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a b s t r a c t

Major hyperparameters which affect fuzzy time series (FTS) forecasting are the number of partitions,
length of partition intervals in the universe of discourse, and the fuzzy order. There are very few studies
which have considered an integrated solution to optimize all the hyperparameters. In this paper, we
strive to achieve optimum values of all three hyperparameters for fuzzy time series forecasting of the
COVID-19 pandemic using the Particle Swarm Optimization (PSO) algorithm. We specifically propose
two techniques, namely nested FTS-PSO and exhaustive search FTS-PSO for determining the optimal
interval length, as an augmentation to the FTS-PSO model that optimizes the interval length and the
fuzzy order. Nested PSO has two PSO loops: (i) the inner PSO optimizes the combination of fuzzy order
and boundaries of intervals for a given number of partitions defined by the outer loop, and the resultant
cost is fed back to the outer PSO; (ii) the outer PSO optimizes the number of partitions to reduce the
cost while meeting the defined constraint. Exhaustive search FTS-PSO also has two loops where the
inner loop is similar to nested FTS-PSO while the outer loop iterates over a pre-defined search space of
number of partitions. We analyze the effectiveness of the two approaches by comparing with ARIMA,
FbProphet, and the state-of-the-art FTS and FTS-PSO models. We adopt COVID-19 highly affected 10
countries worldwide to perform forecasting of coronavirus confirmed cases. We consider two phases
of COVID-19 spread, one from the year 2020 and another from 2021. Our study provides an analytical
aspect of the COVID-19 pandemic, and aims to achieve optimal number and length of intervals along
with fuzzy order for FTS forecasting of COVID-19. The results prove that the exhaustive search FTS-PSO
outperformed all the methods whereas nested FTS-PSO performed moderately well.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

As of now, almost all the countries in the world have been
ffected by the novel Severe Acute Respiratory Syndrome coro-
avirus (SARS-CoV-2) [1]. The contagious virus is spreading at
very fast rate, and has taken lives of millions of people all
ver the world. The most effective ways to contain the spread of
he virus are distancing, isolation, masking, sanitization, and use
f scientific methods without physical contacts. Finding spread
attern and predictions using the scientific methods can be useful
o framing policies and containing the outbreak. Research at large
cale is going on to analyze the spread behavior of the virus based
n COVID-19 data of states, countries and continents considering
ealth, population, socioeconomic, topographic, demographic, en-
ironmental conditions etc. [2–5]. Many studies have been carried
ut to predict the spread behavior of the virus using various
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forecasting models, artificial intelligence and deep learning ap-
proaches [6–9]. Prediction of spread pattern of the virus is a very
important research area to alert the medical system, governments
and the society to be ready to fight against the virus.

Fluctuation is a characteristic of a time series which can be
utilized to analyze the pattern, and perform the predictions. Fuzzy
time series (FTS) is more descriptive compared to traditional time
series because it provides semantic meaning for uncertain and
fluctuating data. FTS forecasting was introduced by Song and
Chissom [10–12]. They performed prediction for the enrollment
of students of Alabama University using FTS. Since then, the con-
cept has evolved by continuous value addition from researchers
working in this area. The first order FTS was improved by Chen
using a more computationally efficient algorithm [13]. Further,
Chen also proposed a higher-order forecasting model in [14]. Gen-
erally, FTS forecasting model is divided into the following phases,
taken in sequence: Defining the universe of discourse (UOD); Par-
titioning of the UOD; Fuzzification of the historical data; Defining
fuzzy logical relationships (FLRs) and their grouping; and op-
tionally Defuzzification, as described in [13,15]. The operation
to divide UOD into unequal or equal partitions is the phase of
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artitioning of the UOD. Major hyperparameters which affect the
fficiency of FTS forecasting are the number of partitions in UOD,
ength of the partition intervals, and fuzzy order of the model.
he existing studies have focused to optimizing one or two hy-
erparameters of FTS to improve the forecasting results [16–18].
TS forecasting techniques have been used in many studies due
o improved prediction results. We can take advantage of existing
tudies to optimize most of the hyperparameters of FTS using
ybrid techniques. Coronavirus is spreading at alarming rate in
he world. So, there is need of study of FTS forecasting for COVID-
9 predictions. Some studies are already available in the literature
o predict COVID-19 cases using FTS forecasting [19,20]. We can
xperiment with more hyperparameters of FTS to improve the
orecasting results.

