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Micropeptides (≤100 amino acids) are essential regulators of physiological and pathological 
processes, which can be encoded by small open reading frames (smORFs) derived from 
long non-coding RNAs (lncRNAs). Recently, lncRNA-encoded micropeptides have been 
shown to have essential roles in tumorigenesis. Since translated smORF identification 
remains technically challenging, little is known of their pathological functions in cancer. 
Therefore, we created classifiers to identify translated smORFs derived from lncRNAs 
based on ribosome-protected fragment sequencing and machine learning methods. In 
total, 537 putative translated smORFs were identified and the coding potential of five 
smORFs was experimentally validated via green fluorescent protein-tagged protein 
generation and mass spectrometry. After analyzing 11 lncRNA expression profiles of 
seven cancer types, we identified one validated translated lncRNA, ZFAS1, which was 
significantly up-regulated in hepatocellular carcinoma (HCC). Functional studies revealed 
that ZFAS1 can promote cancer cell migration by elevating intracellular reactive oxygen 
species production by inhibiting nicotinamide adenine dinucleotide dehydrogenase 
expression, indicating that translated ZFAS1 may be an essential oncogene in the 
progression of HCC. In this study, we systematically identified translated smORFs derived 
from lncRNAs and explored their potential pathological functions in cancer to improve our 
comprehensive understanding of the building blocks of living systems.

Keywords: hepatocellular carcinoma, translated small open reading frames, ribosome-protected fragment 
sequencing, ZFAS1, reactive oxygen species

INTRODUCTION
Hepatocellular carcinoma (HCC) accounts for more than 90% of primary liver cancers and is 
the sixth most common malignancy worldwide. Moreover, it is the third leading cause of cancer 
death. Despite intensive investigations and therapeutic improvements, the 5-year overall survival 
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rate for HCC is merely 18% (Siegel et al., 2019), highlighting 
the urgent need to clarify novel mechanisms contributing to 
liver malignancy.

Recent genome-wide studies have revealed that small open 
reading frames (smORFs) concealed in long non-coding RNAs 
(lncRNAs) could encode micropeptides (≤100 amino acids) with 
essential roles in the regulation of physiological and pathological 
processes of various species (Guttman et al., 2013; Magny et al., 
2013; Bazzini et al., 2014; Pauli et al., 2014; Anderson et al., 2015; 
Calviello et al., 2016). For example, in Drosophila, the lncRNA 
pncr003:2L encodes two micropeptides that regulate cardiac 
contraction (Magny et al., 2013). Meanwhile, in zebrafish, a 
micropeptide called Toddler can activate the extracellular-signal-
regulated kinase pathway to promote embryogenesis (Pauli et al., 
2014). Moreover, in human, the lncRNA-encoded micropeptide 
myoregulin (MLN) is an important regulator of skeletal muscle 
performance that directly inhibits the sarco/endoplasmic 
reticulum calcium-ATPase to control muscle relaxation by 
regulating calcium ion uptake into the sarcoplasmic reticulum 
(Anderson et al., 2015). More importantly, micropeptides 
encoded by lncRNAs have been demonstrated to have essential 
roles in tumorigenesis. For example, the lncRNA HOXB-AS3 
encodes a 53 amino acid micropeptide that affects clone cell 
metabolism to suppress cancer progression by competitively 
binding with the RNA binding protein hnRNP A1 to inhibit 
the splicing of pyruvate kinase (Huang et al., 2017). Owing 
to their critical functions, it is necessary to systematically 
identify translated smORFs derived from lncRNAs and explore 
their potential physiological and pathological functions to 
comprehensively elucidate the building blocks of living systems.

Precise identification of translated smORFs derived from 
lncRNAs is prerequisite of their functional studies (Kong 
et  al., 2007; Olexiouk et al., 2016; Xiao et al., 2018). However, 
evaluating the protein-coding potential of smORFs remains 
challenging for conventional prediction methods. Meanwhile, 
traditional translated ORF prediction mainly relies on the ORF 
size, sequence evolutionary conservation, and mass spectrometry 
(MS) data. However, the features of smORFs and translated 
ORFs of protein-coding genes differ substantially. Because the 
majority of smORFs are derived from lncRNAs, their expression 
levels and conservation scores are generally lower than ORFs of 
protein-coding genes. Moreover, they are considerably shorter 
than 300 nucleotide (nt) in length, which is typically used as a 
filter parameter in prediction methods to reduce the false positive 
rate before model construction. Therefore, novel methods are 
urgently needed to identify translated smORFs from the vast 
number of untranslatable smORFs.

