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Abstract
We study inter-trialmovement fluctuations exhibited by human participantsduring the

repeated execution of a virtual shuffleboard task. Focusing on skilled performance, theoreti-

cal analysis of a previously-developed general model of inter-trial error correction is used to

predict the temporal and geometric structure of variability near a goal equivalent manifold

(GEM). The theory also predicts that the goal-level error scales linearly with intrinsic body-

level noise via the total body-goal sensitivity, a new derived quantity that illustrates how
task performance arises from the interaction of active error correction and passive sensitiv-

ity propertiesalong the GEM. Linear models estimated from observed fluctuations, together

with a novel application of bootstrapping to the estimation of dynamical and correlation

propertiesof the inter-trial dynamics, are used to experimentally confirmall predictions,

thus validating our model. In addition, we show that, unlike “static” variability analyses, our

dynamical approach yields results that are independent of the coordinates used to measure

task execution and, in so doing, provides a new set of task coordinates that are intrinsic to

the error-regulation process itself.

Author Summary

During the repeated execution of precision movement tasks, humans face two formidable
challenges from the motor system itself: dimensionality and noise. Human motor perfor-
mance involves biomechanical, neuromotor, and perceptual degrees of freedom far in
excess of those theoretically needed to prescribe typical goal-directed tasks. At the same
time, noise is present in the human body across multiple scales of observation. This high-
dimensional and stochastic character of biologicalmovement is the fundamental source of
variability ubiquitously observedduring task execution. However, it is becoming clear that
these two challenges are not merely impediments to be overcome, but rather hold a key to
understanding how humans maintain motor performance under changing circumstances,
such as those caused by fatigue, injury, or aging. In this work, by studying skilled human

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005118 September 19, 2016 1 / 30

a11111

OPENACCESS

Citation: John J, Dingwell JB, Cusumano JP (2016)
Error Correction and the Structure of Inter-Trial
Fluctuations in a Redundant Movement Task. PLoS
Comput Biol 12(9): e1005118. doi:10.1371/journal.
pcbi.1005118

Editor: Jörn Diedrichsen,Western University,
CANADA

Received:April 4, 2014

Accepted:August 25, 2016

Published:September 19, 2016

Copyright:© 2016 John et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricteduse, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement:All relevant data are
included in the Supporting InformationFile.

Funding: This work was supported by
Congressionally DirectedMedical Research
Programs (cdmrp.army.mil) contract #W81XWH-11-2-
0222 (JBD and JPC); National Science Foundation
(nsf.gov) grant #0625764 (JJ and JPC). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005118&domain=pdf
http://creativecommons.org/licenses/by/4.0/


participants as they play a virtual shuffleboard game, we demonstrate the fundamental
importance of adopting a dynamical perspectivewhen analyzing the motor variability
observedover many trials. Using this dynamical approach, we can not only study the
geometry of observed inter-trial variability, but can also theoretically describe and experi-
mentally characterize how it is temporally generated and regulated. Furthermore, our
theoretical framework and model-baseddata analysis approach helps to unify previous
variability analysis approaches based on stability, correlation, control theory, or task mani-
folds alone. This conceptual unification supports the idea that such seemingly disparate
features of motor variability arise from a single, relatively simple underlying neurophysio-
logical process of motor regulation.

Introduction
During the repeated execution of goal-directedmovements, statistical variability is always
observed from one trial to the next, and this motor variability has long been a major focus of
movement neuroscience [1–3]. It is generally believed that these inter-trial fluctuations contain
crucial information about how the neuromotor system organizes itself to meet task require-
ments in the face of physical constraints, external perturbations, and motor noise [4–9].
Indeed, there is increasing evidence that inherent biological noise, which is present at multiple
scales from the level of motor units down to the level of genes, may play a crucial physiological
function in the nervous system [7, 10, 11]. However, the process by which this multiscale
noise comes to be expressed as variability at the organismic level is still far from completely
understood.

There is an excess of body-level degrees of freedom over those needed to specify the out-
come of a typical goal-directedmovement, and it is natural to expect this redundancy to affect
the structure of observed variability. A number of data analysis approaches [12–14] have been
developed to examine the effect of this redundancy using task manifolds, which are surfaces in
a suitably-defined space of biomechanical observables, or “body states” (e.g., joint kinematic
variables), that contains all possible task solutions. By definition, every point in a task manifold
corresponds to a body state that results in perfect task execution, and so, as a consequence,
only body-level deviations away from the manifold result in error at the goal level.

Originally inspired by ideas from research in redundant robotics, uncontrolledmanifold
(UCM) analysis [12, 15–17] assumes that the task manifold is defined at each instant along a
given movement trajectory, and in typical applications takes the task’s goal to be represented
by the average movement in a time-normalized set of trials. The ratios of normalized variances
orthogonal and tangent to a candidate manifold are then used to identify possible “control
variables”, with the expectation that there should be a larger variance along the manifold than
normal to it. In a similar vein, motor learning has been studied by statistically decomposing
observedbody-level variability into tolerance, noise, and covariation (TNC) empirical “costs”,
[13, 18–20], all three of which are definedwith respect to a task manifold. In contrast with
UCM analysis, the TNC approach conceives of the task manifold as existing in a minimal
space of variables needed to specify task execution (e.g., the position and velocity of a ball at
release when throwing at a target). In addition to using its covariation cost to characterize the
alignment of body-level variability with the task manifold, TNC analysis crucially relates the
goal-level variability to error at the body level via its tolerance cost.

This relationship between body and goal-level variability was the initial focus of a sensitivity
analysis method based on the goal equivalent manifold (GEM) concept [14]. Like TNC, the
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GEM analysis defines its task manifold using only a minimal set of variables needed for task
specification, however it makes direct use of an explicit goal function that serves as a hypothesis
on the task strategy being used. The zeros of the goal function give body states yielding perfect
task execution, and the set of all such solutions then gives the GEM. In addition to defining the
GEM, the goal function provides a theoretical definition of the “passive” sensitivity (i.e., sensi-
tivity independent of any applied control) to body-level disturbances, via the singular values of
the goal function’s Jacobian matrix [14, 21].

While the initial GEM-based sensitivity analysis was useful for describing the geometrical
structure of observedvariability and quantifyingmotor performance, like the UCM and TNC
approaches it did not provide an analysis of the temporal structure of observed inter-trial fluc-
tuations. This limitation was addressed by subsequent developments that incorporated optimal
control ideas with the GEM to create a dynamical, model-baseddata analysis framework. Opti-
mal control in the presence of redundancy has been proposed as a theoretical basis for models
of the neuromotor system [22, 23], and the minimum intervention principle (MIP) [23, 24]
posits that little or no control will be exerted along the task manifold, since to do so would
entail a waste of control effort. The expandedGEM data analysis framework allows one to cre-
ate theoretical models of inter-trial fluctuations that can be used for hypothesis testing against
movement data from human participants [25–27].

This initial work has demonstrated the central importance of taking a dynamical approach
when analyzing motor variability. A fundamental feature of variability highlighted by these
studies is that inter-trial fluctuations are found to be dynamically anisotropic with respect to
the GEM [25–29]: that is, it is found that the local stability and correlation properties are con-
gruent with the local GEM geometry, with greater stability and lower temporal correlation
being associated with the components of time series transverse to the GEM, and lower stability
and greater correlation for times series components along the GEM. A similar directionality in
correlation properties has been found in a study of skill acquisition [30]. However, such studies
have tended to examine these dynamical properties in isolation, and it is not completely clear
how the various temporal properties (e.g., local stability multipliers, lag-1 correlations, etc.)
relate, if at all, to the purely geometrical features of inter-trial variability arising from the task
manifold itself (e.g. variance ratios, passive sensitivity). In particular, it remains an open ques-
tion whether these various features of inter-trial variability should be considered as manifesta-
tions of unique neurophysiological phenomena each in their own right, or if, conversely, they
are epiphenomena that naturally arise from a single, underlying regulatory process. In this
paper we present evidence that supports the latter, more parsimonious interpretation.

To this end, we examine the performance of human participants as they play a virtual shuf-
fleboard game. We chose shuffleboard for this study because it is among the simplest tasks
exhibiting task-level redundancy, and is thus both mathematically and experimentally tracta-
ble. As such, it serves as a “model problem” for a much broader class of goal-directed tasks
which can be expected to exhibit similar variability characteristics. Observed inter-trial fluctua-
tions are modeled as the output of the perception-action system as participants attempt to hit
the target in each trial by correcting error in the previous trial.We focus on skilled perfor-
mance, and, starting with a previously-developed general model for inter-trial error correction
[21, 26, 28], we present a theoretical analysis using the shuffleboard task as an illustrative
example. The analysis yields theoretical predictions about the geometrical and temporal struc-
ture of inter-trial variability, culminating in a prediction of how GEM geometry, passive sensi-
tivity, and active error correction combine to yield task performance. Specifically, we show that
the scaling of the root mean square (RMS) error at the target is determined by the total body-
goal sensitivity, which is, in effect, a total “gain” mapping body-level fluctuations to the goal
level.
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We also address a critical technical issue that arises when experimentally testing our theo-
retical predictions. For skilled performance, the local geometric stability properties of the fluc-
tuations play a fundamental role, with such properties being determined theoretically by an
eigenanalysis of a linearizedmodel. Unfortunately, numerical estimates of eigenvalues and
eigenvectors are known to be highly sensitive to errors in the matrix estimate [31], which are
themselves unavoidable when the matrix is found using regression on experimental data. This
problem is compounded by the relatively small data sets available in typical human subjects
experiments. In this paper we present a newmethod for estimating all of our dynamical quanti-
ties based on bootstrapping [32–34], which allows us to estimate the complete underlying
probability distribution for each quantity considered, resulting in the most robust demonstra-
tion to date of the degree to which dynamical anisotropy is present in inter-trial movement
data. Furthermore, this data analysis allows us to confirm the theoretical performance scaling
prediction to high precision, not only showing how the individual participants performed
in this particular task, but also validating the many assumptions underlying our theoretical
derivation.

