SDS S. aureus Penicillinase plasmid Sonstein and Baldwin, 1972

E. coli pBR322;pBR325 Keyhani et al., 2006

E. coli 212587, 212973, 208366, and 207940 isolates
carrying plasmids

Zaman et al., 2010

P. aeruginosa pBC15 plasmid Raja and Selvam, 2009

Ethidium bromide Streptomycetes pIJ303 and pIJ61 plasmids Crameri et al., 1986

E. coli 212587, 212973, 208366, and 207940 isolates
carrying plasmids

Zaman et al., 2010

L. acidophilus 20.3 bp chloramphenicol resistant plasmid Karthikeyan and Santosh, 2010

E. aerogenes pKpQIL carbapenem resistant plasmid Pulcrano et al., 2016

Acridin-orange Acriflavine Salmonella Chloramphenicol resistant plasmid Adetosoye and Rotilu, 1985

Shigella

Lactobacillus pDR101 Chassy et al., 1978

O. oeni pRS1, pRS2, and pRS3 Mesas et al., 2004

E. coli 212587, 212973, 208366, and 207940 isolates
carrying plasmids

Zaman et al., 2010

S. aureus Beta-lactam resistance plasmid Ojo et al., 2014

Triclosan (irgasan) Fusidic acid S. aureus Mupirocin resistance 48 Md plasmid Irish et al., 1998

E. coli pMIB4 plasmid Riber et al., 2016

Nitric oxide nanoparticles P. aeruginosa Plasmid carrying antibiotic-resistance genes Jones et al., 2010

S. aureus

E. coli

Trichophyton mentagrophytes

T. rubrum

A. baumannii

Chitosan E. coli Plasmid carrying antibiotic-resistance genes Bavya et al., 2019

S. aureus

Silver nanoparticles S. aureus methicillin-resistant plasmid Huang et al., 2011

TABLE 2 | Conjugation inhibitors and their targets for the elimination of antibiotic resistance.

Conjugative inhibitor Species of interest Target Results References

Intercalating agents Salmonella typhimurium Plasmid resistance
determinants

Inhibition of plasmid DNA
replicons

Hahn and Ciak, 1976; Adetosoye
and Rotilu, 1985

Nitrofuran derivatives Enterobacteriaceae Plasmid DNA replication DNA replication blocking Michel-Briand and Laporte, 1985

Unsaturated fatty acids E. coli R388 and the F-plasmid
derivative pOX38

Plasmid conjugation
inhibition

Fernandez-Lopez et al., 2005

Bisphosphonates E. coli Relaxase enzyme Disrupting conjugative DNA
transfer

Lujan et al., 2007

Antibodies E. coli Relaxase activity Relaxase blocking,
inhibition of conjugative
transfer

Garcillan-Barcia et al., 2007

Chemical inhibitors of
transposons recombination

E. coli Tn3 recombinase Tn3 transposition blocking Fennewald and Capobianco, 1984

efficiency in removing resistance plasmids in both Gram-positive
(e.g., the penicillin resistance plasmid from S. aureus) and Gram-
negative (e.g., E. coli and P. aeruginosa) bacteria (Sonstein
and Baldwin, 1972; Keyhani et al., 2006; Raja and Selvam,
2009; Zaman et al., 2010). However, high concentrations of
SDS are required, which result in gastrointestinal side effects
and thus prohibit the use of SDS in humans and animals
(Buckner et al., 2018). Another class of compounds used
to remove resistance plasmids are the intercalating agents,

such as ethidium bromide, acridine-orange, and acriflavine.
Elimination of resistance plasmids by ethidium bromide has
been demonstrated in Gram-positive (Lactobacillus acidophilus)
and Gram-negative (E. coli, Enterobacter aerogenes) bacteria, as
well as in actinomycetes (Streptomycetes) (Crameri et al., 1986;
Karthikeyan and Santosh, 2010; Zaman et al., 2010; Pulcrano
et al., 2016). Acridine-orange and acriflavine have successfully
cured resistance plasmids in E. coli (Zaman et al., 2010),
Salmonella spp. and Shigella spp. (Adetosoye and Rotilu, 1985),
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Lactobacillus spp. (Chassy et al., 1978), Oenococcus oeni (Mesas
et al., 2004), and S. aureus (Ojo et al., 2014). However, the use
of intercalating agents is associated with the risk of mutagenic
effects. Furthermore, intercalating agents appear to be inefficient
in eliminating large plasmids, such as those found in Rhizobium
spp. and Agrobacterium spp. (Rosenberg et al., 1981). Biocides
such as triclosan (irgasan) or fusidic acid have been used
since 1998 for the successful removal of resistance plasmids in
Gram-negative (E. coli) and Gram-positive (methicillin-resistant
S. aureus) bacteria (Irish et al., 1998; Riber et al., 2016).