Recent advances in high-throughput sequencing of ribosome-
protected mRNA fragments (RPF-Seq) have enabled systematic 
identification of transcripts combined with ribosomes. Ribosome 
features of coding and non-coding ORFs quantified by RPF-Seq 
exhibit significant differences, which could be applied to identify 
translated smORFs (Guttman et al., 2013; Bazzini et al., 2014). 
Because translated ORFs must bind to ribosomes for protein 
translation, smORFs that do not bind to ribosomes can first be 
filtered out. However, since non-coding ORFs can also bind to 
ribosomes, additional ribosome features are required to identify 

translated smORFs, such as ribosome footprinting and ribosome 
release. Ribosome footprinting separates coding ORFs from 
non-coding ORFs according to the unbalanced distribution of 
RPF-Seq in the reading frame (Bazzini et al., 2014). Besides, 
ribosomes are released when they meet stop codons; therefore, a 
disequilibrium in the number of ribosomes on each side of stop 
codons could be assessed to determine the coding potential of 
smORFs (Guttman et al., 2013). However, these features lack 
effective integration in systematic assessments of the coding 
potential of smORFs derived from lncRNAs.

Herein, we first predicted translated smORFs using newly 
developed classifiers based on three ribosome features derived 
from two RPF-Seq datasets and four machine-learning models. 
To further investigate their pathological functions in cancer, we 
determined their composition and abundance in seven cancer 
types by analyzing 11 lncRNA microarray datasets. Finally, we 
found one validated translated lncRNA ZFAS1, which promoted 
HCC cell migration and explored the underlying mechanisms. In 
summary, this study identified hundreds of translated smORFs 
and was trying to reveal their roles in cancer pathogenesis.

METHODS

Definition of Coding and Non-Coding 
Open Reading Frames
Reference transcripts of protein-coding genes were downloaded 
from UCSC RefSeq (Casper et al., 2018). Each stop codon (UAA, 
UAG, or UGG) paired with the most distal in-frame AUG start 
codon without an intervening stop was defined as an ORF. In 
cases where one gene corresponded to multiple transcripts, the 
longest was retained. Translated ORFs of protein-coding genes 
were annotated with RefSeq and collated as the positive dataset. 
The negative dataset of translated ORFs consisted of ORFs derived 
from the 5′ and 3′ untranslated regions (UTRs). Based on the 
literature, upstream and downstream ORFs in the 5′ and 3′ UTRs 
with protein-coding potential were filtered (Vilela and Mccarthy, 
2003; Oyama et al., 2004; Fritsch et al., 2012; Chew et al., 2013; 
Guttman et al., 2013; Slavoff et al., 2013; Bazzini et  al., 2014; 
Calviello et al., 2016). To identify translated lncRNAs, lncRNA 
sequences were downloaded from Ensembl (Zerbino et al., 2018) 
and GENCODE (Harrow et al., 2012), and all smORFs shorter 
than 350 nt in length were identified.

Sequencing of Ribosome-Protected 
Messenger Ribonucleic Acid Fragment 
Data Analysis
Human RPF-Seq datasets of U2OS and HeLa cells (GSE61073 and 
GSE21992) were obtained from National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI GEO) (Guo 
et  al., 2010; Eichhorn et al., 2014). The adaptor sequences of 
each read were removed, and reads aligned to translation-related 
RNAs [ribosomal RNA, transfer RNA, mitochondrial RNA, and 
mitochondrial ribosomal RNA] were filtered. The remaining reads 
were aligned to the human reference genome (hg19) using Bowtie 
(ver. 0.12.9) with 27–32  nt (Langmead et al., 2009). Unmapped 
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reads were realigned to the reference transcripts to capture reads 
spanning two exons. The genomic position of 13th nucleotide of the 
mapped read was regarded as its position.

Translated Small Open Reading  
Frame Prediction
Figure 1 presents an overview of the translated smORFs 
prediction. Briefly, three ribosome features of positive and 
negative datasets were calculated respectively from the U2OS 
and HeLa RPF-Seq: ORF score (ORFS) (Bazzini et al., 2014), 
ribosome release score (RRS) (Guttman et al., 2013), and RPF 
coverage (RPFC) (Bazzini et al., 2014). The ORFs in the positive 
and negative datasets with three feature values simultaneously 
equal to zero were filtered. The remaining ORFs in the positive 
and negative datasets were split into training and validation 
cohort (70% training and 30% validation, Supplementary 
Table S1). Combined with these three ribosome features, 
four machine-learning models, including random forest (RF) 
(Breiman, 2001), logistic regression (LR), linear discriminant 
analysis (LDA), and support vector machine (SVM) models, 
were employed to construct the prediction classifiers. For 
SVM, we used the e1071 package of R software with the non-
linear kernel. For RF, we used the randomForest package of 
R software with the default setting. The predictive accuracy 
of the classifiers was estimated via leave-one-out cross 
validation. Receiver operating characteristic (ROC) curves 
were plotted using R (ver. 3.3.1), and the pROC package 
(Robin et al., 2011) was applied to assess differences in the 
area under the ROC curve (AUC). Finally, the classifiers were 
applied to identify translated smORFs derived from lncRNAs.

The ORFS was calculated as:
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where Ci is the number of reads in reading frame i and C  the 
mean number of reads in the reading frame.