Studies of variability using task solution manifolds typically assume that they are embedded
in a space of variables with identical physical dimension, such as, for example, joint angles [14,
15, 35], muscle activation [36, 37], or finger forces [16, 38, 39]. Such situations have tended to
obscure a fundamental difficulty if one intends to make inferences based on the relative magni-
tude of fluctuations normal and tangent to any hypothesizedmanifold: namely, that multivari-
ate statistics are not invariant under coordinate transformations. This issue was recently
recognized in the context of movement variability analysis [30, 40], but is a well-known prob-
lem in multivariate statistics. Indeed, the widespread utility of principal component analysis
[41, 42] is based in part on the fact that correlations between variables can be completely
removed with properly selected linear coordinate transformations.

It is clearly highly desirable that the inferences we make about the motor system be invari-
ant under coordinate transformations. While it is possible to normalize the variables and
make the data dimensionless, such an approach does not completely resolve the scaling issue
because the choice of the normalizing constant is, in most cases, arbitrary. This problem
becomes even more acute when the task manifold resides in a space composed of different
physical quantities, for example positions and velocities. Given the central role played by local
geometric stability in our approach, we are able to exploit the well-known fact that such
dynamical properties are invariants that do not depend on the coordinates used [43, 44]. We
therefore show that our approach provides a coordinate-independent characterization of the
variability observed in our experiments, suggesting that the local geometric stability analysis
of inter-trial fluctuations provides a new set of task coordinates that are intrinsic to the error
regulation process itself.

Methods
This section begins with a discussion of the key concepts and models that theoretically ground
our approach, and that culminate in a set of four experimental hypotheses. With this theoreti-
cal background as foundation, we then describe our experimental virtual shuffleboard game,
the experimental protocol, and our data analysis methods.

Ethics Statement
All participants provided informed consent, as approved by the Institutional ReviewBoard at
The Pennsylvania State University.
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The ShuffleboardTask and GEM
Fig 1 shows a schematic of a theoretical shuffleboard game. The entire game takes place along a
straight line. Starting the puck at x = 0, the shuffleboard cue is accelerated from rest while in
contact with the puck. Thereafter, the cue decelerates and, when the contact force between it
and the puck reaches zero, the puck is released with position and velocity x and v, respectively.
Once released, the puck slides on the board and is decelerated by the force of Coulomb friction,
with kinetic coefficientμ, between the board and the puck. The puck eventually comes to rest
at x = xf. The goal-level error, e = xf − L, is the distance between the final puck position and the
target.

ElementaryNewtonian mechanics gives the equation of motion for the puck after release as
€x ¼ � mg, where g is the gravitational acceleration constant. For arbitrary initial conditions x
and v just after release, and final velocity vf = 0, the equation of motion is easily integrated to
give −v2 = −2μg(xf − x). Since perfect execution (hitting the target) requires e = xf − L = 0, we
then obtain a goal function for the task as

e ¼ f ðx; vÞ ¼ v2 þ 2mgðx � LÞ : ð1Þ

Any values of x and v for which e = f(x, v) = 0 result in perfect task execution (zero error at the
goal level).

Dimensionless quantities ~x ¼ x=R, ~v ¼ v=
ffiffiffiffiffiffiffiffi
2gR

p
, and ~L ¼ L=R can be defined for some

length scale R. Note that the exact value of R used in this rescaling has no significant bearing on
our results: it was chosen for convenience so that when plotting experimental data the rescaled
release position ~x ¼ x=R � 1. For the experiments described in what follows, we took
L = 200cm and R = 20cm, so that the target was located at a distance of ~L ¼ 10 dimensionless
units. Using these rescalings in Eq (1) gives, after rearranging and dropping tildes, the goal
function in dimensionless form as

f ðx; vÞ ¼
v2

m
þ x � 10 : ð2Þ

Henceforth we use the dimensionless goal function of Eq (2).

Fig 1. Schematic of a shuffleboard task: the shuffleboard cue pushes the puck from rest and releases
it at a positionxwith a velocity vwhen the contact force betweenpuck and cue decreases to zero.
Thereafter, the puck decelerates due to the Coulomb friction force between the puck and the board, and
eventually comes to rest at xf. The target is at a distance L from the initial position and the goal-level error is
e = xf − L.

doi:10.1371/journal.pcbi.1005118.g001
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There are an infinite number of states (x, v) that are zeros to Eq (2), corresponding to trials
that hit the target perfectly. In this simple case, we can solve for this set analytically, and find,
as shown in Fig 2, that it forms a 1D goal equivalent manifold (GEM)

G ¼ ðx; vÞ j v2 ¼ mð10 � xÞf g ; ð3Þ

which has the shape of a parabola in the (x, v) plane. Since the performance is completely deter-
mined by the values of x and v at release, we take as our body state x = (x, v)T (where the super-
script T denotes the transpose). Note that the goal function f(x) 6¼ 0 for “strategies” x that are
not exactly on the GEM: for this task, this value is identical to the goal-level error, e.

The GEM represented in Fig 2 exists independently of who or what performs the task. Actu-
ating the shuffleboard cue with a single degree of freedom pneumatic actuator, a robot with
tens of degrees of freedom, or a biological organism with thousands of degrees of freedomdoes
not affect the requirements in the (x, v) body state space needed to hit the target. Furthermore,
the GEM has been definedwithout any consideration of the control that might be applied to
correct errors from one trial to the next: even a completely uncontrolled system that randomly
assigned values of x and v for each trial would have the same GEM.

For a skilled participant whose performance is perfect on average, we assume that the state
will be near the GEM and write x = x� + u, where the operating point x� ¼ ðx�; v�ÞT 2 G repre-
sents the average perfect trial on the GEM, and u = (p, q)T is a small fluctuation. Substitution
into the goal function Eq (2) and linearizing about u = (0, 0)T then gives

e ¼
ðv� þ qÞ2

m
þ ðx� þ pÞ � 10 � 1

2v�

m

� � p

q

 !

≜ Au ; ð4Þ

whereA ¼ @f
@x

@f
@v

� �
, with derivatives evaluated at (x�, v�), is the 1 × 2 body-goal variability

matrix [14] that maps body-level perturbations u into goal-level error e.

Fig 2. Typical GEM (solid curve) for the shuffleboard task, obtainedas zeros of the goal functionEq
(2), plotted in the dimensionless (x, v) body state space.Dashed curves indicate ±10% constant error
contours at the goal (as a percentageof distance to the goal). For this particularplot, μ� 0.016. Also shown
are the unit vectors tangent and normal to the GEM, êt and ên, near a representative operating point x* (Eqs
(5) and (6)): small deviations along êt do not cause error at the target (i.e., they are goal equivalent), while
deviations along ên do (i.e., they are goal relevant). Note that the distance between contours increases from
left to right, indicating a decrease in passive sensitivity (see Eq 8) along the GEM.

doi:10.1371/journal.pcbi.1005118.g002
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The null spaceN of A, defined by N ¼ fu jAu ¼ 0g, contains fluctuations that are goal
equivalent, i.e., that to leading order have no effect on the goal level error. Using this definition,
the unit tangent vector to the GEM is found to be

êt ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2v�
m

� �2
r

�
2v�

m

1

0

@

1

A; ð5Þ

giving the 1D goal-equivalent subspace as N ¼ spanfêtg, which is also the subspace tangent
to the GEM at x� (again, see Fig 2). In contrast, the row spaceR of A contains fluctuations that
result in error at the goal and, hence, are goal relevant. This 1D space is orthogonal to the
GEM, so that R ¼ spanfêng, where ên is the unit normal to the GEM given by

ên ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2v�
m

� �2
r

1

2v�

m

0

@

1

A: ð6Þ

Given a fluctuation u from the operating point x�, its goal-relevant and goal-equivalent com-
ponents are found using the inner products

uR ¼ u � ên and uN ¼ u � êt ; ð7Þ

respectively. Using these, one can readily compute from observations the sample standard
deviations of goal-relevant and goal-equivalent fluctuations, sR and sN , respectively.

The singular values of the body-goalmatrix A determine how fluctuations u get amplified
onto the target [14], and so determine the sensitivity of the performance to body-level errors.
Since the sensitivity depends only on the goal function, it is independent of any specific inter-
trial control mechanism, and so is considered to be a passive property of the task. For the shuf-
fleboard game, A has one singular value s, which is given by [31]

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2v�

m

� �2
s

: ð8Þ

Thus, the passive sensitivity is a function of the friction coefficient,μ, and the speed at the oper-
ating point, v�, with the latter indicating that s is not constant along the GEM. Given s, Eq (4)
can then be used to obtain the RMS goal-level error as

se ¼ ssR ; ð9Þ

which is a special case of the general expression obtained in [14]. Thus, the passive sensitivity
“explains” the goal level error, but only when the goal-relevant fluctuations are taken as given.
However, the scale of those fluctuations, sR, is itself determined by the active process of inter-
trial error correction.

Modeling Inter-Trial Fluctuations
As discussed previously, the GEM and body-goal sensitivity are passive properties of the task
that exist prior to the imposition of any error-correcting control. Here, we “close the loop” on
the problem by discussing simple perception-actionmodels of inter-trial error correction. For
clarity, we present our modeling framework with a bit more generality than will ultimately be
needed. Additional background and details can be found in [26, 28].