Recently, nanoparticles have been proposed as potential
tools to combat bacterial resistance (Jones et al., 2010; Bavya
et al., 2019). An advantage of using nanoparticles is that they
simultaneously target multiple structures, decreasing the risk
of selecting/acquiring resistance to them (Zhang et al., 2010).
Nanoparticles exert their antibacterial effects through multiple
mechanisms, including destruction of the bacterial membrane
with elimination of cytoplasmic components, inactivation of
DNA or protein binding, and release of reactive oxygen
species. Blocking the function of cellular components leads to
oxidative stress, electrolyte imbalance, enzyme inhibition, and
finally, cell death (Huang et al., 2011; Knetsch and Koole,
2011; Wang et al., 2017). Due to their effects on DNA
integrity (double-strand breaks, deaminations, alkylating agent
formation, and inhibition of DNA repair enzymes) (Schairer
et al., 2012; Nejdl et al., 2017), different nanoparticles might
also be regarded as MGE curing agents. Another advantage
of using nanoparticles is that their antibacterial action can be
maintained for an extended period of time with no loss in
stability (Cheow and Hadinoto, 2014). Platinum and copper
nanoparticles are instrumental in the elimination of resistance
plasmids as they interact with the supercoiled plasmid DNA or
with topoisomerases involved in replication, transcription, and
recombination processes, ultimately leading to elimination of
the plasmids (Lakshmi et al., 1988; Lakshmi and Polasa, 1991;
Antonoglou et al., 2019). Copper nanoparticles have also been
used in plasmid DNA degradation experiments as well as for
blocking plasmid conjugation (Chatterjee et al., 2014; Klumper
et al., 2017). Despite the potential for metal nanoparticles to
be used as weapons against AMR, bacteria are capable of
developing resistance to the nanoparticles themselves, probably
facilitated by the global use of metals in fields such as agriculture,
animal feed supplements, and disinfectant production (Gupta
and Silver, 1998; Rai et al., 2012). Bacterial resistance to silver,
copper, and zinc nanoparticles has been highlighted in both
Gram-negative and Gram-positive bacteria isolated from inert
surfaces, soil, or the intestinal contents of animals fed with
zinc and copper supplements (Cason et al., 1966; Santo et al.,
2010; Altimira et al., 2012; Yazdankhah et al., 2014; Poole,
2017; Xu et al., 2017). Genes conferring resistance to metals
are usually located on plasmids, posing a significant risk of
very rapid dissemination through HGT (Dupont et al., 2011).
Furthermore, the co-existence of antibiotic resistance and metal
resistance genes within the same MGE is a possible mechanism
for selecting antibiotic resistance (Poole, 2017). Another type
of nanoparticle, the organic nanoparticles such as chitosan
nanoparticles, demonstrate resistance curing activity by affecting

the integrity of plasmid DNA and the conjugation capacity
(Bozkir and Saka, 2004).

Conjugation is involved in the dissemination of plasmids and
other MGEs such as conjugative transposons and ICE. Since most
MGEs use the same proteins for their transfer, HGT could be
blocked by conjugation inhibitors (COINs) (de la Cruz et al.,
2010; Baquero et al., 2011; Table 1). Many experiments have
demonstrated that intercalating agents, heterocyclic compounds,
acridine dyes, quinolones, and unsaturated fatty acids such
as linoleic and linolenic acid can act as COINs (Hahn and
Ciak, 1976; Adetosoye and Rotilu, 1985; Michel-Briand and
Laporte, 1985; Molnar et al., 1992; Fernandez-Lopez et al.,
2005). A possible target of COINs is relaxase, the most critical
enzyme in the conjugation process as it cuts the plasmid at
the oriT origin. Inhibiting conjugation by targeting relaxase has
been demonstrated for bisphosphonates (etidronate, clodronate)
and for specifically designed antibodies (Garcillan-Barcia et al.,
2007; Lujan et al., 2007). Another potential target of COINs
is to limit or block the site-specific recombinase enzymes that
have a central role in the transposition process (Fennewald
and Capobianco, 1984). However, some COINs are unable to
translocate the bacterial cell membrane, hence research has
been directed toward the discovery of new classes of permeable
compounds (Wigle et al., 2009).