RRS was calculated as:
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For annotated protein-coding genes, C1 and C2 are the number 
of reads in translated ORFs and 3′ UTRs, respectively. For non-
coding transcripts, C1 is the number of reads in ORFs and C2 is 
the number of reads in the regions ranging from the stop codon 
to the next start codon. C  the mean number of reads for C1 and 
C2.

RPFC was calculated as:

RPFC = C Ci m/

where Ci  the number of 1st  reading frames covered by RPF-Seq 
and Cm  the number of 1st  reading frame in the ORF.

Translated Small Open Reading  
Frame Validation
We applied two experimental methods to validate the protein-
coding potential of the smORFs: MS and construct generation. 
To detect small proteins, unfractionated samples and small 
protein-enriched fractions were prepared from HeLa cells. 
Proteins less than 15 kDa were excised, and then treated 
and detected using a protocol similar to that of a previous 
study (Bazzini et al., 2014). MS data was analyzed using the 
ANDROMEDA search algorithms in MaxQuant (ver. 1.4.0.5) 
at a false discovery rate (FDR) of 0.05 (Cox et al., 2011). Peptide 
fragments mapped to lncRNA-encoded micropeptides were 
further aligned to the NCBI non-redundant protein sequence 
database to filter false positive results using BLAST. For 
construct generation, five translated lncRNAs were selected 
(ENST00000458653, ENST00000586949, ENST00000602483, 
ENST00000444717, and ENST00000417112) according to 
the prediction results of different classifiers. Then a series 
of vectors were generated in which the 5′ UTR-ORFs in the 
full-length transcripts were fused to a GFP with a mutation 
(GFPmut) in which the green fluorescent protein (GFP) start 
codon ATGGTG was mutated to ATTGTT (Supplementary 
Table S2 and Supplementary Figure S4). In addition, the 
vectors of positive and negative controls, including 5′UTR-
ORF-GFPmut (GAPDH) and GFPmut were generated 
(Supplementary Figure S1).

Expression Profiles of ZFAS1 in Multiple 
Tumor and Normal Tissues
Eleven cancer-related lncRNA expression profiles measured 
with the Arraystar LncRNA Microarray V2.0 platform were 
retrieved from NCBI GEO (Supplementary Table S3) (Yan 
et al., 2013; Chen et al., 2015; Gu et al., 2015; Kim et al., 2015; 
Zhang et al., 2015; Liao et al., 2016; Qin et al., 2016; Cao 
et  al., 2017). The lncRNA expression profiles were extracted 
and normalized using GEOquery (Davis and Meltzer, 2007). 
Then, paired Wilcoxon rank sum test was used to identify 
significantly differentially expressed lncRNAs. The P-value 
was adjusted to the FDR using the Benjamini–Hochberg 
procedure. An FDR ≤ 0.1 and |log2 fold change| ≥ 0.6 were 
considered as criteria of significantly dysregulated lncRNAs. 
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ZFAS1 expression levels of 25 normal tissues were downloaded 
from the The Genotype-Tissue Expression (GTEx), 2013. 
Reverse transcription quantitative polymerase chain reaction 
(RT-qPCR) was used to validate the ZFAS1 expression change 
in HCC cells. The total RNA of 32 pairs of HCC tissues and 
matching adjacent normal tissues was isolated with TRI 
reagent (Cat. T9424, Sigma) following the manufacturer’s 
instructions. Reverse transcription was performed with total 
RNA using Maxima H Minus First Strand cDNA Synthesis 
Kit (Cat. K1652, Thermo Fisher Scientific, Waltham, MA). 

QpCR analysis was performed on Eppendorf RealPlex using 
SYBR FAST qPCR Kits (Cat. KK4602, Kapa Biosystems, 
Wilmington, MA). All reactions were run in triplicates. The 
relative expression levels of target genes were normalized 
to the expression of internal control genes, GAPDH, which 
yielded 2−∆∆Ct values. RT-qPCR primers were as follows: 
ZFAS1 forward, 5′-GCGGGTACAGAATGGATTTTGG-3′ 
and reverse, 5′-CAACACCCGCATTCATCCTG-3′; GAPDH 
forward: 5′-GAGTCAACGGATTTGGTCGT-3′ and reverse, 
5′-GACAAGCTTCCCGTTCTCAG-3′. Kolmogorov-Smimov 

FIgURE 1 | Systematic overview of translated small open reading frame (smORF) prediction. Two sequencing of ribosome-protected mRNA fragments (RPF-Seq) 
originated from U2OS and HeLa cells were applied to respectively calculate three ribosome features of the positive and negative datasets. Three features of each 
RPF-Seq combined with one of machine learning models could create one classifier. As four classification models were used, four classifiers were developed to 
predict the translated smORFs in each RPF-Seq dataset. RPFC, ribosome-protected mRNA fragments coverage; ORFS, ORF score; RRS, ribosome release score.
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test (K-S test) was used to test whether the data was normally 
distributed. Brown-Forsythe test was used to test whether the 
variance was equal.

