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INTRODUCTION
Medical gas is a large class of gases used in both clinical 
medicine and basic science research, including oxygen, 
hydrogen, carbon monoxide, carbon dioxide, nitrogen, 
xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, 
argon, helium, and other noble gases.1 Gas-based treatments 
are widely available clinically. For example, oxygen therapy 
for patients with dyspnea, nitrous oxide for analgesia and 
anesthesia, liquid nitrogen cryotherapy for secondary 
cellulitis, argon-helium knife therapy for liver cancer.2-4 For 
decades, studies have found that certain medical gases possess 
neuroprotective properties leading to extensive interest.5 

Current research on neuroprotective gases focuses primarily 
on oxygen, xenon, hydrogen, hydrogen sulfide, nitric oxide, 
and argon, and their involvement with central nervous system 
diseases, such as stroke, traumatic brain injury, subarachnoid 
hemorrhage, and neurodegenerative disease, showing great 
translational potential.6-11

Stroke is the second leading cause of death, and one of 
the main causes of adult disability in the world, causing a 
heavy burden for medical and health care costs.12,13 The two 
main subtypes of stroke include ischemic and hemorrhagic 
stroke. According to epidemiological statistics, 85% of 
strokes are categorized as ischemic, with the remaining 
15% considered hemorrhagic. Tissue plasminogen activator 
(tPA) thrombolysis is the gold standard treatment and the 
only U.S. Food and Drug Administration-approved therapy 
for ischemic stroke.14,15 However, the time-constrained 
therapeutic window greatly limits the use of tPA in acute 
ischemic stroke.16 Although studies have shown that it is safe 
to administer intravenous thrombolytic drugs within 4.5 hours 
of stroke onset, thrombolysis treatment outside the therapeutic 

window is likely to cause complications, such as hemorrhagic 
transformation, reperfusion injury, and brain edema, with 
the former being the most feared complication.17 Regarding 
hemorrhagic stroke, the current treatment is surgical removal 
of the hematoma, and reduction of intracranial pressure. 
However, this method can only prevent the deterioration of 
the disease, and has little effect in neurological recovery. It 
is apparent that current treatment of stroke is very limited. 
However, an increasing amount of recent studies have found 
the potential of blood-brain barrier (BBB) protection, stem 
cells, and medical gas in stroke therapy, offering new hope in 
the treatment of stroke.

It should be emphasized that research on the role of medical 
gases in stroke is receiving more and more attention, although 
their mechanisms of action differ. The thorough study of the 
relationship between medical gas and stroke will broaden 
horizons to guide the development of stroke treatment. In the 
present review, we will discuss the pathological mechanisms 
of stroke and advances in the research on the role of two 
medical gases (hydrogen and hydrogen sulfide) in stroke. We 
searched the researches in PubMed by the keywords “stroke” 
and “pathology” or “stroke” and “hydrogen” or “stroke” and 
“hydrogen sulfide.” 

PATHOLOGICAL MeCHANISMS OF STROKe-INDUCeD 
BRAIN INJURY
The main subtypes of stroke include ischemic and hemorrhagic 
stroke. The former is caused by arterial embolism, in situ 
thrombosis, hemodynamic insufficiency, and branch occlusive 
disease. The latter is primarily caused by cerebral vascular 
rupture, including intracerebral hemorrhage and subarachnoid 
hemorrhage.18,19 The common pathological changes of these 
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two types of stroke may include excitotoxicity, free radical 
release, inflammation, cell death, mitochondrial disorder, 
and BBB disruption. Herein, we will discuss these related 
mechanisms of brain damage after stroke.

excitotoxicity
Excitotoxicity caused by glutamate is one of the most fre-
quently studied pathological mechanisms of central nervous 
system diseases.20-22 The process by which excess quantities of 
the excitatory neurotransmitter, glutamate, activates N-methyl-
D-aspartate receptors (NMDARs) is a key step in the produc-
tion of excitotoxicity.23-25 After stroke, ischemia and hypoxia 
cause ion disorder in the neural cells, subsequently leading to 
cell depolarization and release of excitatory glutamate into the 
synaptic space. Thus, glutamate-induced NMDARs accumu-
lation induces calcium inflow to the neurons.26 Intracellular 
calcium overload leads to cell death by calpain activation, 
reactive oxygen species (ROS) generation, and mitochondrial 
damage.27 In addition, there is evidence that excitotoxicity 
caused by glutamate can also be involved in brain damage 
following hemorrhagic stroke.28 Many drugs targeting exci-
totoxicity presented an effective function in animal models of 
cerebral ischemia. For example, NDRG2 facilitates interstitial 
glutamate uptake to protect the brain from excitotoxicity after 
middle cerebral artery occlusion.29 Glutamate oxaloacetate 
transaminase displays neuroprotection in ischemic stroke by 
reducing glutamate levels at the stroke site.30,31