Chemical agents have been successfully used to remove
resistance plasmids, but use of these compounds to limit
antibiotic resistance in humans is problematic. As stated
previously, high concentrations of SDS are required to remove
resistance plasmids and this results in gastrointestinal side effects
such as colitis; consequently, SDS use is banned in humans and
animals (Raja and Selvam, 2009). Studies have demonstrated
that intercalating agents are effective in eliminating resistance
plasmids (Chassy et al., 1978; Mesas et al., 2004; Ojo et al.,
2014; Pulcrano et al., 2016), but the risk of mutagenic effects
must be considered. Nanoparticles are another weapon against
bacterial resistance, but the main impediment to their use in
humans is the lack of information regarding their safety and
how they affect the biological integrity of organisms, particularly
in terms of producing toxicological, cytotoxic, and genotoxic
effects (Li T. et al., 2018). Nanoparticles are predominantly
used in doses below the threshold concentrations; thus, they are
not considered harmful to the body. However, bioaccumulation
of nanoparticles in the body following long-term exposure is
well known (Hasan et al., 2018). Therefore, further research on
long-term nanoparticle toxicity and carcinogenesis is needed.
Quinolones inhibit bacterial DNA replication by interfering with
DNA-gyrase activity, and numerous studies have highlighted
the plasmid-curing effect of quinolones in E. coli in vitro and
in vivo assays (Weisser and Wiedemann, 1985; Michel-Briand
et al., 1986; Courtright et al., 1988; Fu et al., 1988; Selan et al.,
1988). Despite these results, the use of quinolones to eliminate
plasmids containing ARGs may lead to a fitness advantage in
plasmid-containing cells and would therefore select for plasmid
maintenance. Phenothiazines, such as chlorpromazine, also have
plasmid-curing activity in E. coli (Molnar et al., 1976) and
methicillin-resistant S. aureus (Costa et al., 2010). Although
the role of these chemical agents has been demonstrated
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in vitro, further studies are needed to clarify the efficacy of
these compounds in vivo. In the case of chlorpromazine, the
concentration required in the intestine to remove resistance
plasmids is considerable (Maier et al., 2018). For this reason, it
is necessary to develop strategies that allow targeted delivery of
these chemical agents and avoid oral administration in order to
increase their efficiency and reduce the risk of toxicity.

Biological Strategies for Removing
MGEs
Bacteriophages
Bacteriophages are viral parasites capable of infecting bacteria
by recognizing surface receptors, injecting their genetic material
into the host, and replicating using the host cellular machinery.
Phages exert ecological and genetic effects on bacteria at the
population level, and these effects can impact plasmid stability
(Thompson, 1994). This is due to epistatic interactions between
the cost of chromosomal phage-resistant mutations and the cost
of maintaining plasmids (Buckling and Rainey, 2002). Although
phage-mediated transfer of ARGs between bacteria has been
demonstrated for numerous bacterial species, the transduction
occurs at a low rate (between 10−6 and 10−9 transductants/pfu).
One exception is methicillin-resistant S. aureus that contains a
category of MGEs called phage-inducible chromosomal islands
(PICIs), which are associated with the highest transduction
frequency (10−1 transductants/pfu) (Calero-Caceres and
Muniesa, 2016; Torres-Barcelo, 2018). Phages may enhance
the persistence of ARGs as an adaptation strategy to restrictive
environmental conditions, e.g., wastewater aggressively treated
using UV, temperature, or pH. However, genetically modified
phages could be used to increase antibiotic susceptibility of
resistant strains. The alarming increase in resistance has also
led to the revival of phage therapy in order to sensitize resistant
bacteria by eliminating resistance and virulence factors (Lin
et al., 2017). Jalasvuori et al. (2011) showed that the PRD1
phage determined the loss of RP4 and RN3 resistance plasmids
from strains of E. coli and Salmonella spp. and inhibited
the conjugation ability of the remaining resistant bacteria.
Another study demonstrated that the M13KE filamentous
phage could block plasmid conjugation by interacting with
the conjugative F pilus in E. coli. Furthermore, addition of the
M13 phage g3p minor protein results in complete inhibition of
conjugation, suggesting this protein has an essential role in the
process (Lin et al., 2011). Harrison et al. (2015) eliminated the
pQBR103 megaplasmid in P. fluorescens using the SBW252 lytic
phage. Recently, Chan et al. (2016) revealed that the OMKO1
phage isolated from P. aeruginosa could sensitize antibiotic-
resistant strains to erythromycin, ceftazidime, tetracycline, and
ciprofloxacin. Together, these studies demonstrate the possibility
of using phages to reduce the prevalence of resistance plasmids
in bacterial populations as well as to block plasmid conjugation.
In addition, phages can be successfully used to increase the
sensitivity of bacterial strains to antibiotics.