Error Correction and the Structureof Inter-Trial Fluctuations
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A typical experiment for a goal-directed task withN trials results in a time series of the body
state variable, fxkg

N
k¼1

, and a corresponding time series of goal-level errors, fekg
N
k¼1

. We con-
sider these time series to result from the process of error-correction used by participants as
they make adjustments after each trial, and model the fluctuation dynamics with update equa-
tions of the form [21, 26, 28]:

xkþ1 ¼ xk þG Iþ Nkð ÞcðxkÞ þ νk ; ð10Þ

in which: c(xk) is an inter-trial, error-correcting controller depending on the current state;Nk

is a matrix representing signal-dependent noise in the motor outputs [45]; and νk is an additive
noise vector representing unmodeled effects from perceptual and neuromotor sources. The
diagonal matrix of gains,G, is included as a convenient way to detune the model away from
optimality when c is an optimal controller designed initially withG = I [26].

Error-correctingmodels with mathematical form similar to Eq (10) have been used to study
motor learning [46–48] and to understand the effect of motor noise. These previous efforts
have not focused on the role of task level redundancy, or attempted to relate body-level fluctua-
tions to those at some external goal, as we do here. However, in contrast to these previous stud-
ies, we do not make reference to hidden internal state variables related, for example, to motor
planning, but instead construct our models at the level of experimentally-observable task-rele-
vant kinematic variables. As a consequence, our models cannot be used to disambiguate the
effect of noise due to motor planning from that due to motor execution [46]. Our focus here is
not on how internal “neuronal” state variables are dynamically mapped to kinematic output
variables, but rather how the body-level task variables are mapped onto the goal-level task
error in the presence of redundancy. Hence, our study takes place at a different level of descrip-
tion than studies aimed at understanding the physiological origin of motor noise and its role in
motor learning.Models with the general form of Eq (10) can be viewed as the between-trial
component of a hierarchical motor regulation scheme that makes error-correcting adjustments
to an approximately “feed forward,” within-trial component.

Focusing once again on skilledmovements, we write xk = x� + uk as was done leading up to
Eq (4), where uk are small perturbations from the operating point x�. Assuming, in addition,
small noise termsNk and νk, we can linearize the controller Eq (10) [21, 28] about uk = 0 to
obtain:

ukþ1 ¼ Buk þ νk ; ð11Þ

where the matrix B = I+GJ, and J = @c/@x is the Jacobian of the controller evaluated at x�.
Note that, to leading order, signal dependent noise does not affect the inter-trial dynamics near
the GEM [28]. Thus, small fluctuations are governed by the linear map of Eq (11), and the
eigenvalues and eigenvectors of B determine the local dynamic stability properties of the sys-
tem [44, 49, 50]. Specifically, eigenvalues λ with magnitude near zero (|λ|�0) indicate that
deviations from the GEM are rapidly corrected, whereas positive eigenvalues strictly less than
but closer to one (0� λ< 1) indicate that deviations are only weakly corrected (that is, they
are allowed to “persist”). Note that values of λ> 1 indicate instability, indicating that devia-
tions would continue to grow in successive trials, something that is not expected in experi-
ments. For the shuffleboard task, the body states are 2-dimensional, so that B is a 2 × 2 matrix
possessing two eigenvalues, {λw, λs}, and two eigenvectors, fêw; êsg, where the subscriptsw and
s indicate weakly and strongly stable directions, as described below. We limit our discussion
to the case of real, distinct eigenvalues, which has been found to be sufficient in experimental
applications to date.

Error Correction and the Structureof Inter-Trial Fluctuations
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In [26], c was found analytically as an optimal controller using different specified cost func-
tions. Because goal-level error was minimized as a cost, the goal function (which, for the
current paper, is given by Eq 2) was built into the model, and so the effect of the GEMwas
explicitly included. In studies of this type, the model is used to generate simulated data, which
is then statistically compared to experimental data to “reverse engineer” the controller used by
human participants. Furthermore, if one wishes to study local stability properties via Eq (11),
the matrix B can, in principle, be obtained analytically by differentiation.

In contrast, in this work we take a simpler, empirical approach: instead of formulating an
explicit optimal controller, linear regression is used to estimate the matrix B of Eq (11) directly
from the experimental fluctuation data. The eigenstructure of the estimated B is then obtained
and compared to the geometry of the shuffleboardGEM (Fig 2). Thus, other than the assump-
tion of closeness to an operating point x� 2 G (i.e., of linearity), the controller is not assumed
to to be optimal, nor is the GEM encoded into it in any way. Thus, any structure in the data
related to the presence of the GEM is a property of the observedfluctuation dynamics: it has
not been imposed by the model.

Relating Fluctuations at Body and Goal Levels
Task manifold methods applied to a variety of motor tasks have shown that the body-level vari-
ability observedduring skilled task execution will tend to have greater variance along the task
manifold than normal to it. Indeed, anisotropy in the variability is typically taken to demon-
strate that a hypothesized task manifold is being used to organize motor control [12, 16]. Such
results are consistent with a generalized interpretation of the UCM hypothesis and the MIP:
namely, that while disturbances along the task manifold are not truly “uncontrolled”, they are,
at least, more weakly controlled than those normal to it. However, movement variability may
be “structured” (i.e., may exhibit anisotropy) for biomechanical and/or neurophysiological rea-
sons that are unrelated to control [36]. In addition, variance-based analyses are vulnerable to
ambiguities related to the coordinate dependence of variability statistics [28, 40], and by them-
selves do not provide any insight into how observed fluctuations are dynamically generated
and regulated [28, 51].

A number of researchers have addressed this last limitation by combining task manifold
ideas with time series analysis of statistical persistence [25–27, 30, 51–54], as measured either
via detrended fluctuation analysis (DFA) [55, 56] or autocorrelations. Generally speaking, a
time series exhibits statistical persistence if, given fluctuations in one direction, subsequent
fluctuations are likely to be in the same direction. If subsequent fluctuations are likely to be in
the opposite direction, the time series is said to be antipersistent, and if subsequent fluctuations
are equally likely to be in either direction the time series is non-persistent or, alternatively,
uncorrelated. As was shown in [25], the coherent interpretation of persistence results requires
the consideration of error-correcting control near the task manifold: there is greater statistical
persistence along the manifold, where the control is weak, than perpendicular to it, where the
control is strong. These types of results are, again, consistent with a generalized interpretation
of the MIP [28].

All of the above-cited studies lead us to expect dynamical anisotropy in inter-trial fluctua-
tions. That is, the temporal structure of fluctuations should reflect the operation of a controller
that strongly acts against goal-relevant deviations by pushing subsequent body-states toward
the GEM, while only weakly acting to correct goal-equivalent deviations along the GEM.

Since in this paper we focus on skilledmovements, we make direct use of the linearized
model Eq (11). For an ideal MIP controller, the complete absence of control along the GEM
would result in neutral stability along it, as well, meaning that one eigenvector of the matrix
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B (Eq (11)) would be identical to the unit tangent êt , and its associated eigenvalue would be
λ = 1. However, such a scenario in the presence of motor noise would result in an unbounded
random walk along the GEM, something which has yet to be observed in experiments. Thus,
we expect the inter-trial dynamics to be slightly perturbed from what one would expect for a
perfectMIP controller, giving one weakly stable eigenvalue less than, but somewhat close to, 1
(i.e., 0� λw< 1) with an associated unit eigenvector ew that is close to êt , but slightly rotated.
In contrast, the strongly stable eigenvalue, λs, indicates vigorous correction of deviations off of
the GEM, so that |λs|�0 and es is transverse (but not necessarily perpendicular) to the GEM.
The general geometry of the situation, in which local stability properties are overlaid on the
GEM near an operating point x�, is show schematically in Fig 3.

The fluctuations uk in the original, laboratory coordinates (e.g., representing speed and posi-
tion for the shuffleboard game) can be transformed into new fluctuations expressed in eigen-
coordinates via the linear coordinate transformation

uk ¼ Ezk ; ð12Þ

whereE is the matrix containing êw and ês as its columns. Note that E is not typically an
orthogonal matrix because the eigenvectors of B are not usually perpendicular. Using this
transformation, Eq (11) becomes

zkþ1 ¼ E� 1BEzk þ E� 1νk≜Qzk þ nk : ð13Þ

where z = (zw, zs)T are the fluctuations expressed in weak-strong eigencoordinates, the diagonal
matrixQ = E−1 BE has λw and λs along its diagonal, and n = (nw, ns)T is the transformed addi-
tive noise term. That is, the transformation Eq (12) decouples the dynamics in the weak and
strong directions so that Eq (13) can be written as

zw;kþ1 ¼ lw zw;k þ nw;k ð14Þ

zs;kþ1 ¼ ls zs;k þ ns;k; ð15Þ

in which zw, k and zs, k are simply the components of zk in the weak and strong directions,
respectively. This “diagonalized” form of the system illustrates the action of each eigenvalue on
fluctuations in their respective directions: in the absence of noise an eigenvalue close to zero
will eliminate a given fluctuation on the very next trial, whereas a positive eigenvalue a bit less
than 1 will allow fluctuations to persist over many trials. The decomposition of Eqs (14) and
(15) is intrinsic to the fluctuation dynamics created by inter-trial error correction, and so dif-
fers significantly from “static” decompositions using, for example, the normal and tangent to
the GEM, or principal component analysis [42].

From Eq (7) and the transformation Eq (12) we can relate the standard deviations of fluctu-
ations in the goal-relevant and strongly-stable directions as

uR ¼ ên � u ¼ ên � zwêw þ zsêsð Þ � bzs ¼) sR � bss ; ð16Þ

where b≜ ên � ês ¼ sin ðysÞ (see Fig 3) and we have assumed, consistent with a generalizedMIP,
that the weakly stable direction is nearly tangent to the GEM, so that êw � êt ) ên � êw � 0.
Squaring both sides of Eq (14), taking the ensemble average (as indicated by angle brackets),
and assuming that the noise and fluctuations at trial k are uncorrelated, yields

z2

w;kþ1

D E
¼ l

2

w z2

w;k

D E
þ n2

w;k

D E
¼) sw ¼

snwffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � l
2

w

q ; ð17Þ
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where s2
nw � hn

2
w;ki, and in which we have used the fact that at steady state hz

2
w;kþ1
i ¼ hz2

w;ki � s2
w.