Various optimization techniques have been proposed in liter-
ture to find the optimum length of intervals in UOD, for which
article swarm optimization (PSO) [21] algorithm has gained
ignificant attention in the recent years. Kuo et al. [22] have pro-
osed a new hybrid model to provide forecasting solution based
n first order and higher order FTS combined with PSO. Chen and
ao [23] have proposed a new FTS forecasting method for Taiwan
tock Exchange Capitalization Weighted Stock Index (TAIEX) fore-
asting. The authors have defined UOD for TAIEX using average
ariation of slope of two-days because it is smoother compared
o the single-day variation slope. The authors have used PSO
nd SVM to find optimum intervals and for the classification
f training data, respectively. Weighting vectors of two-factor
econd-order Fuzzy Logical Relationship Groups (FLRGs) and par-
itions of UOD have been optimized using PSO in [24] to forecast
TD/USD exchange rates and TAIEX. Chen et al. [17] have pro-
osed FTS forecasting based on FLRGs and the proportions of
artitions optimized using PSO technique. Tinh and Dieu [25]
ave proposed a fuzzy C-means (FCM) clustering and PSO based
TS forecasting model to improve the prediction accuracy. The
forementioned studies have focused on optimizations using PSO
lgorithm. Since PSO has successfully been deployed before in
arious fuzzy hybrid models, so we decided to use the PSO
lgorithm to determine the optimal solutions for our proposed
TS model.
In recent years, FTS modeling has been adopted in many

orecasting studies [26–28]. Accuracy of any forecast model plays
very important role in decision making or planning. Designing
prediction model with optimized FTS hyperparameters for the
OVID-19 forecasting can be useful in framing policies and con-
aining the spread of coronavirus. So, our motivation behind this
tudy is to design a FTS based COVID-19 forecasting model with
ptimized FTS hyperparameters using nested methods. In this
aper, we have proposed two variants of FTS-PSO; (i) Nested FTS-
SO, and (ii) Exhaustive search FTS-PSO, to forecast fuzzy time
eries pertaining to COVID-19 data. We have strived to optimize
he number of partitions and partition intervals in UOD along
ith the fuzzy order. We have used two nested loops in both
he approaches to optimize the aforementioned parameters. In
ested FTS-PSO, the inner PSO optimizes the combination of fuzzy
rder and partition intervals for a given number of partitions
efined by the outer loop, and the resultant cost is fed back
o the outer PSO; (ii) the outer PSO optimizes the number of
artitions to reduce the cost while meeting the defined con-
traint. Exhaustive search FTS-PSO also has two loops where
he inner loop is similar to nested FTS-PSO, while the outer
oop iterates over a search space of the number of partitions,
nd stores the result having minimum cost. The approaches find
ptimum combination of number of partitions, length of partition
ntervals in the UOD, and the fuzzy order. We have adopted
OVID-19 affected 10 countries viz. France, Germany, India, Iran,

taly, Russia, Spain, Turkey, UK and the US for our study. The

2

adopted countries are highly affected in the world which has
motivated us to choose these countries for the COVID-19 pre-
dictions. We have considered two timelines of COVID-19 spread
for our prediction analysis. In first phase i.e. during year 2020,
there was lack of knowledge and lack of containment solutions
for the pandemic. In second phase i.e. during year 2021, suffi-
cient information are available, and even vaccination also started
against the disease in most of the countries. In the first phase,
some of the countries have faced first and second wave of the
COVID-19, whereas in the second phase, some of the countries
are facing a second or third wave, or are yet to face if not taken
effective measures. So, we decided to consider two timelines for
separate analysis; one for the starting phase, and other for the
evolved phase. We compare the proposed forecasting approaches
with FTS forecasting model [13], FTS-PSO [19], FbProphet [29],
and ARIMA [30] using day-level confirmed cases of COVID-19 for
both the timelines. Exhaustive search FTS-PSO outperformed all
the compared methods on all the adopted datasets. Nested FTS-
PSO performed moderately well among the compared methods.
The proposed techniques provide an optimum combination of
hyperparameters, improved forecasting accuracy, and analytical
base for FTS forecasting of the COVID-19 spread.