Seemingly successful experimental trials using phages to treat
pediatric dysentery (Summers, 2004), cholera and skin infections
(Abedon et al., 2011), and bubonic plague (Summers, 2004)

sparked interest in phage therapy both in Europe and the
United States. However, attempts to repeat these trials and
achieve positive results failed; this was due to an incomplete
understanding of phage biology, and because of the large-
scale development of a wide range of antibiotics that could
be used to treat these infections. Experimental data obtained
from the use of phage therapy in animals, as well as data from
observational studies conducted in humans, were not followed
by clinical studies to confirm the therapeutic value of phages.
However, in recent years, the abusive use of broad-spectrum
antibiotics (Ventola, 2015), as well as the rapid evolution and
dissemination of resistant bacteria (Kumarasamy et al., 2010),
has stimulated research into phage therapy (Lin et al., 2017), and
data from promising clinical trials have been published. Schooley
et al. (2017) have used phagotherapy in a patient with necrotic
pancreatitis caused by a MDR strain of A. baumannii. Other
studies have obtained favorable results for the phagotherapy
of an aortic graft infection with P. aeruginosa (Chan et al.,
2018), pneumonia caused by a MDR strain of P. aeruginosa
in a cystic fibrosis patient (Law et al., 2019), a Mycobacterium
abscessus infection in a patient with cystic fibrosis (Dedrick
et al., 2019), and periprosthetic, musculoskeletal, and lung
infections (Maddocks et al., 2019; Onsea et al., 2019; Tkhilaishvili
et al., 2019). Contrary to these studies, there are reports of the
inefficiency of phages in treating bacterial infections (Sarker et al.,
2016; Jault et al., 2019), which suggests that the clinical use of
phages requires standardization. One of the greatest challenges
in phage therapy is the selection of bacterial strains that are
resistant to phage action (Azam and Tanji, 2019; Taylor et al.,
2019; Yuan et al., 2019). Further studies are required to clearly
understand phage biology and elucidate the mechanisms leading
to the emergence of phage resistance.

Incompatibility-Based Plasmid Curing and
Toxin/Antitoxin Systems
Plasmid incompatibility is generally defined as the inability
of two co-resident plasmids to be stably inherited in the
absence of outside selection. Thus, if the introduction of a
second plasmid destabilizes transmission of the first plasmid,
the two plasmids are incompatible. This occurs because the
two plasmids share the same replication and partitioning
mechanisms. Consequently, under the influence of selective
pressure, the resident plasmid can be eliminated (Novick, 1987).
Elimination of plasmids based on incompatibility has historically
been used to elucidate the mechanisms involved in elimination,
and to study the interactions between the plasmid and the
host (Uraji et al., 2002). One of the main disadvantages of
incompatibility-based plasmid curing methods is the need for
repeated cloning and detailed knowledge of the target plasmid.
Also a significant problem in the construction of interference
plasmids is the requirement to know the replication and partition
control region before curing, as well as the need to include
additional plasmid genes (Ni et al., 2008). This incompatibility-
based strategy has been employed in a variety of bacteria.
In L. acidophilus, L. plantarum, and L. pentosus it was used
to eliminate approximately 2.3-kb resident plasmids (Bringel
et al., 1989; Posno et al., 1991). Ni et al. (2008) used plasmid
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FIGURE 3 | Schematic representation of CRISPR-based plasmid system capable of removing MGE-like resistance plasmids. This system contains two sgRNA
transcripts, the cas9 nuclease, and other structural elements. Firstly, sgRNA forms a complex with cas nuclease. The sgRNA transcripts guide cas9 nuclease to
introduce double-stranded breaks at the ends of the target DNA, leading to cleavage. Direct target recognition is achieved through recognition of protospacer
adjacent motifs (PAM), short DNA sequences that are not found in CRISPR loci, so there is no risk of self-degradation (So et al., 2017). Subsequently, the gap is filled
through homologous recombination by an editing template. This system can be used to edit the genome of several antibiotic-resistant bacterial strains, leading to
the removal of resistance determinants.