Free radical release
Numerous experimental evidence indicates that in all forms of 
stroke damage, the formation of free radicals was increased, 
leading to nutritive oxidative stress.32-34 There are several 
mechanisms of free radical production during ischemia, includ-
ing intracellular calcium overload, mitochondrial dysfunction, 
NMDAR-mediated excitotoxicity, and release of inducible 
nitric oxide synthase.35-38 Excessive free radicals, such as ROS 
and hydroxyl radical, can damage cellular macromolecules, 
and lead to autophagy, apoptosis, and necrosis of cells by 
affecting signaling pathways.39,40 In addition, free radicals 
also cause DNA damage and cellular aging.41,42 Based on 
these mechanisms, many free radical scavenging antioxidant 
therapies have been extensively studied.43,44 For example, the 
iron chelator, deferoxamine mesylate, exhibits neuroprotection 
by inhibiting the formation of iron-induced hydroxyl radicals 
in various ischemic and hemorrhagic stroke animal models.45 

Melatonin, an effective free radical scavenger and antioxi-
dant, shows neuroprotective effects in experimental models 
of hemorrhagic stroke.46,47 However, since many free radicals 
are essential signaling molecules that contribute to normal 
neuronal function, related antioxidant therapy is required to 
only remove harmful free radicals without interfering with 
endogenous signaling.48,49

Inflammation
Inflammation is a key mechanism, contributing significantly 
to the pathophysiology and prognosis of stroke.50 After stroke, 
a variety of agents, such as necrotic cells, impaired tissues, 
and free radical formation, are involved in the activation of 

inflammatory cells and trigger an inflammatory response.51,52 In 
the early stages of inflammation, microglial cells are recruited 
and activated, converting to phagocytic cells.53 Activated 
microglia not only release pro-inflammatory cytokines, such 
as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α 
(TNF-α), but also play a neuroprotective role by the release 
of insulin-like growth factor I and brain-derived neurotrophic 
factor.54-56 Later, neutrophils and monocytes cross the BBB into 
the ischemic area, which appears to be associated with cell 
adhesion molecules and chemokine signaling processes.57-59 
Moreover, the products of oxidative stress induce the expres-
sion of pro-inflammatory genes, such as nuclear factor kappa 
B (NF-κB), which increase the expression of cytokines and 
adhesion molecules, promoting the migration of leukocytes 
through brain endothelial cells.60 Extensive research has shown 
that the inflammatory response after stroke not only causes 
brain tissue damage, but also participates in tissue remodeling 
after brain injury.61 The latter seems to be an exciting area for 
translational research.

Cell death
In stroke, damage causes cell death through a variety of 
mechanisms, including apoptosis, necrosis, and autophagy.62 

Necrosis and apoptosis are the primary mechanisms.63,64 

Sodium pump failure, calcium overload, and excessive free 
radicals are involved in the induction of cell death. Apoptosis 
is a programmed cell death that terminates the cell’s own life 
through signaling pathways such as mitochondrial signal-
ing pathways, which can be induced by extracellular signals 
such as TNF-α, TRAIL (TNF related apoptosis inducing 
ligand) and Fas (CD95/APO1).65-67 In animal models, some 
substances improve the prognosis of ischemic and hemor-
rhagic stroke through anti-apoptosis, including melatonin, 
Protein-L-isoaspartate (D-aspartate) O-methyltransferase, and 
Dl-3-n-butylphthalide.68-70 Autophagy is another programmed 
cell death pathway, mediated by lysosomes, showing a two-
sided effect in stroke. Several reports showed that excessive 
autophagy activation led to cell death, but many researchers 
have illustrated that appropriate autophagic activity is neuro-
protective.71-73 Studies have shown that autophagy may have 
the potential to protect the BBB integrity, demonstrating 
neuroprotection.74 In addition, a large amount of cathepsin B 
release, caused by dysfunction of membrane trafficking after 
cerebral ischemia, can also induce cell death.75