Knockdown and Overexpression of 
Translated Small Open Reading  
Frames of ZFAS1
Two small interfering RNA (siRNA) oligonucleotides 
were designed and synthesized for RNA interference 
knockdown. The guide strands of two siRNAs were 
as follows: 5′-CCAAGGAAGCCACGUGCAG-3′ and 
5′-AUACAUAGCCUGAGUUUAA-3′. SK-Hep1 cells were 
transfected with siRNA oligonucleotides at a final concentration 
of 50 nM using Lipofectamine 2000 Reagent (Life Technologies), 
according to the manufacturer’s instructions. To assess 
overexpression of the translated lncRNA ZFAS1, the cDNA of 
ZFAS1 translated smORF was amplified and subcloned into the 
BamHI and EcoRI sites of pcDNA3.0 expression vector. Then 
ZFAS1 expression level of SK-Hep1 transfected with siRNAs or 
plasmids was detected by RT-qPCR.

Sequencing of Ribosome-Protected 
Messenger Ribonucleic Acid Fragment 
and Data Analysis
Total RNA was extracted from ZFAS1-overexpression and RNA 
interference SK-Hep1 cells using a High Purity RNA Isolation 
Kit (Thermo Fisher Scientific, Waltham, MA) with two biological 
replicates. Library preparation and sequencing were performed 
using Ion Proton at DaRui Biotechnology Corporation (Guangzhou, 
China). The sequencing data are available on GEO (GSE104226). 
The data were analyzed using the Torrent Suite and default RNA-
Seq analysis plug-in (life technology) to generate normalized gene 
expression profiles. Differentially expressed genes were identified 
using edgeR with their raw count (Robinson et al., 2010) and the 
P-value was adjusted to the FDR. An FDR ≤ 0.1 and |log2 fold 
change| ≥ 0.6 were considered as criteria of significantly dysregulated 
genes, and functional enrichment analysis was performed to analyze 
enriched gene ontology (GO) terms using clusterProfiler (Yu et al., 
2012).

Cell Motility and Reactive Oxygen Species 
Level Detection
Cell motility was evaluated with a transwell assay. SK-Hep1 cells 
transfected with siRNAs and expression plasmids were cultured 
in the upper chamber of transwell plates for 48 h. The membranes 
were stained with crystal violet and the migration of cells was 
photographed and measured with an ELISA Microplate Reader, with 
five replicates (Bio-Rad, Hercules, CA, USA). For reactive oxygen 
species (ROS) detection, MitoSOX superoxide (M36008, Molecular 
Probes™ Invitrogen Detection Technologies) was dissolved in 
dimethyl sulfoxide. The cell culture medium was removed, washed 
twice with phosphate-buffered saline (PBS), and MitoSOX reagent 
was added and incubated for 10 min. Next, the MitoSOX reagent 
was removed and cells were collected and washed twice with PBS. 
The average fluorescence intensity of the cells was observed with 

flow cytometry. The gene expression correlation between superoxide 
dismutase 2 (SOD2) and oxidative phosphorylation-related genes 
was evaluated with the Pearson correlation coefficient using ready-
analyzed gene expression profiles of HCC patients derived from The 
Cancer Genome Atlas (TCGA).

RESULTS

Identification of 537 Putative Coding Small 
Open Reading Frames
To train the classifier models, translated ORFs of protein-coding 
genes and non-translated ORFs with ribosome combination were 
used as positive and negative controls, respectively. Three ribosome 
features of all smORFs were quantified to evaluate their protein-
coding potential: the RPFC reflected the number of ribosomes 
combined with ORFs (Bazzini et al., 2014), and the RRS and ORFS 
reflected whether the transcripts were translated (Guttman et al., 
2013; Bazzini et al., 2014). Compared with the negative controls, 
the values of three ribosome features were significantly raised in 
the translated ORF dataset (all P-value < 0.0001, Student’s t-test, 
Supplementary Figure S2). Four classification models were applied 
to construct classifiers, including LR, LDA, SVM, and RF with three 
ribosome features. We applied ROC curve to present the AUC, 
accuracy, sensitivity, and specificity of the classifiers. All classifiers 
had AUCs higher than 0.947 in the training cohort (Table 1, Figure 
2A, and Supplementary Figure S3A). The RF model were observed 
with the highest AUC values (0.998) among the four classifiers in 
U2OS RPF-Seq while the LDA model with the lowest AUC values 
(0.966, Table 1). By contrast with the training cohort, their AUC was 
similar to their performance in the internal validation cohort except 
for the classifiers based on RF models (Table 1).