incompatibility to study the role of plasmids in the pathogenesis
of Yersinia pestis. The technique has also been used to remove
strains of Bacillus anthracis carrying high pathogenicity plasmids,
thus allowing observation of their role in capsule formation
and toxin production (Wang et al., 2011; Liu et al., 2012). Hale
et al. (2010) constructed a plasmid incompatibility system called
pCURE to eliminate F-like plasmids and IncP-1α from E. coli.
This system comprises elements of repression (transcriptional
repressor, antisense RNA), the origin of replication to compete
for essential steps, as well as an antitoxin repressor to control
the toxin/antitoxin system (Hale et al., 2010). Toxin/antitoxin
systems, also known as post-segregational cell killing or addiction
systems, are components of natural plasmids that ensure their
persistence in bacterial populations by blocking the growth of
daughter cells that do not inherit the plasmid. These systems
consist of a labile antitoxin that quenches the activity of the stable
toxin. Blocking antitoxin gene expression upon plasmid loss leads
to faster depletion of the antitoxin than the toxin, which de-
represses toxin activity, and ultimately results in programmed
cell death (Hayes, 2003). Recently, Kamruzzaman et al. (2017)
constructed incompatibility plasmids in combination with genes
encoding antitoxins and replicons, in order to eliminate the
blaIMP−4 and blaCMY−2 genes, in both in vitro and in vivo
experimental models. Target plasmids were eliminated in the

presence of antibiotics for selecting for the interference plasmid
(Kamruzzaman et al., 2017).

Successful in vitro elimination of plasmids through
incompatibility systems suggests that this strategy could be
applied in vivo, to both humans and animals. However, in order
to achieve this desideratum, in-depth research is necessary to
overcome current limitations of the system, such as the need for
repeated cloning, detailed characterization of target plasmids,
and prior knowledge of replication and segregation control
regions (Ni et al., 2008). Moreover, the requirement to use
antibiotics to select eliminated plasmids may be a significant
disadvantage to the method. Another aspect that needs further
research is the interaction between the interference and resistance
plasmids, including the reduction of antibiotic selection.

Utilization of CRISPR/Cas System to
Eliminate MGEs Involved in AMR
As stated above, strategies to remove MGEs based on chemical
compounds, phages, or incompatibility based-curing plasmid
systems have many limitations. All previously described strategies
require several stages of bacterial growth in the presence
of stressor agents, such as high temperature or intercalating
agents, which may lead to unwanted mutations. Therefore, novel
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approaches for the elimination of MGEs involved in AMR
have been proposed.

An attractive alternative strategy for combating bacterial
resistance uses the CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeat) system, which was initially described
in 1987 by Ishino et al. (1987). CRISPR/Cas is an immune
defense system in bacteria that is capable of recognizing
foreign nucleic acids and destroying them through associated
caspases. One of the significant advantages of this system
is its high specificity. This is due to the existence of short
repetitive sequences in CRISPR loci that are separated from
each other by single sequences of 26–72 pairs derived from
MGEs such as plasmids or transposons (Li H. Y. et al., 2018).
The CRISPR/Cas mechanism of defense against foreign genetic
elements is accomplished in three stages: acquisition, expression,
and interference (Crawley et al., 2018). The acquisition stage
comprises the insertion of single sequences (spacers) derived
from MGEs into repetitive loci of the host chromosome; these
sequences are separated from each other by repetitive sequences.
The expression stage involves transcribing the complex of
repetitive and spacer sequences into a single RNA transcript
that will be further processed by caspases in short CRISPR
RNAs. In the final stage, the interference phase, foreign nucleic
acids are identified based on complementarity with CRISPR
RNAs, and their degradation is executed by caspases (Walker
and Hatoum-Aslan, 2017). Discrimination between self and
non-self is accomplished through sequences from the foreign
nucleic acid called protospacers. These sequences are positioned
between short DNA sequences (2–6 bp) called protospacer
adjacent motifs (PAMs). Cas9 (CRISPR-associated protein 9)
will not cleave to a protospacer sequence unless there is a
neighboring PAM. CRISPR loci do not contain PAMs, hence
direct target recognition is achieved by the CRISPR system
without the risk of degrading its own nucleic acid (Marraffini
and Sontheimer, 2010; Figure 3). The CRISPR system is classified
into six main types and 33 subtypes. Each type has several
structural and functional characteristics, but the most distinctive
feature is the cas genes and proteins they encode, which play
an essential role in recognizing and degrading invading nucleic
acids. The number of cas genes ranges from 4 to 20, and the
diversity of the corresponding Cas proteins form an ensemble of
properties that are essential to the CRISPR immune mechanism
(Makarova and Koonin, 2015).