We have organized our paper as follows. Literature review
is presented in Section 2. Fuzzy time series model is described
in Section 3. Steps of FTS forecasting are provided in Section 4.
PSO algorithm is described in Section 5. The proposed nested and
exhaustive search FTS-PSO models are presented in Section 6.
Experimental results and discussion are provided in Section 7.
Finally, conclusions are derived in Section 8.

2. Literature review

A variety of FTS forecasting models have been proposed in
the literature incorporating various features. Past twenty five
years of publications related to FTS forecasting, from 1993 to
2018, have been reviewed in [15]. The authors have reviewed
the existing studies by classifying the stages of FTS forecasting
viz. (1) Defining UOD, (2) Partition of UOD, (3) Fuzzification, (4)
Establishing FLRs, and (5) Defuzzification if required, into two
major phases: (a) Data partitioning, (b) Prediction Phase. The
authors have discussed data partitioning techniques by classifying
them into a tree-level hierarchy having clustering algorithms and
optimization techniques at leaf level. Yolca and Alpaslan [31] have
proposed a hybrid FTS model based on synchronous evaluation
of three steps of FTS forecasting. In the proposed solution, fuzzy
C-means (FCM) clustering, single multiplicative neuron model
(SMNM), and PSO are utilized in the FTS forecasting of TAIEX.
FCM is used for fuzzification, SMNM to determine fuzzy rela-
tions, and PSO to perform the training process. In yet another
study [32], a stock price forecasting framework using FTS has
been presented. The authors have used an automatic clustering
algorithm to define different length intervals in UOD, and an
autoregressive model to determine variations in forecasted data.
The framework is evaluated using TAIEX forecasting. Pattanayak
et al. [33] have proposed a FTS forecasting model in which FCM
is used to determine non-uniform length of intervals, SVM to
determine FLRs, and autocorrelation and partial autocorrelation
functions to determine the order of the model. Accuracy of the
model has been evaluated on ten different time series data of
TAIEX, and forecasting results have been compared with exist-
ing related studies. Panigrahi and Behera [18] have addressed
two key issues in high order FTS forecasting: finding the opti-
mum length of intervals in UOD and modeling FLRs. A modified
average-based method is used to find the optimum length of
intervals, and machine learning techniques, namely long short-
term memory (LSTM), deep belief network (DBN), and SVM are
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sed for modeling the FLRs. Real-time data forecasting was car-
ied out by Nannan and Chao [26] using fuzzy cognitive map
cheme. A set of information granules was used to construct the
uzzy cognitive map dynamically, where PSO is utilized to find
he optimal weights of parameters, and FCM algorithm is used to
djust the cluster center according to the incoming data in real-
ime. Tinh [19] has proposed FTS and PSO combined model to
orecast confirmed cases of coronavirus in Vietnam. The author
as shown that the best performance of the FTS-PSO model is
btained with 16 partitions and 5th - order FTS for one month
OVID-19 dataset from March 4, 2020 to April 7, 2020. Susan
t al. [34] have proposed a single gaussian mixture based cy-
lone frame prediction using recent three penultimate timelapse
rames. The authors have claimed that recent frames give a mean-
ngful insight into the predictions for the next frame that make
he process faster and more accurate. Alyousifi et al. [27] have
roposed Markov weighted FTS model to forecast air pollution in
lang city of Malaysia. They used five types of partitioning meth-
ds; Grid partition, Huarng method, Entropy method, CMeans
ethod, and FCMmethod, via two stages. In a previous work [35],
hich is the precursor of the current work, the authors compared
RIMA [30] and FbProphet [29] models for COVID-19 forecasting.
he ARIMA model was found to outperform the FbProphet model
or day-level COVID-19 cases prediction. Zheng et al. [28] have
mproved susceptible infected (ISI) model using hybrid approach
o predict COVID-19 cases in China. They have embedded the
ong short-term memory (LSTM) network and the natural lan-
uage processing (NLP) module into the ISI model to estimate the
oronavirus development trend and infection rate. The authors
ave claimed that considering the control measures, increase of
ublic awareness, and effects of prevention, the proposed model
an significantly improve the prediction results as compared to
he traditional epidemic models. The studies have shown new
irections to optimize predictions and FTS forecasting techniques.