To identify novel translated smORFs derived from lncRNAs, 
we applied the classifiers to assess the coding potential of smORFs 
derived from previously annotated lncRNAs and uncharacterized 
processed transcripts from Ensembl. To identify as many 
micropeptides as possible, we took the union of the classifiers 
based on different models and we identified 537 putative translated 
smORFs concealed in 463 lncRNA transcripts (Supplementary 
Table S4). The RRS and ORFS values of the putative coding smORFs 
were similar, and were higher than the ORFs derived from UTRs 
and lncRNAs, but lower than the annotated ORFs of protein-coding 
genes (Figure 2B and Supplementary Figure S2B). The RPFC 
scores of translated smORFs and protein-coding genes were similar, 
but their distribution differed substantially from UTRs and lncRNAs 
(Figure 2B and Supplementary Figure S2B). Moreover, most of the 
micropeptides were shorter than 80 amino acids, which accounted 
for approximately 84% of putative coding smORFs (Figure 2C).

Experimental Validation of Five Coding 
Small Open Reading Frames
Five putative translated lncRNAs were chosen to validate their 
protein-coding potential according to the number of four classifiers 
by which they were predicted (Supplementary Tables S4 and S5). 
Three translated smORFs (ZFAS1, RP11-879F14.2, SNHG8) were 
simultaneously predicted by four machine learning models in the 
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U2OS RPF-Seq and two translated smORFs (RP4-614O4.11 and 
RP11-554I8.2) were predicted by only one of the models. Then, a 
series of vectors were generated, including 5′UTR-ORF-GFPmut 
(GAPDH, ZFAS1, RP11-879F14.2, SNHG8, RP4-614O4.11, and 
RP11-554I8.2) and GFPmut (Supplementary Figure S1). After 
transfecting SK-Hep1 cells with these constructs, substantial fusion 
protein expression was observed in ZFAS1-, RP11-879F14.2-, and 
SNHG8-transfected cells, while cancer cells transfected with GFPmut 
abolished fusion protein expression (Figure 3), indicative of their 
coding potential. However, the fusion protein was not translated in 
SK-Hep1 cells transfected with the vectors of RP4-614O4.11 and 
RP11-554I8.2 constructs, indicating that they did not possess coding 
potential (data not shown). In addition, the peptide fragments of 
two putative lncRNA-encoded micropeptides were detected by 
MS (Supplementary Table S6). These peptides contained 100 and 
112 amino acids, and were derived from RP11-277P12.20 and 
LINC00909, respectively (Supplementary Figure S1). Importantly, 
the peptide encoded by LINC00909 was predicted in a previous 
study, but lacked experimental support (Ota et al., 2004).

Significant Dysregulation of 54 Translated 
Long Non-Coding Ribonucleic Acids 
Identified in Cancer
Recently, the lncRNA HOXB-AS3-encoded micropeptide 
has been proven to play an essential role in the regulation of 

tumorigenesis (Huang et al., 2017); however, little is known 
of the pathological functions of other lncRNA-encoded 
micropeptides in cancer. To systematically identify cancer-
related lncRNA-encoded micropeptides, we first investigated 
their composition and abundance in cancer by analyzing 
11 genome-wide lncRNA microarray datasets derived from 
seven cancer types (Supplementary Table S3). The lncRNA 
microarray platform could detect the expression profiles 
of 110 putative translated lncRNAs. By comparing their 
expression levels in tumor tissues and corresponding normal 
tissues, 50 significantly differentially expressed lncRNAs were 
identified (Supplementary Table S7). Of these, six lncRNAs 
were significantly dysregulated in more than one cancer type 
(Supplementary Table S7).

Interestingly, two of the five experimentally validated 
translated lncRNAs, ZFAS1 displayed significantly increased 
expression in HCC tissue (FC = 4.04, FDR = 5.5e−02, paired 
Wilcoxon rank sum test, Figure 4A and Supplementary Table 
S7) and LINC00909 showed significantly decreased expression in 
gastric cancer tissues (FC = 0.41, FDR = 3.6e−02, paired Wilcoxon 
rank sum test, Supplementary Table S7), respectively. As our 
lab focused on HCC pathological investigation and previous 
studies have shown ZFAS1 can exert their functions by lncRNAs 
in HCC (Dong et al., 2018; Luo et al., 2018), the expression level 
of ZFAS1 was further validated in 32 pairs of HCC/non-tumor 
tissue specimens using RT-qPCR. The results showed that ZFAS1 

TABLE 1 | Performance of classifiers.

Model Training cohort Validation Cohort P

AUC 
(95% CI)

Acc (%) Sen (%) Spe (%) AUC (95% CI) Acc (%) Sen (%) Spe (%)

LR_U 0.977 
(0.973–
0.980)

97.75 97.35 97.99 0.977 (0.972–0.983) 97.80 97.51 97.97 0.83

LDA_U 0.966 
(0.962–
0.970)

96.26 98.07 95.17 0.963 (0.957–0.969) 95.83 98.07 94.48 0.36

SVM_U 0.977 
(0.974–
0.981)

97.83 97.28 98.15 0.977 (0.971–0.982) 97.77 97.27 98.06 0.88

RF_U 0.998 
(0.997–
0.999)