Mitochondrial dysfunction
Growing evidence suggests that mitochondria regulates au-
tophagy and apoptosis of cells.76 Excitotoxicity and calcium 
overload lead to mitochondrial swelling during cerebral isch-
emia, triggering a cascade of cell death.77 ROS produced by 
mitochondria also play a key role in brain damage following 
ischemic stroke.78 Moreover, mitochondria regulate cell death 
at the level of protein modification by equilibrium fusion and 
fission.79 For example, hyperglycemia promotes cell death 
following cerebral ischemia by inducing an increase in fission 
proteins dynamin-related protein 1, fission 1, and a decrease 
in fusion proteins optic atrophy 1 and mitofusin 2.80
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BBB disruption
BBB destruction promotes stroke-induced brain damage, and 
causes complications, such as hemorrhagic transformation, 
playing an important role in stroke.81 The immunoinflamma-
tory reaction after cerebral ischemia can increase the produc-
tion of matrix metalloproteins and myeloperoxidase, which 
may be the main contributor in the destruction of the BBB.82 

Furthermore, post-stroke changes in tight junction proteins, 
such as modification, translocation, and degradation lead to 
increased BBB permeability, which also worsens the prog-
nosis of stroke.81 Drugs have been investigated as a potential 
therapy in stroke recovery by improving BBB integrity.83,84 

For example, studies have found that baicalin attenuates brain 
injury after subarachnoid hemorrhagic by modulating BBB 
dysfunction and protecting BBB integrity.85

Other mechanisms
In addition to the above mentioned, the mechanisms of brain 
damage after stroke also include protein misfolding, reperfu-
sion injury, innate and adaptive immune response, astrocytic 
changes, and white matter injury.86,87 For example, misfolded 
proteins trigger the protein kinase R-like endoplasmic reticu-
lum kinase pathway regulating eukaryotic initiation factor 2 
kinase activation, which prevents new proteins synthesis after 
stroke.88 Furthermore, changes in astrocytes after stroke affect 
the connection and signaling of neural activity, which may in-
crease the damage of stroke and inhibit post-stroke recovery.86 

An exploration on the pathological mechanisms of stroke is 
conducive to pushing us closer to new potential therapies.

ADVANCeS IN ReSeARCH ON THe ROLe OF HYDROGeN 
AND HYDROGeN SULFIDe IN STROKe 
Recently, the neuroprotective capacity of certain gases has 
received increasing attention. Among these gases, oxygen, 
hydrogen, hydrogen sulfide, NO, and some inert gases are 
probably the most studied gases. We will focus on the role of 
hydrogen and hydrogen sulfide in stroke and its related mo-
lecular mechanisms, and the research progress in recent years.

The role of hydrogen in stroke 
Since it was often expressed as an inert gas in mammalian 
cells, it was previously thought that molecular hydrogen 
is nonfunctional in body cells.89 However, the study by 
Ohsawa et al.90 in 2007 indicated that hydrogen acts as an 
antioxidant to selectively reduce strong oxidants in cells, 
having a potential therapeutic effect in certain diseases. Since 
then, numerous studies have explored the role of hydrogen 
therapy in stroke. The mechanisms underlying the hydrogen-
induced neuroprotection in stroke include anti-oxidative, 
anti-inflammatory and anti-apoptotic effects and changes in 
gene expression91 (Table 1).

In animal experiments, hydrogen treatment significantly 
altered the survival and neurological function of animals after 
stroke. In a study by Nagatani et al.,102 the 7-day survival rate 
of mice after bilateral common carotid artery occlusion was 
8.3%, which significantly increased to 50% after inhalation 
of 1.3% hydrogen. Moreover, multiple studies have shown 
that the neurological function of mice that inhaled hydrogen 

is significantly improved after ischemic stroke.103-105 In addi-
tion, hydrogen therapy also altered the morphology of brain 
tissue after stroke. Triphenyl tetrazolium chloride staining 
showed that hydrogen treatment reduced the infarction area 
after injury in stroke.106-108

As mentioned previously, the production of free radicals is 
an important pathological mechanism of brain damage after 
stroke. Currently, the most commonly studied neuroprotective 
mechanism of hydrogen therapy for stroke is that molecular 
hydrogen acts as a strong reducing agent to selectively scav-
enge certain free radicals in cells.109 Hydroxyl radicals are 
considered the main trigger for free radical chain reactions.110 
In 2007, Ohsawa et al.90 demonstrated that hydrogen selec-
tively reduced hydroxyl radicals after the use of antimycin 
A. Another study showed that hydrogen eye drops directly 
decreased hydroxyl radicals in ischemia/reperfusion of reti-
nas.92 Hydrogen can also reduce 8-hydroxy-deoxyguanine, 
decreasing DNA oxidation.93,111 Peroxynitrite is a strong 
biological oxidant which could induce neuronal death. The 
removal of peroxynitrite is related to hydrogen, so molecular 
hydrogen could directly reduce peroxynitrite to protect nerve 
cells.94 Activation of nuclear factor erythroid 2-related factor 
2 (Nrf2) exhibits reduced oxidative stress and neuroprotec-
tive properties, and has been identified as one of the goals of 
stroke therapy.112 In addition, many studies have shown that 
hydrogen attenuates oxidative stress via Nrf2 pathway.95,113,114