. Fuzzy time series model

Conventional time series is represented by real numbers
hereas FTS is represented by fuzzy sets. The concept of FTS and

uzzy sets are described in [10,11] and [36] respectively. Let the
niverse of discourse be U = {u1, u2, . . . , un}, and a fuzzy set A
efined on U is given by

= fA(u1)/u1 + fA(u2)/u2 + · · · + fA(un)/un (1)

where fA is the membership function (MF) of A, fA : U → [0, 1],
fA(ui) denotes the membership degree of element ui in the fuzzy
set A for 1 ≤ i ≤ n.

Let Y (t), (t = · · · , 0, 1, 2, . . .), be a subset of R, be the UOD
on which fuzzy sets fi(t)(i = 1, 2, . . .) are defined, and let F (t)
consist of f1(t), f2(t), . . .. Then, F (t) is called a fuzzy time series
defined on Y (t). Here, F (t) is viewed as a linguistic variable and
fi(t) represents possible linguistic values of F (t).

If there exists a relation between F (t) and F (t − 1) as follows:
F (t − 1) → F (t) then, F (t) is called derived from F (t − 1).

If maximum degree of membership of F (t−1) belongs to fuzzy
set Ai and F (t) belongs to fuzzy set Aj, then the fuzzy logical
relationship (FLR) between F (t − 1) and F (t) can be represented
as Ai → Aj; where Ai and Aj are called current state and next
state of the FLR respectively, and it is a first order FLR. Similarly,
if F (t−m), . . . , F (t−2), F (t−1) → F (t), then the FLR is called m-
order. FLRs with the same left-hand side can be grouped together
and are called as fuzzy logical relationship group (FLRG).
3

4. FTS forecasting steps

We study the FTS forecasting steps as described in the arti-
cle [13]. The step-wise explanation about the FTS forecasting is
given below.

Step 1: Defining UOD.
Assume Y (t) is the given historical time series dataset. Let

Dmin and Dmax be the minimum and the maximum value of Y (t),
respectively. Then, we can define the universe of discourse U as
[Dmin − D1,Dmax + D2]; where, we kept value of D1 and D2 as
proper positive of 0.1×Dmin and 0.1×Dmax of Y (t), respectively.

Step 2: Partitioning of UOD.
In this step, U is divided into equal length intervals. Let U

be divided into n equal intervals denoted by u1, u2, . . . , un. The
intervals are defined as follows:

ui = (Umin + (i − 1) ∗ L,Umin + i ∗ L] (2)

where (1 ≤ i ≤ n), and the length of each interval is L =

(Umax − Umin)/n

Step 3: Defining fuzzy sets
Each interval identified in Step 2 is defined by a linguistic

variable to represent different regions in the UOD. There will be
n linguistic variables for n intervals. A fuzzy set Ai is defined on
each linguistic variable a shown below.

Ai =
ai1
u1

+
ai2
u2

+ · · · +
ain
un

(3)

aij =

⎧⎨⎩
1 j = i
0.5 j = i − 1 or j = i + 1
0 otherwise

(4)

where aij ∈ [0, 1], and (1 ≤ i ≤ n, 1 ≤ j ≤ n), the ‘+’
symbol denotes the set union operator, aij indicates the grade of
membership of uj in the fuzzy set Ai. Membership values of fuzzy
set Ai are selected according to Eq. (4).

Step 4: Fuzzification.
In this step, each historical data is mapped to an interval

which is denoted by a linguistic value. The basic rule to assign a
linguistic value with respect to the corresponding fuzzy set is that
each interval belongs to the highest grade of membership. Con-
sider, Y (t) is actual time series and F (t) is the fuzzy time series
corresponding to Y (t). If we follow the maximum membership
rule then the fuzzy set A1 has the highest grade of membership
in the interval u1.