98.15 97.65 98.45 0.976 (0.971–0.982) 97.83 97.34 98.12 3e−14

LR_H 0.961 
(0.956–
0.966)

96.30 95.07 97.17 0.965 (0.958–0.972) 96.60 95.97 97.06 0.36

LDA_H 0.947 
(0.941–
0.952)

94.68 94.49 94.81 0.938 (0.929–0.947) 93.66 94.37 93.16 0.10

SVM_H 0.961 
(0.957–
0.966)

96.36 94.96 97.35 0.965 (0.958–0.97) 96.64 95.71 97.30 0.42

RF_H 0.998 
(0.998–
0.999)

97.81 97.17 98.27 0.976 (0.970–0.981) 97.58 96.67 98.25 1e−14

LR_U, LDA_U, SVM_U, and RF_U means the classifiers based on ribosome-protected fragment sequencing of U2OS cells using logistic regression, linear discriminant 
analysis, support vector machine, and random forest models, respectively. LR_H, LDA_H, SVM_H, and RF_H means the classifiers based on ribosome-protected 
fragment sequencing of HeLa cells using logistic regression, linear discriminant analysis, support vector machine, and random forest models, respectively. AUC, the 
area under ROC curve; Acc, accuracy; Sen, sensitivity; Spe, specificity; P. P value of the AUC difference between training and validation cohort.
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expression was significantly elevated in cancer tissues in agreement 
with the microarray data (P = 1.6e−05, paired Wilcoxon rank sum 
test, Figure 4B). More importantly, ZFAS1 was nearly undetected 
in normal liver tissues (Figure 4C), indicating that ZFAS1 may 
have an essential role in HCC tumorigenesis and could serve as a 
diagnostic marker for HCC.

ZFAS1 Promotes Cancer Cell Migration
To elucidate the involvement of ZFAS1 in tumorigenesis, the 
human SK-Hep1 cell line was transfected with pCDH-ZFAS1-
ORF or one of two different siRNAs, respectively. The relative 
RNA expression of ZFAS1 markedly increased and decreased 
following transfection with the ZFAS1 overexpression plasmid 

FIgURE 2 | Features of predicted translated small open reading frames (smORFs) based on U2OS sequencing of ribosome-protected mRNA fragments (RPF-Seq). 
(A) The performance of the four classifiers based on logistic regression (LR), linear discriminant analysis (LDA), support vector machine (SVM), and random forest 
models (RF). (B) Ribosome features of different ORFs. The ribosome release score and ORF score values of putative translated smORFs were similar, and were 
higher than ORFs derived from untranslated regions (UTRs) and long non-coding RNAs (lncRNAs) but lower than annotated ORFs of protein-coding genes. The 
ribosome-protected mRNA fragment coverage scores of translated smORFs and protein-coding genes were similar, but their distributions differed substantially from 
UTRs and lncRNAs. (C) Length distribution of micropeptides encoded by putative translated smORFs. ACC, accuracy; SEN, sensitivity; SPE, specificity; RPFC, 
ribosome-protected mRNA fragments coverage; ORFS, ORF score; RRS ribosome release score.

FIgURE 3 | Constructs generated to validate the protein-coding potential of small open reading frames. The 5′UTR-ORFs of glyceraldehyde 3-phosphate 
dehydrogenase, ZFAS1, SNHG8, and RP11-879F14.2 were fused to a GFPmut in which the green fluorescent protein start codon ATGGTG was mutated to 
ATTGTT. Substantial amounts of fusion protein were detected following transfection of the constructs into SK-Hep1 cells. In addition, the fusion protein was 
abolished after SK-Hep1 cells were transfected with the GFPmut construct.
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and siRNAs, respectively (overexpression: P-value = 6e−04, 
paired Student’s t-test; siRNA-1: P-value = 8.1e−03, siRNA-
2: P-value = 7.8e−03, Welch’s t-test; Supplementary Figure 
S5). The migratory ability of SK-Hep1 cells transfected with 
pCDH-ZFAS1-ORF was accelerated compared with the control 
group (P = 9e−04, paired Student’s t-test, Figure 5A), while the 
migratory ability of SK-Hep1 cells treated with the two different 
siRNAs was consistently suppressed compared with the controls 
(siRNA of GFP (siGFP) vs. siZFAS1-1: P-value = 7e−04, siGFP vs. 
siZFAS1-2: P-value = 3.2e−03, paired Student’s t-test, Figure 5B). 
Therefore, the ZFAS1 gene may be a positive regulator of human 
hepatoma cell migration, with tumor promotion effects.