Inflammation also plays an important role in stroke. Many 
studies have pointed out that hydrogen has an anti-inflamma-
tory effect on cells.115-117 In addition to antioxidant effects, the 
anti-inflammatory effects of hydrogen also play a non-negli-
gible role in stroke.118 Hydrogen may exhibit neuroprotection 
by reducing the number of microglia and astrocytes in dam-
aged brain tissue, or by inhibiting activated microglia.96,119 
In the central nervous system, macrophages transformed by 
microglia can polarize to classic type (pro-inflammatory; 
M1-like) and alternative type (anti-inflammatory or pro-
tective; M2-like).120,121 A recent study found that hydrogen 
treatment inhibits the increase in M1-like macrophages, but 
has no influence on M2-like cells, therefore implying anti-
inflammatory effects in a stroke model.97 In addition to cel-
lular activation, hydrogen can also regulate gene expression 
of pro-inflammatory cytokines.89,91 In most models, hydrogen 
treatment reduces the expression of pro-inflammatory factors 
such as IL-1β, IL-6, IL-10, TNF-α, interferon-γ, and NF-
κB.98,122 Hydrogen treatment also increases anti-inflammatory 
cytokines such as transforming growth factor-1β.99

Hydrogen therapy also shows anti-apoptotic properties. 

Table 1: Mechanisms of neuroprotection of H2 in stroke

Role of H2 in stroke Reference

Anti-oxidation Ohsawa et al.,90 Oharazawa et al.,92 
Ohta,93 Cejka et al.,94 Yuan et al.95

Anti-inflammation Imai et al.,96 Ning et al.,97 Shi et al.,98 Li 
et al.99

Anti-apoptosis Li et al.,99 Matei et al.100

Angiogenesis Ergul et al.101

Note: H2: Hydrogen.
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Hydrogen treatment reduces the levels of miR-21, an effec-
tive anti-apoptotic factor.99 In addition, hydrogen can induce 
angiogenesis, reduce cyclooxygenase-2 levels, and inhibit 
mitochondrial swelling under pathological conditions.101,123 
More mechanisms have yet to be studied.

Methods of ingesting molecular hydrogen include inhala-
tion of hydrogen gas, oral ingestion by drinking hydrogen 
water, injection of hydrogen-saline, and topical application 
such as eye drops, bodywash, and cosmetics.93 Hydrogen is 
not cytotoxic at any concentration, so hydrogen-based treat-
ments are considered safe.124 In addition, hydrogen has the 
advantage of being highly-selective reaction with ROS and 
rapidly diffusing, showing great potential in future stroke 
treatment.90,92,125

The role of hydrogen sulfide in stroke
In the past, hydrogen sulfide had always been considered a 
toxic gas that smelled of rotten eggs. However, later studies 
have found that endogenously produced hydrogen sulfide 
plays an important role as an important signaling molecule 
in the cardiovascular system and nervous system126,127 (Table 
2). Hydrogen sulfide is found in many organs and tissues, 
including the liver, blood, heart, and brain. A previous report 
has stated that the concentration of hydrogen sulfide within 
the brain is substantial.128 Hydrogen sulfide is endogenously 
synthesized by cystathionine β-synthase, cystathionine γ-lyase, 
and 3-mercaptopyruvate sulfurtransferase.129 Many studies 
have found that cystathionine β-synthase is ubiquitous in 
many areas of the brain, and may be the main hydrogen sulfide 
synthase in the central nervous system.130-132 Current research 
suggests that the role of hydrogen sulfide in stroke is related 
to the concentration of administration; low concentrations of 
hydrogen sulfide may have neuroprotective effects on stroke, 
while high concentrations of hydrogen sulfide may cause 
neurotoxicity.133