A similar calculationwith Eq (15) gives

ss ¼
snsffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � l
2

s

q : ð18Þ

Eqs (17) and (18) show that as the eigenvalues approach 0, the “output” variance of the fluctua-
tions approaches a minimum value equal to the variance of the “input” noise. Conversely, as the
eigenvalues approach the stability boundary of 1, the output variance becomes unbounded (i.e.,
the fluctuations approach the behavior of a randomwalk).

Finally, substituting from Eq (16) into Eq (9), using Eq (18), and rearranging we find

se

sns
�

bs
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � l
2

s

q ≜ sTOT ; ð19Þ

where sTOT is the total body-goal sensitivity, which quantifies how much intrinsic body-level
fluctuations are amplified at the goal level. Note that sTOT results from the interaction of the
passive sensitivity (via s), the local GEM geometry (via β = sinθs) and active control “strength”
(via λs).

Statistical Persistence
Given zw and zs time series from the diagonalized controller of Eqs (14) and (15), we can com-
pute the normalized lag-1 autocorrelations of the fluctuations in the weak and strong directions
as

Rwð1Þ ¼
ðzw;kþ1Þðzw;kÞ

 �

s2
w

and Rsð1Þ ¼
ðzs;kþ1Þðzs;kÞ

 �

s2
s

; ð20Þ

respectively. This provides a simple quantification for the statistical persistence in both

Fig 3. Schematic showing the goal-equivalent (null) spaceN and goal-relevant (column)spaceR of
fluctuations about an operatingpoint x* on theGEM, and the relative orientationof theweakly (single
arrow) and strongly (double arrow) stable subspaces determined by the eigenvectors of a 2 × 2matrix
B (Eq (11)), as given by angles θw and θs, respectively. Also shown are the coordinate axes of the position
and velocity fluctuations, p and q, respectively. Note that θw is exaggerated for clarity:we expect θw� 0. The
strongly stable direction is transverse, but not necessarily perpendicular, to the GEM.

doi:10.1371/journal.pcbi.1005118.g003
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directions. However, multiplying Eq (14) by zw, k, taking the ensemble average, and assuming
the additive noise is uncorrelated with the fluctuations so that h(zw, k)(nw, k)i = 0 gives

ðzw;kþ1Þðzw;kÞ

 �

¼ lw ðzw;kÞðzw;kÞ

 �

� lws2

w : ð21Þ

Solving for λw in the above and comparing it to the definition Rw(1) in Eq (20), we see that
Rw(1)� λw. Likewise, a similar calculationwith Eq (15) shows Rs(1)� λs. Thus, as a persistence
measure the normalized lag-1 autocorrelation does not, theoretically speaking, provide infor-
mation distinct from the eigenvalues λw and λs. We include it here to demonstrate the connec-
tion between stability and this simple persistencemeasure. We use it later, as well, to serve as a
consistency check on our experimental eigenvalue estimates.

To test for statistical persistence with a method independent from the eigenanalysis, one
can apply detrended fluctuation analysis (DFA) [55, 56] with linear detrending to the zw and zs
time series. The DFA algorithm yields a positive exponent, α, where α< 0.5 indicates antiper-
sistence in a time series, α> 0.5 indicates persistence and α = 0.5 indicates non-persistence.
Contrary to its most common use in the literature, in this work we are not using DFA to claim
that observed fluctuations exhibit long-range persistence, but instead employ αmerely as a con-
venient overall measure of persistence that, unlike the autocorrelation, does not require consid-
eration of specific lags. Additional discussion regarding the application of DFA to movement
variability data can be found in [28], including a review of its vulnerability to false positives
when testing for long-range persistence [57–59].

Coordinate Invariance
In this subsectionwe show how the dynamical analysis of inter-trial fluctuations allows us to
characterize observedvariability in a way that is insensitive to the choice of coordinates. Start-
ing with some original body state variable x, consider a new variable y of the same dimension
as x, with each being related by a general differentiable, invertible coordinate transformation
x = g(y). Thus, the operating point expressed for each choice of coordinates is related by
x� = g(y�), and we find that small fluctuations are related to lowest order by a linear transfor-
mation from:

x� þ uk ¼ gðy
� þ vkÞ � gðy

�Þ þ Tvk ¼) uk ¼ Tvk ; ð22Þ

where uk and vk are the fluctuations expressed in terms of the old and new coordinates, respec-
tively, and T is the square Jacobian matrix of the transformation g evaluated at y�.

Using Eq (22) to substitute for uk into the linearized controller Eq (11) then gives, in a man-
ner analogous to that used to obtain Eq (13):

vkþ1 ¼ T� 1BTvk þ T� 1νk : ð23Þ

Clearly, the matrix T−1 BT on the right-hand side of the above equation is congruent to the
originalB, and so will have the same eigenvalues, and, hence, the same stability properties.

As discussed in [28], the GEM itself is transformed when using the new coordinates. Recall
from the discussion prior to Eq (5) that the tangent to the GEM is determined from the null
space of the Jacobian to the goal function,A. That is, to leading order the fluctuation uk is on
the GEMwheneverAuk = 0. However, again using the transformation Eq (22), we see that
Auk = ATv k, showing that whenever uk is on the GEM expressed in terms of the original coor-
dinates, vk is on the GEM expressed using the new coordinates. Thus, not only are the stability
properties unaffected by coordinate transformations, the eigenvectors and GEM are trans-
formed in a predictable way that preserves the topology near the operating point: that is, while
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changing coordinates will typically rotate and shear the picture somewhat, the overall arrange-
ment illustrated in Fig 3 is preserved.

ExperimentalHypotheses
Following the above discussion, we are led to the following four theoretical predictions, pre-
sented here as experimental hypotheses, which we here simply state directly. Additional
computational details, as required to test the hypotheses, are presented in the Data Analysis
section below. As a convenience to the reader, Table 1 contains a glossary of the key symbols
used in stating the hypotheses.

H1 Consistent with the hypothesis of weak control along the GEM, one of the eigenvectors,
êw, of the matrix B in Eq (11) will be nearly tangent to the GEM. That is, the weakly stable
subspace, spanfêwg, will make an angle with the GEM of yw ¼ cos � 1ðêt � êwÞ � 0 (see
Fig 3). Furthermore, the corresponding eigenvalue, λw, will be well above 0, but less than
1 (i.e., 0� λw< 1).

H2 In contrast, the fluctuation dynamics transverse to the GEMwill be strongly stable: i.e.,
the eigenvalue λs satisfies 0� |λs|� λw. The associated eigenvector, ês, and the strongly
stable subspace spanfêsg, will be transverse (i.e., not tangent) to the GEM, but they need
not be normal to it. That is, for ys ¼ cos � 1ðêt � êsÞ we expect 0� θw� θs (again, refer to
Fig 3).

H3 We expect the statistical persistence properties of the inter-trial fluctuations to be consis-
tent with the stability properties ofH1 andH2. That is, the fluctuations in the weakly sta-
ble subspace will tend to persist over many trials, whereas those in the strongly stable
directionwill be corrected rapidly so that what remains is closely approximated by

Table 1. Glossaryof key symbols used in the statementof hypotheses H1–H4.

Symbol Meaning Where
defined

êt, ên Unit vectors tangent and normal to the GEM Eqs (5) and
(6)

B 2 × 2 matrix of linearized state update equation Eq (11)

λw, λs Eigenvalues of B indicating weak and strong regulation of fluctuations near
GEM

Eq (11) ff.

êw, ês Eigenvectors of B showing the weakly and strongly stable directions of inter-
trial regulation

Eq (11) ff.

θw, θs Angle between weak and strong eigenvectors of B and tangent to the GEM Fig 3

Rw(1),
Rs(1)

Lag-1 autocorrelations of weak and strong components of the body-level
fluctuation time series

Eq (20)

αw, αs DFA exponents of weak and strong components of body-level fluctuation time
series

Eq (21) ff.

A 1 × 2 Jacobian of goal function evaluated at mean operating point (the body-
goal variability matrix)

Eq (4)

s Singular value of A (passive sensitivity to fluctuations near the GEM) Eq (8)

σe Standard deviation of goal-level fluctuations (RMS task error) Eq (9)

σR Standard deviation of fluctuations normal to the GEM (RMS goal-relevant
fluctuations)

Eq (9)

σns, σnw Standard deviations of the component of additive noise in the strongly and
weakly stable directions.

Eq (17) ff.

β sin(θs) Fig 3

sTOT Total body-goal sensitivity Eq (19)

doi:10.1371/journal.pcbi.1005118.t001
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uncorrelated “white noise”. We characterize statistical persistence two ways: via
the normalized lag-1 autocorrelation R(1), and via the exponent α from detrended
fluctuation analysis (DFA). From Eq (20) and the subsequent discussion, we expect
0� |Rs(1)|� Rw(1), whereas we expect the DFA exponents to satisfy 0.5� αs� αw.

H4 For skilled performers we expect se=sR � s (Eq (9)), where the passive sensitivity s is the
singular value of A at x� (Eq (8)), σe is the standard deviation of goal-level fluctuations
(i.e., RMS error), and sR is the standard deviation of goal-relevant fluctuations (Eq (7)).
Combining this with local geometric stability analysis leads to the prediction that the
goal-level error will scale with the intrinsic body-level noise according to Eq (19),
repeated here for convenience:

se

sns
�

bs
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � l
2

s

q ≜ sTOT;

where σns is the RMS value of the component of additive noise ν in the strongly-stable
direction, β = sin(θs) (Fig 3), and s is the passive sensitivity. For the shuffleboard task,
s = s(μ), from Eq (8).