Increased Reactive Oxygen Species 
Production May Correlate With Cell 
Migration
To clarify the molecular phenotype associated with ZFAS1, 
we conducted RNA-Seq following ZFAS1 overexpression 
and knockdown. The expression of 101 and seven genes 
were significantly downregulated and upregulated in ZFAS1 
overexpression cells compared with the controls, respectively. By 
further analyzing their expression profiles in ZFAS1 knockdown 

samples, we found that 87 downregulated and 4 upregulated 
genes showed inverse changes (Supplementary Table S8). Next, 
functional enrichment analysis was performed to investigate 
the enriched functions of these 91 consistent genes. The results 
showed that oxidative phosphorylation and ribosome-related 
pathways were the most enriched GO terms (Supplementary 
Figure S6). From the literature, we found a close relationship 
between cell migration and the oxidative phosphorylation 
pathway. Previous studies have revealed that downregulated 
nicotinamide adenine dinucleotide (NADH) dehydrogenase 
promotes cell migration by increasing intracellular ROS 
production (Li et al., 2015a). Furthermore, ROS act as signaling 
molecules to regulate cell migration (Park et al., 2012; Sena and 
Chandel, 2012; Liu et al., 2014). Therefore, we speculated that 
upregulated ZFAS1 increased ROS production by inhibiting 
NADH dehydrogenase expression to promote cell migration 
(Supplementary Figure S7).

According to the literature results, we first detected 
ROS production in ZFAS1 knockdown cells using flow 
cytometry. ROS levels were remarkably down-regulated in 
ZFAS1 knockdown samples, indicating that ZFAS1 positively 
correlated with ROS production (Figure 6). As previous studies 
have proven that the down-regulated NADH dehydrogenase 

FIgURE 4 | Expression profiles of ZFAS1 in multiple tumor and normal tissues. (A) ZFAS1 expression levels in 11 cancer-related long non-coding RNA microarray 
datasets derived from seven cancer types. Y-axis means the signals detected by the microarray. The red asterisk means that the false positive rate (FDR) is less than 
0.1. (B) Relative expression levels of ZFAS1 in 32 pairs of hepatocellular carcinoma tumor tissue and corresponding adjacent normal tissue detected by reverse 
transcription quantitative polymerase chain reaction. ZFAS1 was significantly expressed in tumor tissues (p-value = 1.6e−05, paired Wilcoxon rank sum test, n = 32). 
(C) Expression profiles of ZFAS1 in 25 normal tissues downloaded from Genotype-Tissue Expression. ZFAS1 was nearly unexpressed in normal liver tissue. N and T 
represent adjacent normal tissues and tumor tissues. ***P-value < 0.001.
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promotes cell migration by increasing intracellular ROS 
production, we further explored the correlation between 
NADH dehydrogenase and ROS production. Our results 
showed that the relative RNA expression of NADH 
dehydrogenase (NDUFA6, NDUFA7, NDUFB4, and 
NDUFB11) was markedly decreased following transfection 
with the ZFAS1 expression plasmid and showed reverse 
changes in the RNA interference samples (Supplementary 
Table S5). Furthermore, we validated whether NADH 
dehydrogenase expression negatively correlated with ROS 
production. Because SOD2 is a ROS marker reflecting its 
levels, we calculated the correlation between the expression 
of SOD2 and four NADH dehydrogenases using HCC TCGA 
data. The expression of NDUFA6, NDUFB4, and NDUFB11 
showed significant negative correlations with SOD2, 
indicating a significant negative correlation between ROS 

production and NADH dehydrogenase (NDUFA6: r = −0.24, 
p = 3.82e−06; NDUFB4: r = −0.24, p = 4.41e−06; NDUFB11: 
r = −0.2, p = 1e−04, Supplementary Figure S8). Therefore, 
we propose that upregulated ZFAS1 promotes cancer cell 
migration via elevating cellular ROS production by repressing 
the expression of NADH dehydrogenases, including NDUFA6, 
NDUFB4, and NDUFB11 (Supplementary Figure S7).

DISCUSSION
We systematically analyzed the functional roles of lncRNA-
encoded micropeptides in cancer by incorporating multiple high 
throughput datasets, such as RPF-Seq, genome-wide lncRNA 
microarray, and RNA-Seq. Hundreds of translated smORFs were 
identified and numerous significantly differentially expressed 

FIgURE 5 | Cell motility changed significantly following ZFAS1 overexpression and knockdown. (A) SK-Hep1 cells transfected with ZFAS1 expression plasmid. The 
cell motility of SK-Hep1 cells was significantly increased following transfection with the ZFAS1 expression plasmid (p-value = 9e−04, paired Student’s t-test, n = 3). 
(B) SK-Hep1 cells transfected with small interfering RNAs (siRNAs) of ZFAS1. The cell motility of SK-Hep1 cells decreased significantly following transfection with the 
two independent siRNAs (siGFP vs. siZFAS1-1: P-value = 7e−04, siGFP vs. siZFAS1-2: P-value = 3.2e−03, paired Student’s t-test, n = 3). Imax means cells exposed 
to Lipofectamine RNAiMAX but not RNA duplexes. siGFP indicates cells transfected with siRNA of green fluorescent protein. **P-value < 0.01, ***P-value < 0.001.
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genes were observed in multiple cancer types, supporting the 
essential roles of translated smORFs in tumorigenesis.