also inhibits the release of nitric oxide, TNF-α, and IL-1β 
from astrocytes and microglia to achieve an anti-inflammatory 
effect.135 In addition, free radicals and other reactive species 
can be scavenged by hydrogen sulfide, which may protect 
neurons from oxidative stress.136,147 Kimura and his colleagues 
found that hydrogen sulfide could promote the activation of 
cystine/glutamate antiporter and increase the concentration of 
intracellular cystine, a substrate necessary for the generation 
and synthesis of glutathione.137,148 As an important intracellular 
antioxidant, glutathione can scavenge ROS in mitochondria 
and protect neurons from oxidative stress. Inhibition of apop-
tosis is another role of hydrogen sulfide in stroke. In 2016, Ji 
et al.138,149 reported that heat shock protein 70 could be up-
regulated through the phosphoinositide 3-kinase/Akt/Nrf2 
pathway and may prevent the recruitment of procaspase-9 by 
the apoptotic protease activating factor-1 apoptosome, thus 
inhibiting apoptosis. Moreover, hydrogen sulfide promotes 
the nuclear translocation of NF-κB, facilitating activation of 
anti-apoptotic gene.139 As mentioned above, misfolding of 
proteins is also one of pathological mechanisms of stroke. 
Hydrogen sulfide may inhibit endoplasmic reticulum stress 
response by reducing protein misfolding via upregulation of 
the brain-derived neurotrophic factor-tyrosine protein kinase 
B pathway.140 In addition, hydrogen sulfide also exhibits neu-
roprotective effects in stroke through other mechanisms, such 
as regulating calcium concentration or facilitating long-term 
potentiation.150

The high concentration of hydrogen sulfide is neurotoxic, 
and may be associated with inhibition of mitochondrial respi-
ration.151 Current research suggests that hydrogen sulfide can 
inhibit mitochondrial oxidative phosphorylation by inhibiting 
cytochrome C oxidase (complex IV).152,153 It has also been 
reported that hydrogen sulfide may activate NMDA receptors, 
leading to calcium overload, and enhancing receptor-mediated 
glutamate excitotoxicity in stroke.154,155

Although there are no clinical trials with direct evidence 
suggesting that hydrogen sulfide has neuroprotective effects, 
it has been reported that plasma hydrogen sulfide levels below 
a certain level positively correlate with the prognosis of stroke 
in patients.150 Animal experiments have also shown a slight 
increase in plasma hydrogen sulfide levels in transient middle 
cerebral artery occlusion or permanent middle cerebral artery 
occlusion mice.134,156 Therefore, the role of hydrogen sulfide 
in stroke is worthy of recognition, and is expected to show 
translational potential in the future. However, it should be 
noted that high concentrations of hydrogen sulfide are toxic, 
leading to respiratory failure, nerve dysfunction, brain edema, 
and disturbance of consciousness, which is one of the problems 
that should be addressed in the future (Figure 1).157,158

FUTURe PeRSPeCTIVeS AND TRANSLATION
Through extensive experimental studies in animal models of 
stroke, we have found that hydrogen and hydrogen sulfide are 
important signaling molecules that exhibit neuroprotection 
in stroke through various mechanisms. Specific mechanisms 
include anti-oxidation, anti-inflammation, anti-apoptosis, etc. 
In summary, medical gases, including hydrogen and hydro-
gen sulfide, play a significant role in stroke. However, some 

Table 2: Mechanisms of neuroprotection of H2S in stroke

Role of H2S in stroke Reference

Anti-inflammation Wang et al.,134 Seifert et al.135

Anti-oxidation Qu et al.,136 Kimura et al.137

Anti-apoptosis Ji et al.,138 Sen et al.139

Reduce protein misfolding Wei et al.140

Note: H2S: Hydrogen sulfide.

The mechanisms by which low concentrations of hydrogen 
sulfide exhibit neuroprotection in stroke include anti-inflam-
mation, anti-oxidation, anti-apoptosis, and anti-endoplasmic 
reticulum stress.141 Hypothermia has long been considered 
to have a protective effect through angiogenesis and anti-
inflammation in brain damage, including stroke.142-144 Black-
stone and his colleagues145,146 found that exposure to gaseous 
hydrogen sulfide at 80 ppm can reduce core body temperature, 
therefore illustrating the protective effects in fatal hypoxia in 
mice. Some researchers reported that slow release of hydrogen 
sulfide from donors inhibits inflammation-induced matrix 
metalloprotein-9, and thus reduces affected areas of transient 
middle cerebral artery occlusion mice.134 Hydrogen sulfide 
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important issues have not been resolved, such as insufficient 
clinical evidence, cytotoxicity of hydrogen sulfide, occurrence 
of complications, methods of administration and dosage, and 
combined use of drugs. Therefore, more animal experiments 
and clinical trials are needed to establish the standard of use of 
medical gases, to clarify the exact mechanism of medical gas 
therapy, and to ensure the safety of treatment. We believe that 
medical gases are expected to be an important complementary 
therapy for stroke in the future. 
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