HypothesesH1–H3 can be tested directly by examining the eigenstructure of the matrix B in
Eq (11). They are dynamical consequences of the more general hypothesis that Eq (11) is
derived from a “GEM aware” controller, and hence strives to eliminate goal-relevant deviations
quickly, after only one trial, while allowing goal-equivalent deviations to persist for multiple tri-
als. In contrast, hypothesisH4 emphasizes how the overall goal-level performance (as mea-
sured by σe) will result from the interaction between the strongly-stable component of the
intrinsic “input” noise (measured by σns), inter-trial error correction, and passive sensitivity.

The total body-goal sensitivity, sTOT, is an overall “gain” between body-level noise and goal-

level error. We expect λs� 0, and β = sin(θs)<1 (Fig 3). Thus, b=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � l
2

s

q

, which is the “active

factor” of sTOT will have a value on the order of unity. In contrast, the “passive factor” of sTOT,
which is simply the passive sensitivity s (Eq (8)), may be substantially greater than unity. Thus,
a somewhat counterintuitive effect of error-correcting control is that the passive sensitivity,
which is determined by task properties independent from control, may play a dominant role in
determiningmotor performance at the goal level.

ExperimentalApparatus and Protocol
Fig 4 shows a schematic representation of the experimental set-up for the shuffleboard game in
a virtual environment. The participant was seated in an upright position, and in each trial
moved a custom-built input device consisting of a manipulandum affixed to a low friction, sin-
gle degree of freedom, linear bearing. Participants held the manipulandum with their dominant
hand and pushed it in a direction parallel to the ground plane. The apparatus was configured
for each participant so that at rest the upper arm was alignedwith the midaxillary line and the
angle between the upper arm and the forearm was approximately 90°.

Each trial started with the puck at x = 0 (recall Fig 1). The participant accelerated the manip-
ulandum from rest. Position data was acquired from the manipulandum’s motion and used to
generate the motion of a virtual shuffleboard cue in real time, via custom software, which
pushed the puck on the virtual court. The release of the puck happened as the cue decelerated
and the virtual contact force between the cue and the puck decreased to zero. At the point of
release, the position and velocity, x and v, of the puck were acquired, defining the body state for
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a given trial. Thereafter, the acquired values of x and v were used to compute the motion of the
puck as it slid on the virtual court and was decelerated by Coulomb friction before coming to
rest. The movement of the shuffleboard cue and puck during the entire trial was generated in
real time by the control software and projected onto a screen. Participants could see an ani-
mated 3D scene showing the movement of the puck on the court as it moved toward a visible
target line before coming to a stop. The projector (InFocus LP70+) was located to the right and
just behind the participants, approximately 3m from a 1.7m × 1.3m screen, with the settings
adjusted for flicker-free images that filled the screen.

The position and velocity data were obtained from two transducers placed on the manipu-
landum and collected through two 12-bit channels: an accelerometer (ADXL320, Analog
Devices, Inc., Norwood,MA) was used to collect acceleration data, which was integrated to
provide the velocity; the other channel collected position data from a linear variable displace-
ment transducer (LVDT) (Daytronic Corporation,Dayton, OH). The LVDT was also used to
calibrate the accelerometer by scaling the doubly integrated acceleration signal to match the
position signal. A National Instruments NIDAQCard-6024E data acquisition card was used to
acquire the data to a laptop computer. A virtual instrument written in LabVIEW (National
Instruments, Austin, TX) passed the velocity and position information in real time to a
C++ program which used the Visualization Toolkit (VTK, http://www.vtk.org), an open-
source graphics library, to render the 3D virtual environment. Both signals were sampled at
5kHz to provide smooth animation in the virtual environment. Even though the virtual envi-
ronment has no physical units per se, we designed the system so that all VTK representations
of lengths matched centimeters in the physical world: the accelerometer and LVDT were cali-
brated and data was recorded in cm/s2 and cm, respectively.

We expected the dynamical anisotropy predictions (H1–H3) to depend primarily on the local
geometry of the GEM, and to not, therefore, depend on the friction coefficientμ. On the other

Fig 4. Schematic representation of the virtual shuffleboard game. The participantmoves a
manipulandum along a linear bearing.Position and acceleration data from themanipulandum is used to
move a virtual shuffleboard cue that pushes a puck towards a target in the virtualworld. The various parts of
of setup are: (1) accelerometer; (2) LVDT (position sensor); (3) linear, low friction bearing; (4) data acquisition
board; (5) control computer running LabVIEW (for data acquisition) and C++modules (for graphics rendering
and physics logic); (6) projector; (7) virtual environment projected on a screen.

doi:10.1371/journal.pcbi.1005118.g004

Error Correction and the Structureof Inter-Trial Fluctuations

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005118 September 19, 2016 15 / 30

http://www.vtk.org


hand, the scaling prediction,H4, depends on μ via the passive sensitivity, since s = s(μ) from Eq
(8). Therefore, we had each participant perform the task with two different friction levels in the
virtual world, giving a total of eight different participants/conditions. For a given velocity and
position at release, the time of motion before the puck stops is inversely proportional to the coef-
ficient of friction.We therefore selected values of μ so that the time for a hypothetical ideal trial
varied uniformly between 3s and 5s. This ideal trial was defined by a release position of x = 0 and
release velocity v determined from the goal function Eq (2) so that the puck would stop exactly at
the target. The resulting set of 8 μ values were split into two sets: the lowest 4 gave “low friction”
(LF) conditions, and the highest 4 “high friction” (HF) conditions. These different friction condi-
tions gave us inter-trial data sets generated with different passive sensitivity properties, via Eq (8).

Four healthy, right-handedmale participants aged 25, 28, 29 and 33 years (labeled P1–P4)
participated in this study. Each participant was randomly assigned one HF and one LF friction
condition to perform the shuffleboard task. The participants were instructed to launch the
puck so that its center stopped on the target in every trial. Participants had the visual feedback
from the 3D scene showing the error from a given trial. The goal-level error was also displayed
momentarily on the screen providing a second, more precise, feedback on their performance.
All participants were allowed to familiarize themselves with the task and the equipment, and
practiced hitting the target until their average error e (Fig 1) over 50 trials was less than 10% of
the target distance. That is, participants practiced until the average state �x ¼ ð�x; �vÞT acquired
over 50 trials lay within the error contours of Fig 2. All participants achieved this level of per-
formance within four blocks of 50 trials.

Once the participants achieved the required level of performance, the data collection phase
began. The body state x = (x, v)T and goal-level error e were recorded for each trial. For each of
the two friction conditions (LF and HF) the participant was required to perform 500 trials. All
of the data was collected over three days: two days each of four 50-trial blocks, with two blocks
before noon and two in the afternoon, followed by a day of two 50 trial blocks. Each block took
no more than sevenminutes and the participant was given up to five minutes of rest between
blocks. The last block of P1-HF was incomplete due to an experimentmalfunction, so only
data from the first 9 blocks (450 trials) were subsequently analyzed; P3-HF had only 350 usable
trials due to the entry of an erroneous friction coefficient.Typical inter-trial time series of states
x = (x, v)T obtained from one participant over 500 trials are shown in Fig 5(a)–5(c).

Data Analysis
The complete data set for each of the 8 friction conditions (4 participants × 2 conditions each)
consisted of time series of release position and velocity, fxkg

N
k¼1

and fvkg
N
k¼1

, respectively, and
the corresponding error, fekg

N
k¼1

, for each of N = 500 trials. The data was rescaled into dimen-
sionless form, as for the goal function of Eq (2). Note, however, that the stability and persis-
tence properties studied here depend only on the temporal relations between consecutive trials,
so the rescaling does not affect the results presented in this paper. Except as noted, all data
analyses were performed usingMatlab (Mathworks, Natick, MA). All data and software used
for this study is contained in Supporting Information S1 Data and Code.

The sample mean body state �x ¼ ð�x; �vÞT over all trials was used to define the operating
point used in Eq (4): that is, we took x� � �x. Fluctuation time series were then obtained
from uk ¼ xk � �x, and Eq (11) was used to estimate B via linear regression. That is, we
used ordinary least squares to minimize the single-step mean-square prediction error
h(uk+1 − B uk)T(uk+1 − B uk)i, where, again, the angle brackets denote the ensemble average.
A requirement for the use of this straightforward approach to estimation [60–62] is that the
state measurement error or “noise” (as distinct from the process noise νk in Eq (11)) not be

Error Correction and the Structureof Inter-Trial Fluctuations

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005118 September 19, 2016 16 / 30



too large. While there is no firm cutoff for how much measurement noise becomes problem-
atic, Kantz and Screiber suggest (see [62], p. 251 ff.) that ordinary least squares works well as
long as the measurement errors are under about 10%. In our case the measurement precision
after calibration was approximately 2%, well under the suggested cutoff. Furthermore, we
cross validate the estimate of B by comparing its eigenvalues against the lag-1 autocorrelation,
which is computed independently, as discussed previously following Eq (21).

The eigenvectors of B, fêw; êsg, and their corresponding eigenvalues, {λw, λs}, were then
obtained as solutions to Bê ¼ lê. A typical result of this eigenanalysis is shown in Fig 5(d).
The alignment of the eigenvectors to the GEMwas computed using the theoretical tangent vec-
tor from Eq (5) (recall the schematic of Fig 3). Because the empirically-determinedoperating
point �x was always close to, but never exactly on the GEM, as a check we also computed the
eigenvector orientation using the tangent to the error contour passing through the operating
point (determined from by f ð�xÞ ¼ �e, where f is the goal function Eq (2)). This was found to
give identical results, confirming the closeness of �x to the GEM. Together with the alignment
information so obtained, the estimated eigenvalues of B, which quantify the stability of the
inter-trial dynamics, were used to testH1 andH2.