The idea that the CRISPR system could acquire new repetitive
nucleic acid sequences of extrachromosomal origin, mainly from
phages and plasmids, significantly increased interest in using the
system to limit HGT by blocking plasmid conjugation (Bolotin
et al., 2005; Pourcel et al., 2005). Subsequently, there have been
numerous studies on this topic. The first study of this type was
conducted by Marraffini and Sontheimer (2008). The authors
attempted to use the CRISPR system interference to block the
conjugation of plasmids in S. epidermidis. S. epidermidis strains
contain a CRISPR locus containing a homolog spc1 spacer
with a region encoding the nickase gene found in conjugative
plasmids from this strains (Diep et al., 2006). Silent mutations
were introduced into the target gene of the pG0400 conjugate
plasmid, generating a mutant plasmid (pG0). Both wild-type

and mutant plasmids were tested for conjugation ability. In
the control strain, which lacked the CRISPR locus and spc1
complementary to the nickase gene, the conjugation frequency
was similar for both plasmids. In the strain harboring the CRISPR
locus, only the mutated plasmid with the modified sequence
was transferred by conjugation. This demonstrated that the
CRISPR system could block plasmid conjugation in a site-specific
manner. Furthermore, based on the complementarity between
the spc1 spacer and the nickase gene region, the authors showed
that CRISPR interference could block plasmid transformation
(Marraffini and Sontheimer, 2008). Jiang et al. (2013) showed that
the CRISPR system could edit the genome of E. coli. An A to C
transversion was introduced in the rpsL gene and a pCRISPR:rpsL
plasmid harboring a spacer that would guide dual-RNA:Cas9
cleavage of the wild-type rpsL gene was constructed. Following
incubation of the strain of interest with the plasmid, deletion
of the rpsL gene was observed (Jiang et al., 2013). Removal of
ARGs was also demonstrated by Citorik et al. (2014), using a
variant of the CRISPR system encountered in S. pyogenes. The
authors built plasmids in which they introduced the CRISPR
elements as well as a copy of the blaSHV−18 and blaNDM-1 target
genes, conferring resistance to extended-spectrum beta-lactam
antibiotics. Elimination of blaSHV −18 and blaNDM-1 plasmids was
achieved by packaging the CRISPR elements into a bacteriophage.
Following treatment of clinical isolates of E. coli bearing the target
plasmids with the constructed phage, a significant reduction
in viable bacterial cells was observed (Citorik et al., 2014).
Removal of kanamycin resistance genes through the CRISPR
system has been demonstrated by Bikard et al. (2014) for
strains of S. aureus.