Compared to other studies of lncRNA-encoded translated 
smORFs, our study offers several advantages. First, more 
translated  smORFs were predicted by our classifiers and 537 
translated smORFs were identified in our study (Bazzini et al., 2014). 
To identify translated smORFs as much as possible, three ribosome 
features derived from two RPF-Seq datasets combined with four 
machine learning methods were used to construct the classifiers. 
The number of our predicted translated smORFs was more than 
previous studies. Second, apart from predicting translated smORFs 
based on classification models, two experimental methods (construct 
generation and MS) were implemented to validate the protein-
coding potential of lncRNAs (Calviello et al., 2016). Experimental 
validation is critical to assess the performance of classification models. 
Third, we not only identified translated smORFs, but also further 
explored their composition and abundance in seven cancer types to 
find functional translated lncRNAs. By analyzing 11 genome-wide 
lncRNA microarrays, we found that substantial numbers of putative 
translated lncRNAs were significantly differentially expressed in 
cancer, indicating their important roles in tumorigenesis. Fourth, 
one cancer-related translated lncRNA, ZFAS1, was found to play 
important roles in promoting cancer cell migration and affecting 
cell metabolism in HCC (Figures 4 and 5), which indicated that our 
method could identify cancer-related translated lncRNAs. Therefore, 
all putative translated lncRNAs and their cancer-related information 
were presented in the supplementary material to facilitate the 
investigation of translated smORFs in cancer pathogenesis.

Despite these advantages, this study had several limitations. A 
previous study revealed that some translated smORFs with non-
traditional start codons (CUG, GUG) have essential functions 
(Ingolia et al., 2011). In this study, we only defined ORFs with the 
traditional start codon AUG, possibly excluding translated smORFs 

with non-traditional start codons. Moreover, previous studies have 
also shown that some translated ORFs existed in 5′ and 3′ UTRs, which 
were defined as upstream and downstream coding ORFs (Oyama et 
al., 2004; Fritsch et al., 2012; Chew et al., 2013). In our study, we first 
identified all ORFs in 5′ and 3′ UTRs, and then filtered the potential 
upstream and downstream coding ORFs according to literature 
(Vilela and Mccarthy, 2003; Oyama et al., 2004; Fritsch et al., 2012; 
Chew et al., 2013; Guttman et al., 2013; Slavoff et al., 2013; Calviello 
et al., 2016). The remaining ORFs were used as negative controls. 
Therefore, our method could not identify the translated ORFs 
derived from 5′ and 3′ UTRs. In addition, more evidence was needed 
to prove the roles of ZFAS1 in metastasis through protein form.

ZFAS1 may participate in multiple biological processes 
to regulate tumorigenesis and metastasis. Here, we found 
that one validated coding smORF derived from ZFAS1 was 
upregulated in HCC tumor tissue and nearly unexpressed 
in normal liver tissue. More importantly, ZFAS1 promoted 
cancer cell migration and ROS production in HCCs to 
participate in tumorigenesis (Figures 4 and 5). By analyzing 
the ZFAS1 gene, translated smORFS were only concealed in 
the transcript of ZFAS1 (ENST00000458653). Based on the 
literature, we found other transcripts of ZFAS1 with important 
roles in regulating tumorigenesis (Li et al., 2015b; Wang and 
Xing, 2016; Zhou et al., 2016; Lv et al., 2017). For example, 
in glioma and gastric cancers, the upregulation of ZFAS1 
could enhance the epithelial mesenchymal transition (EMT) 
(Zhou et al., 2016; Lv et al., 2017). Meanwhile, in colorectal 
cancer  and HCC, ZFAS1 regulated tumor metastasis (Li et 
al., 2015b; Wang and Xing, 2016). Therefore, ZFAS1 may 
be  involved in other aspects of cancer hallmarks apart from 
cell mobility.

In summary, we identified 537 putative translated smORFs 
derived from lncRNAs using newly developed classifiers. 

FIgURE 6 | Change in reactive oxygen species (ROS) production following ZFAS1 knockdown. Cellular ROS production was significantly downregulated following 
transfection of SK-Hep1 cells with two independent siRNAs (siGFP vs. siZFAS1-1: P-value = 0.022, siGFP vs. siZFAS1-2: P-value = 0.025, paired Student’s 
t-test, n = 3). Imax means cells exposed to Lipofectamine RNAiMAX but not RNA duplexes. siGFP indicates cells transfected with small interfering RNAs of green 
fluorescent protein. *P-value < 0.05.
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Moreover, we identified 50 cancer-related translated lncRNAs 
by exploring their composition and abundance in cancer. 
Finally, we found that the experimentally validated translated 
lncRNA ZFSA1 promoted cancer cell migration by elevating 
cellular ROS production via the expression downregulation of 
NADH dehydrogenase expression (NDUFA6, NDUFB4, and 
NDUFB11). These findings help further clarify our understanding 
of the critical roles of smORFs in physiological and pathological 
processes, especially in cancer.
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