Next, the fluctuation time series fukg
N
k¼1

in the original position-speed coordinates were
transformed into time series fzkg

N
k¼1

expressed in eigencoordinates, via the linear coordinate
transformation Eq (12). Following the discussion surrounding Eqs (20) and (21), statistical per-
sistence in both directions was quantified using the lag-1 autorcorrelations Rw(1) and Rs(1), as
well as the DFA exponents αw and αs. These results allowed us to testH3.

To test the scaling relationship ofH4, the RMS goal-level error σe was computed directly
from the time series, fekg

N
k¼1

. Using Eq (8), the value of μ for a given set of trials, and the velocity
component of the average operating point, �v � v�, we obtained an estimate of s. The values of β
and λs were available from the eigenanalysis. For σns, we used the estimatedB and Eq (12) to
compute the residual of the regression expressed in eigencoordinates, via rk = E−1(uk+1 − Buk).
We then took hjr 2

s;kji as an estimate of σns, where rs,k is the strongly stable component of rk.
Using these estimates to evaluate Eq (19) allowed us to testH4.

Fig 5. Typical data collected from one participant over 500 trials, for a givenμ value.Plots (a–c): time series of
position, velocity, and error at the target. The data is discrete, but plottedwith lines to aid visualization. Plot (d): scatterplot
of states x = (x, v)T plotted as green dots. Also included for reference are the mean operating point x* (white dot), GEM
(red curve), and ±10% goal-level error contours (dashed blue lines). The updatematrix B (Eq (11)) is estimated from the
inter-trialdata via linear regression. The strongly (double arrow) and weakly (single arrow) stable subspaces obtained by
solving the eigenvalue problem for B are shown as black lines. The weakly stable subspace is nearly parallel to the GEM
tangent, while the strongly stable is at a much greater transverse angle (see Fig 3 for angle definitions).

doi:10.1371/journal.pcbi.1005118.g005
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All of the above analyses depend critically on the eigenvalues and eigenvectors of the matrix
B. To estimate B via regression we require only data from a set of trials, which need not them-
selves be consecutive, together with the subsequent states that are presumed to follow under
the action of B via Eq (11). To eliminate the spurious “state update” between the last trial in
each block and the first trial in the next block, we only consider the first 49 trials within each
50 trial block. In addition, to avoid possible transient “retraining” effects at the beginning of
each block, we removed the first 4 trials, leaving 45 trials within each block, for a total of 450
trials per friction condition. Finally, to overcome known problems associated with the sensitiv-
ity of eigenvalue and eigenvector estimates to matrix errors [31], such as are unavoidable with
matrices estimated via regression, we used bootstrapping [32–34] to estimate the various quan-
tities needed to test our hypotheses.

For each iterate of the bootstrap, we selected a uniformly-distributed random sample of 450
states (with replacement) from the 450 available for each friction condition, together with the
state from the next trial. In this way, we obtained an ensemble of “current states” (xk) and an
ensemble of the corresponding “next states” (xk+1) that were used to obtain one estimate of B
via linear regression. This estimate of B was then used to compute one set of eigenvalues and
eigenvectors. The eigenvectors were then used to obtain the fluctuation components in the
weakly and strongly stable directions, zw and zs, via the transformation Eq (12). These allowed
us to estimate the lag-1 autocorrelations using Eq (20). By choosingmany such random sam-
ples, each resulting in its own estimate of B, we were able to generate an empirical probability
distribution for all quantities needed to testH1 andH2, and to partially testH3 using R(1).
The bootstrapping gave us reliable estimates of mean values together with 95% confidence
intervals. For the above results, we used 10000 bootstrap iterates.

Since DFA relies on the proper temporal sequence of an entire data set (not just over a single
lag as for the autocorrelation), the sampling procedure outlined above could not be used. In addi-
tion, becauseDFA does not give reliable estimates for small data sets, we concatenated all 10 trial
blocks, again with the first four trials removed, and analysed the resulting data set of 460 trials at
once. Such a concatenation procedure was shown in an analysis of Parkinsonian gait [63], using
data sets of 25 strides each, to give results with sufficient accuracy to distinguish Parkinsonian
and healthy participants.While perhaps not accurate enough to characterize subtle differences in
long-range correlated data sets, as stated earlier this is emphatically not our aim here: we merely
use DFA to provide a convenient, lag-independentmeasure of statistical persistence, which we
checked against the lag-1 autocorrelation for consistency. For this paper, once the eigenvectors
were found within each iterate of the bootstrap, the entire time series of fluctuations was trans-
formed into eigencoordinates, again via Eq (12). The DFA exponents, αw and αs, for the two
eigencoordinate fluctuations were then obtained, allowing us to complete the test ofH3. To
reduce the computation time required to carry out 10000 DFA calculations for each friction con-
dition, we used a version of the algorithmwritten in C [64], that was then called fromMatlab.

Finally, to testH4, another variant of the bootstrap was used. In each bootstrap iteration,
450 samples with replacement were drawn and used to estimate σe, σns, s, β and λs, as needed
for Eq (19); this was done for all 8 friction conditions.Within this bootstrap iteration, regres-
sion was then used to estimate the parameters a and b of a fit σe/σns = asTOT + b: following Eq
(19), we expected a� 1 and b� 0. Thus, after repeating this process 10000 times, we obtained
estimates and confidence intervals for the slope a and y-intercept b, as required to testH4.

Results
Fig 6 shows empirical probability density functions (EPDFs), obtained using bootstrapping,
for the eigenvalues {λw, λs} of the matrix B (Eq (11)). We see that in all cases they satisfy
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0� |λs|� λw< 1. In aggregate, across all participants (P1–P4) and friction conditions, we
found λs = −0.03 [−0.24, 0.14] and λw = 0.76 [0.62, 0.90], where here and throughout the
stated estimate is the aggregate mean, and the closed interval represents the aggregate 95%
confidence interval (CI). The orientation of the eigenvectors is shown in Fig 7, which plots
the EPDFs for the angles yw ¼ cos � 1ðêw � êtÞ, and ys ¼ cos � 1ðês � êtÞ. We see that, for all par-
ticipants/conditions, the weakly stable eigenvector was very close to the tangent, and the
strongly stable eigenvector made a larger transverse angle with it, so that 0� |θw|� θs. Spe-
cifically, we found θw = 0.90° [−2.36°, 3.99°] and θs = 79.75° [20.66°, 144.75°]. We note that
the orientation of the weakly stable subspace is tightly regulated to be near the GEM’s tan-
gent (i.e., its CI is small, spanning less than 7°), whereas the orientation of the strongly stable
subspace is not tightly regulated (its CI spans over 124°). The aggregate values of the matrix
components of B were found as B(1, 1) = 0.76 [0.62, 0.90], B(1, 2) = −0.26 [−2.03, 1.19],
B(2, 1) = −0.01 [−0.04, 0.03], and B(2, 2) = −0.03 [−0.25, 0.14]. Using the mean matrix com-
ponents as a simple consistency check, we found values of λw and λs equal to the means
obtained via bootstrapping, above.

The results shown in Figs 6 and 7 strongly support hypothesesH1 andH2. We found that
the component of the inter-trial dynamics directed along the strongly stable subspace acted to
quickly correct deviations off of the GEM that caused goal-level errors. For example, for the
estimated mean value λs = −0.03, Eq (15) shows that a deviation transverse to the GEMwould
be, in the absence of noise, reduced to 3% of its initial magnitude after only one trial. In con-
trast, the dynamics in the weakly stable subspace did not rapidly correct deviations that were
approximately tangent the GEM, and which therefore had little effect on error at the target. For
the mean value of λw = 0.76, Eq (14) shows that, in the absence of noise, 9 iterates would be
required to reduce an initial deviation to less than 10% of its initial value.

In Fig 8 we show the EPDFs obtained for the normalized lag-1 autocorrelations of fluctua-
tions in the two eigendirections, for all friction participants/conditions.We find in all cases

Fig 6. Empirical probability density functions (EPDFs) obtainedvia bootstrapping for eigenvalues
λw (red) and λs (blue) of B (Eq (11)), each plottedvs. participant/condition.We see that 0� λs� λw in all
cases (aggregatemean λs = −0.03 with 95%CI of [−0.24, 0.14] and λw = 0.76 with 95%CI of [0.62, 0.90]),
indicatingmuchmore vigorous inter-trial control in the strong direction than in the weak. Bootstrapping was
carried out using 10000 random samples of 450 trials each, with replacement, from the complete data set,
with the final and first four trials removed from each 50 trial block. The solid lines in the horizontal plane shows
the aggregatemean value, and the dashed lines indicate the aggregate 95%CI, as reportedabove.

doi:10.1371/journal.pcbi.1005118.g006
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that 0� |Rs(1)|� Rw(1). Specifically, we estimate Rs(1) = −0.03 [−0.24, 0.14] and Rw(1) =
0.76 [0.64, 0.88]. These results indicate that the trial-to-trial fluctuations in the weakly stable
direction show greater persistence than those in the strongly stable direction. Furthermore,
the strong control results in fluctuations that are close to uncorrelated white noise (since

Fig 7. EPDFs for the angles θw (red) and θs (blue) between the eigenvectors êw and ês of B,
respectively, and the unit tangent ê t (Eq (5)), each plottedvs. participant/condition.All other figure
details are as in Fig 6.We see that in all cases 0� |θw|� θs (θw = 0.90° [−2.36°, 3.99°] and θs = 79.75°
[20.66°, 144.75°]). The orientationof the weakly stable subspacewas found to be nearly tangent to the GEM,
with a small range of variation, whereas the strongly stable subspace made a much greater angle with the
GEM and varied substantially. Together with the results of Fig 6, these results confirmhypothesesH1 and
H2.