Yosef et al. (2015) introduced the CRISPR elements (cas genes,
and spacer sequences targeting the blaNDM-1 and blaCTX-M-15
genes) into a lysogenic phage, and following lysogenization of
the resistant bacteria with the constructed phage, elimination
of resistance plasmids was observed. The CRISPR system had
exhibited the ability to not only remove resistance plasmids, but
also to block their HGT (Yosef et al., 2015). Kim et al. (2016)
designed a CRISPR plasmid capable of recognizing the blaTEM
and blaSHV genes from strains of E. coli producing extended-
spectrum β-lactamases. Following transformation of bacterial
cells with the CRISPR plasmid, elimination of plasmid-encoding
beta-lactamase production was observed, demonstrating the
action of caspase at the level of the blaTEM and blaSHV
target regions. Furthermore, after elimination of the resistance
plasmid, the bacterial strains became sensitive to a series
of other antibiotics to which they have previously shown
resistance (Kim et al., 2016). Wang et al. (2019) constructed a
pMBLcas9 plasmid expressing Cas9, used to clone target single-
guide RNAs (sgRNAs) for plasmid curing. The recombinant
plasmid pMBLcas9-sgRNA was transferred by conjugation into
two clinical isolates of E. coli. In this study, four native
plasmids in isolate 14EC033 and two native plasmids in isolate
14EC007 were successfully eliminated in a stepwise manner
using pMBLcas9. In addition, two native plasmids in 14EC007
were simultaneously eliminated by tandemly cloning multiple
sgRNA in pMBLcas9, sensitizing isolate 14EC007 to polymyxin
and carbenicillin (Wang et al., 2019). In Zymomonas mobilis
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strain ZM4 the resistance plasmids pZZM402 and pZZM403
were eliminated by targeting the replicase-encoding gene
which, once inactivated, impairs plasmid replication and
leads to subsequent elimination (Cao et al., 2017). The
CRISPR system was also used to target some conserved
regions within the ColE1 replicons encountered in 91%
of the plasmids found in the databases. Lauritsen et al.
(2017) constructed a vector in which they introduced all
required CRISPR elements as well as two complementary
RNA sequences with the conserved regions that guide the
cascade nine nuclease to introduce double-strand breaks. This
induced elimination of resistance plasmids in E. coli and
other bacteria possessing replicons with conserved regions
that are targets for the CRISPR system (Lauritsen et al.,
2017). CRISPR systems have been designed and delivered in
E. coli via transformation and conjugation to eliminate the
plasmid-borne mcr-1 gene (Sun et al., 2017; Dong et al.,
2019). Efficient editing of a target locus using a CRISPR-
based system was achieved in S. aureus (Liu et al., 2017),
B. subtilis (So et al., 2017), E. faecalis (Hullahalli et al., 2017),
and E. coli (Lauritsen et al., 2018). In summary, this array
of studies conducted on various bacterial strains demonstrates
the utility of the CRISPR system to eliminate resistance
plasmids, as well as blocking HGT of the plasmids. The
CRISPR system can also be used for antibiotic sensitization of
resistant strains.

Many protocols for plasmid curing/ARG elimination using
CRISPR have been proposed (Table 3). However, there are some
limitations of this strategy. These limitations include: a known
target plasmid replication mechanism is required,; there is a
risk of chromosomal ARG acquisition in the interfering plasmid
(Kamruzzaman et al., 2017); and the majority of the studies
demonstrating the ability of the CRISPR system to eliminate
resistance plasmids, as well as to block the dissemination of ARGs
by HTG, were performed in vitro. The efficiency of the CRISPR
system to eliminate ARGs has been demonstrated in vivo in
different mammalian models. Price et al. (2019) revealed that
the E. faecalis CRISPR system could block dissemination of
resistance plasmids in the mouse gut. However, it remains to be
established how much can be extrapolated from these studies to
other mammalian organisms. Successful oral administration of
phages for targeting bacteria in the intestinal tract (Corbellino
et al., 2019) has led to the proposal that phages could be used
as a vehicle for delivering the CRISPR system into intestinal
microbiota to eliminate ARGs. However, this would require
a collection of phages specially designed to target ARGs,
the optimal concentration would need to be established, and
knowledge of several barriers that occur in vivo would be

required, such as inactivation of bacteriophages by gastric acid,
and neutralization of phages by the spleen and the immune
system (Merril et al., 2003).

CONCLUSION

The global increase in antibiotic resistance is a significant
challenge in the fields of medicine and microbial ecology.
Rapid development of effective strategies to reduce and control
bacterial resistance is required. MGEs have a pivotal role
in the acquisition and transmission of ARGs in clinical and
environmental sectors, and one approach to control resistance is
through elimination of these MGEs. Different chemical (biocides,
nanoparticles, antibodies) and biological (engineered phages,
commensal microbiota) strategies have been developed, with
most of the strategies being directed toward curing the resistance
plasmids or inhibiting the conjugation process. However, despite
the potential array of approaches directed toward elimination of
MGEs, these strategies need refining to overcome the challenges
identified in this literature survey. These challenges include
the cost-efficiency ratio, the narrow bacterial host spectrum,
resistance to phages or chemical agents, the need for a known
target plasmid replication mechanism, the risk of chromosomal
ARG acquisition in the interfering plasmid (CRISPR technology),
and the inability to remove big plasmids. Future work should
focus on tackling these challenges to develop a successful strategy
to combat antibiotic resistance.
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