doi:10.1371/journal.pcbi.1005118.g007

Fig 8. EPDFs for the normalized lag-1 autocorrelationsRw(1) (red) andRs(1) (blue) for fluctuations in
theweakly and strongly stable subspaces (Fig 3), respectively, plottedvs. participants/conditions. All
other figure details are as in Fig 6. We find in all cases that 0� |Rs(1)|� Rw(1) (Rs(1) = −0.03 [−0.24, 0.14]
andRw(1) = 0.76 [0.64, 0.88]). The results show strong positive correlation between successive fluctuations
in the weakly stable direction,which is nearly tangent to the GEM (Fig 7), indicating that fluctuations persisted
over multiple trials. In contrast, the strongly stable fluctuationswere close to being uncorrelated, consistent
with the action of strong control transverse to the GEM.

doi:10.1371/journal.pcbi.1005118.g008
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Rs(1)� 0). As anticipated in the discussion following Eq (21), these results are nearly identical
to the local stability results in Fig 6. The EPDFs obtained for the DFA exponents αw and αs for
fluctuations in the weakly and strongly stable subspaces, respectively, are shown in Fig 9. We
found αs = 0.52 [0.44, 0.59] and αw = 0.99 [0.89, 1.16]. Thus, in all cases 0.5� αs� αw, show-
ing substantial persistence between successive fluctuations in the weakly stable direction, and
nearly uncorrelated fluctuations in the strongly stable direction. Thus, the persistence results
of Figs 8 and 9 are consistent with each other and, taken together, strongly confirmH3.

Finally, Fig 10 illustrates how the variability ratio σe/σns, which represents an empirical
“gain” between intrinsic body-level noise and goal-level variability, was found to linearly scale
with the total body-goal sensitivity sTOT (Eq (19)). The light gray dots in the plot represent val-
ues obtained by bootstrapping: one such point was generated for all 8 friction conditions and
linear regression was applied within each of 10000 iterations. This process yielded estimates for
the slope, a = 0.99 [0.93, 1.03], and y-intercept, b = 0.21 [−0.98, 1.52]. The resulting aggregate
fit had an R2 of 0.996. As a check, we used all 8 × 10000 points at once for a single linear fit; this
did not change the fit parameters or the R2 value. The figure also includes the average values
obtained for each participant/condition, computed independently by bootstrapping, together
with error bars representing 95% CIs. The uneven size of the error bars, especially in the hori-
zontal direction, reflects the nonlinearity of sTOT, particularly the factor of β = sin(θs). We see
that in each case the mean points fall very near the linear fit, indicating that the scaling rela-
tionship held not only in aggregate, but for each participant/condition individually. Indeed,
similar fits done for each participant independently yielded R2 estimates of 0.962, 0.991, 0.979
and 0.992, values not meaningfully different from the overall value. Thus, we concluded that
for all participants/conditions Eq (19) holds, confirming hypothesisH4.

We conclude this sectionwith an illustration of how our approach overcomes the potential
interpretive ambiguity stemming from the coordinate dependence of variance [28, 40]. As dis-
cussedwhen presenting Eqs (22) and (23), the dynamical analysis carried out here yields quanti-
ties that are intrinsic to the observed temporal fluctuations, and hence are coordinate invariant.

Fig 9. EPDFs for the DFA exponents αw (red) and αs (blue) for fluctuationsin theweakly and strongly
stable subspaces (Fig 3), respectively, plottedvs. participants/conditions. These calculations were
carried out on the entire data set of fluctuationsexpressed in eigencoordinates, obtained via Eq (12) within
each of 10000 bootstrap iterations. We found in all cases that 0.5� αs� αw (αs = 0.52 [0.44, 0.59] and αw =
0.99 [0.89, 1.16]). The results indicate substantial persistence between successive fluctuations in the weakly
stable direction,which is nearly tangent to the GEM (Fig 7), and nearly uncorrelated fluctuations in the
strongly stable direction. These results, togetherwith those of Fig 8, strongly confirmH3.

doi:10.1371/journal.pcbi.1005118.g009
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As a demonstration of this invariance, and its advantage in analyzing motor variability, we con-
structed a “worst case” coordinate transformation similar in form to Eq (12). However, in this
case we defined new fluctuation coordinates q = (q1, q2)T via u = Pq, where the matrix P was
obtained from principal component analysis [42], as follows: let P = SC, in whichC is a matrix
with columns composed of the eigenvectors (i.e., the principal components) of the fluctuation
covariance huuTi, and S is a diagonal matrix with the square root of the inverse principal values,
1/σ1 and 1/σ2, along its diagonal. The result of applying this transformation is that both of the
new coordinates q1 and q2 have identical variance, and hence the variance “cloud” in the (q1, q2)
plane is isotropic by construction (i.e., the variance ellipse is a circle).

Fig 11 shows what happens when we apply this transformation to typical data from a single
participant and friction condition. In Fig 11(a) we see the original data and the local stability
results estimated from it, whereas in Fig 11(b) we see the equivalent analysis carried out on
the transformed data. The eigenvalues obtained are identical in both cases, since the original
matrix,B (Eq (11)), and the transformedmatrix,P−1BP, are congruent. Furthermore, as dis-
cussed following Eq (23), the transformed eigenvectors maintain their qualitative relationship
with the transformed GEM: that is, the weakly stable subspace is nearly tangent to the GEM,
whereas the strongly stable subspace is transverse to the GEM at a much greater angle. Thus,
in both cases 0� θw� θs so that the local stability picture is qualitatively unchanged by the

Fig 10. Plot of the variability ratioσe/σns vs. total body-goal sensitivitysTOT (see Eq (19)).The light gray
dots represent all values obtained by bootstrapping. One such point was generated for all 8 friction conditions
within each of 10000 bootstrap iterations, and then linear regression gave estimates of the slope a and y-
intercept b, yielding EPDFs for both.We found a = 0.99 [0.93, 1.03] and b = 0.21 [−0.98, 1.52], showing that
σe/σns� sTOT, which confirmshypothesisH4. The dashed line is plotted using the bootstrapmean values of a
and b;R2 = 0.996 for the fit. Also shown for reference are the average values for each participant/condition
individually, obtained via bootstrapping, with error bars indicating 95%CIs. These average values fall very
close to the fit line.

doi:10.1371/journal.pcbi.1005118.g010
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coordinate transformation, and can be used to test a candidate GEM in either case. In sharp
contrast, using the shape of the variance ellipse to identify the GEM location works reasonably
well for Fig 11(a), but clearly fails for the case shown in Fig 11(b). Indeed, using an approach
similar to that used to create Fig 11(b), one can change the shape of the variance ellipse at will,
while in all cases maintaining the proper qualitative relationship between the GEM and the
weakly and strongly stable subspaces.

Discussion
Understanding how humans are able to perform accurate and repeatable goal-directedmove-
ments in the presence of inherent biological noise [7–11] and neuromotor redundancy [22–24]
has been a critical goal of neuroscience research (e.g., [45, 46, 48]) since the pioneering work of
Bernstein [1]. In recent years, studies addressing this question have focused on using either
task manifold ideas to address redundancy (e.g., [12–14]), or time series analysis methods to
study temporal correlation structure (e.g., [25, 51, 54, 55]).

However, these often divergent perspectives have not yet been fully unified into a compre-
hensive theoretical framework, and it remains an open question whether these various aspects
of inter-trial variability represent distinct neurophysiological phenomena, or can be traced
back to a single underlyingmotor regulation process. The work in this paper expands on previ-
ous efforts [25, 28] suggesting that such a unification can be achieved by considering the inter-
trial dynamics of fluctuations near a task’s goal equivalent manifold (GEM). These studies have
shown that a fundamental feature of such inter-trial fluctuations is that they are dynamically
anisotropic in a manner that respects the local geometry of the GEM [25–29], an observation
supported by work carried out from different task manifold perspectives [30, 54, 65].

Using a custom-built interactive virtual environment, we studied the variability exhibited by
skilled participants as they carried out repeated trials of a simple shuffleboard game. The exper-
iments were used to test theoretical predictions obtained from a new analysis, presented in this
paper, of a previously-developed general model for inter-trial error correction [25, 28]. The
assumption of skilled performance, for which body states will remain close to the GEM, yields

Fig 11. Illustrationof the coordinate invariance of fluctuationdynamics near theGEM: (a) results for
data in original (x, v) coordinates, showing an anisotropic variance ellipse (dashed line)with principal
axes equal to the square root of the principal values; (b) results for data transformed using rescaled
principal coordinates (q1, q2), showing an isotropic variance ellipse (i.e., a circle). Both figures contain
the same data (green dots), GEM (red line), and strongly stable (double arrow) and weakly stable (single
arrow) subspaces (black lines).We see that the local stability analysis consistently represents the
organization of control around the GEM, whereas the ratio of variances normal and tangent to the GEM
clearly fails to identify the GEM location in plot (b).

doi:10.1371/journal.pcbi.1005118.g011
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a simple linear inter-trial control model. The further empirically-supported assumption that
inter-trial error correction satisfies a generalized interpretation of the minimum intervention
principle (MIP), together with an analysis of geometric stability, yielded theoretical predictions
about the geometrical and temporal structure of inter-trial variability, showing analytically
how body-level variability generates variability at the goal level. In particular, we showed that
the assumptions underlying our analysis give rise to a new scaling relationship (Eq (19)), which
introduces the total body-goal sensitivity, sTOT, a quantity showing how intrinsic goal-relevant
fluctuations at the body level are mapped into fluctuations at the goal level. This relationship
provides a unification of task manifold, control theoretic, and dynamical (time series) perspec-
tives by showing specifically how the GEM geometry, passive sensitivity, and active error cor-
rection combine to yield task performance.

The predictions resulting from our analysis were summarized in the form of four experi-
mental hypothesis, which were tested using data from four participants playing the shuffle-
board game. To demonstrate the generality of the dynamical anisotropy predictions (H1–H3),
and, more importantly, to allow us to tease apart active and passive effects in task performance
as specifiedby the scaling predictionH4, we had each participant perform the task with two
different friction levels, giving a total of eight different participants/conditions. All of our
hypotheses were very strongly confirmed: in all cases, the difference between local stability and
correlation properties in the weakly and strongly stable directions was just as predicted by the-
ory (Figs 6–9), confirmingH1–H3; and the goal-level performance scaled as predicted across
all participants and friction conditions (Fig 10), confirmingH4.

Given the nature ofH4, which concerns the scaling relationship Eq (19) and therefore
depends on all assumptions used in its derivation, these experimental results do more than
characterize the behavior for these particular participants executing this particular task. Rather,
they serve to validate our general model for inter-trial error-correcting control near the GEM.
Thus, while this work does not make any direct ties to underlying physiological mechanisms,
our results indicate that the combined geometrical and temporal structure of observed fluctua-
tions can be explained by a single, relatively simple process. This supports the idea that one
need not posit separate neurophysiological mechanisms for controlling such disparate features
as the geometric distribution of trials about the GEM, the stability of inter-trial fluctuations,
and the goal-level performance, but, rather, that all such behaviors arise from a single, unified
process of error regulation in the presence of task-level redundancy.

Another contribution of this paper is the introduction of statistical bootstrapping [32–34]
to the analysis of movement variability data. Using this approach, we were able to estimate the
underlying probability distribution for quantities required by each hypothesis (e.g., eigenval-
ues, correlations, etc.), thus demonstrating that the predicted dynamical anisotropy is very
highly significant in each case individually (Figs 6–9), without the need for conventional signif-
icance testing. Furthermore, this data analysis allowed us to confirm the theoretical perfor-
mance scaling prediction (Fig 10) to high precision, thus demonstrating that task performance
was largely determined by passive sensitivity, which in this case was a function of the friction
condition (Eq (8)). This theoretical prediction is perhaps counterintuitive, because the passive
sensitivity is determined entirely by the task’s goal function (Eq (2)), independent from any
consideration of control. However, this behavior occurs precisely because error-correcting con-
trol strongly compresses variability onto the GEM. Thus, as shown theoretically by using Eq
(18) in Eq (16) (with the understanding that λs� 0, as shown in Fig 6), the scale of goal-rele-
vant fluctuations is minimized, taking a value proportional to the scale of the strongly-stable
component of the intrinsic noise. Therefore, for skilled participants, the resulting performance
(as measured by the RMS error at the goal) is largely determined by the passive sensitivity,
which is a property of the task as defined by the goal function.
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Finally, as shown in our theoretical discussion and demonstrated with our experimental
data, the dynamical approach used for this study yields results that are invariant under quite
general (differentiable and invertible) coordinate transformations, something that is not true for
variability analyses based only on the spatial distribution of body states near a given task mani-
fold. Even in the “worst case” scenario for which coordinates are chosen that render the variabil-
ity cloud isotropic, so that it contains no information about the location of the GEM, as shown
in Fig 11, the dynamical approach yields correct information about the structure of inter-trial
fluctuations. Thus, our data analysis methods resolve the persistent problem of coordinate
dependence of variability measures [30, 40]. This suggests that the dynamical coordinates, as
obtained via the transformation Eq (12), provide a set of objective, canonical coordinates for the
study of inter-trial variability: that is, they represent coordinates that are intrinsic to the regula-
tory process responsible for inter-trial error correction.

These findings again highlight the critical importance of considering fluctuation dynamics
[25–27, 30, 51–54] in both theoretical and experimental studies aimed at understanding the
neuromuscular control of complex movements. While time series analyses alone can yield
important descriptive information, in the absence of any underlying model they often have
limited explanatory power. Recent efforts have seen the use of time series analyses to inter-
pret model outputs and/or predictions [46, 48, 54, 66]. These efforts have yielded findings
qualitatively similar to ours, and consistent with our interpretations of inter-trial variabilty
presented both here and elsewhere [25, 26, 28, 29]. Even though these efforts have focused on
motor learning, which we do not, conceptually there is a strong affinity between these papers
and the work presented here. In [46, 54, 66], van Beers and colleagues used simple linear
models with direct error feedback to analyze task performance when reaching to a point [46,
66] or a line [54]. Their lag-1 autocorrelation analyses for the redundant task of reaching to a
line showed strong statistical persistence along the target line and uncorrelated fluctuations
perpendicular to it, precisely as we would theoretically predict and very similar to our own
findings (our Figs 8 and 9). In parallel work, Abe & Sternad [30] also obtained similar results
applying both lag-1 autocorrelation and DFA analyses to van Beers’ model of the same task.
Both studies thus independently support the experimental results presented here.

The analytical formalisms presented in the present paper, however, add several important
extensions to these experimental observations. First, here we tie these time series analysis
approaches directly to the stability properties of the dynamical system that generates the
observed fluctuations, as determined by its eigenvalues and eigenvectors (Figs 6 and 7). Second,
by formally defining the task in terms of a goal function (Eq (2)), we are able to show analyti-
cally (Eq (19)) how active and passive properties of the task interact to affect goal level fluctua-
tions, a theoretical prediction that we test and confirm experimentally (Fig 10). Finally, van
Beers’ model accounts only for the correction of goal-relevant errors, that is, of body-level fluc-
tuations perpendicular to the GEM, and thus implements an idealMIP-based controller with
no control acting along the task manifold. However, as we have shown in previous work using
models derived using a stochastic optimal control framework [25], and as discussed here and
demonstrated experimentally by us [28] and others [36], such “pure” MIP controllers are not
observed experimentally: that is, we find that the fluctuations along the GEM do not exhibit an
unbounded random walk. Furthermore, our approach allows us to demonstrate this deviation
from ideal MIP behavior geometrically, as well as in terms of stability and correlation proper-
ties. A conclusion of our work is that, while the control observed experimentally is congruent
with the task manifold, it is not perfectly alignedwith it: instead, the direction of “minimum
intervention” (i.e., of weakest control) is close to, but not exactly tangent to the GEM. Nor is
the direction of strongest control necessarily perpendicular to the GEM. One possible
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interpretation of these observations is that there are other competing costs, beyond simple
error correction, that are at play during repeated task execution.

Other recent attempts to connect temporal analyses to task manifold geometry [27, 51] have
similarly supported our experimental findings, but have not directly shown how such results
can be predicted from a general model-based analysis, as the current work does. Dingwell et al.
[27] applied lag-1 correlation analyses to a redundant reaching task, but did not directly con-
nect those experimental analyses back to any underlying computational model. Rácz & Valero-
Cuevas [51] used DFA analyses on data from a redundant, 3-finger grasping task to provide an
experimental demonstration of the need to consider control as acting across both spatial and
temporal domains. However, their work again did not provide mathematical theory able to
explain and predict the observedbehaviors. Nevertheless, in spite of these differences in experi-
mental and/or computational approaches, each of the studies described above obtained find-
ings consistent with our conclusion that the diverse geometrical and temporal aspects of inter-
trial variability likely derive from a single underlyingmotor regulation process.

Our approach fully integrates task manifold geometrywith ideas from control and dynamical
systems theory, and thereby can be used to explain the structure of observedmotor variability
from a model-based, theoretical perspective. The theory and methods presented in this paper are
quite general, and should be applicable to the study of skilledmotor performance for a wide
range of discrete, or discretizable, tasks. That said, general application can be expected to encoun-
ter difficulties, especially for tasks in which the relevant body and/or goal variables are high-
dimensional (so that visualizing the GEM is difficult, if not impossible), as well as for tasks in
which the goal function and GEM are not readily available in analytical form. In such cases, the
basic theorywill have to be used to formulate suitable, purely abstract, computational methods.

The assumption of skilledmotor behavior, which implies that all fluctuations are near the
GEM, permitted us to employ linear mathematics in our study. Without this linearity, it would
have beenmuch more difficult to make such precise, analytically-derivedpredictions. However,
we did not impose linearity as a mere analytical convenience. On the contrary, our results show
that a linear model of “GEM-aware” error correction captures key facets of the observedvariabil-
ity structure with substantial accuracy. The main aims of this paper were to robustly demon-
strate the nature of dynamic anisotropy, to show how task performance is generated by the
interaction of the GEM geometry and inter-trial error correction, and to demonstrate that such
an approach yields results that are not sensitive to the coordinates chosen. As such, our focus on
the steady state (i.e., learned) behavior of the inter-trial regulation system was appropriate. But
this does not mean that the models and methods presented here would not have value for studies
related to motor learning. Indeed, as discussed at some length above, models with a very similar
mathematical structure have been used to precisely that end. From a dynamical systems perspec-
tive, our approach treats skilledmovements as a “stochastic attractor” of the more general per-
ception-action system engaged in motor learning. A logical point of departure for future work
aimed at extending our methods to motor learning would be to study how the the “transient”
portion of the a learning data set approaches the “steady-state” local geometrical structure
uncovered using the methods of this paper. While such explorations would no doubt posemulti-
ple challenges, in principle the theoretical concepts presented here could be extended to address
questions of learning and/or adaptation, topics that we see as interesting aims of future work.

Supporting Information
S1 Data and Code.A compressed folder containing all data and software used for this
study.
(ZIP)
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