Step 5: m-order fuzzy relationships and grouping.
Using definitions from Section 3, a relationship is established

such that the F (t − m), . . . , F (t − 2), F (t − 1) → F (t), then it
is called m-order fuzzy logical relationship (FLR), where F (t −

m), . . . , F (t − 2), F (t − 1) is called the current state and F (t) is
called the next state. In relationships, right hand side is unique
i.e. a linguistic value cannot appear more than once on right
hand side. The relationships having the same current state can
be put together and a group is formed called the fuzzy logical
relationship group (FLRG).

Step 6: Defuzzification.
In this step, forecasted values are calculated using FLRGs. We

have followed the defuzzification process using the rules defined
in the article [13]. The principles are as follows.

(i) If there is only one fuzzy relation in FLRGs, between fuzzy
sets Ai and Ar such as Ai → Ar , where maximum member-
ship of Ar belongs to interval ur , and midpoint of ur is mr ,
then the forecasted value is m .
r
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(ii) If there are more fuzzy relations in FLRGs such as Ai → Ar1,
Ai → Ar2, . . . , Ai → Arp, where maximum membership of
Ar1, Ar2, . . . , Arp belong to intervals ur1, ur2, . . . , urp respec-
tively, and midpoints of the intervals are mr1, mr2, . . . , mrp,
then the forecasted value is mr1+mr2+···+mrp

p .
(iii) If there is no fuzzy relation in FLRGs which is defined as

Ai → #, where maximum degree of membership of Ai
belongs to ui, and midpoint of ui is mi, then the forecasted
value is mi.

5. PSO algorithm

Particle swarm optimization (PSO) has been used for opti-
mizing the parameters of various learning models in the past.
PSO is a population-based evolutionary algorithm proposed by
Kennedy and Eberhart [21,37]. It is based on fish schooling or
bird flocking pattern which can search optimal or nearly optimal
solution of any kind of complex problems without getting trapped
into local minima. In PSO, a swarm of particles swims through
n-dimensional search space of an optimization problem, where
each particle denotes a potential solution. The position of kth(k =

, 2, . . . , P) particle can be represented by Xk = [x1k, x
2
k, . . . , x

n
k]

and velocity by Vk = [v1
k , v

2
k , . . . , v

n
k ]. P represents the number

of particles in the swarm. Each particle moves from its current
position through the search space in search of optimal solution.
Each particle keeps the personal best position Pbest_k which has
been recorded so far. Position of the best particle in the swarm of
all the particles is recorded as global best position Pgbest . Initially,
ll particles are initialized with random values of position in the
earch space. Personal best Pbest_k of kth particle and global best
article Pgbest are updated till the pre-defined maximum iteration

(tmax) is reached. Velocity and position of kth particle is updated
sing the following equations.

t+1
k = wt

∗V t
k +C1∗Rand()∗(Pbest_k−X t

k)+C2∗Rand()∗(Pgbest−X t
k)

(5)

X t+1
k = X t

k + V t+1
k (6)

wt
= wmax −

t ∗ (wmax − wmin)
tmax

(7)

where wmax and wmin are pre-defined inertia weight values. wt is
the inertia weight in the tth iteration and tmax is the maximum
iteration count. V t

k and X t
k are the current velocity and current

position respectively of a particle k in tth iteration. V t
k is restricted

to the pre-defined range [−Vmax, Vmax]. C1 and C2 are cognitive
and social coefficients, respectively, which are also known as
acceleration coefficients. Rand() is a function which randomly
generates a value in the range [0,1] under uniform distribution.
X t
k is restricted within UOD range [Umin,Umax]. Each particle

position is initialized using Eq. (8).

x = Umin + Rand() × (Umax − Umin) (8)

where Umin is lower bound and Umax is upper bounds of the
universe of discourse U.

6. Proposed method

In the FTS-PSO model [19,22], PSO is used in the training
phase to optimize forecasting rules and parameters. Once all
the optimized rules and parameters are identified in the test-
ing phase, we can use the model to forecast the data. In [22],
partition intervals for given number of partitions are optimized
using the PSO algorithm in the training phase. In [19] PSO is
4

used to optimize the length of partition intervals for various pre-
defined fuzzy orders. The use of PSO significantly improves the
FTS forecasting accuracy. In our proposed work, we introduce a
modified FTS-PSO algorithm, in which we optimize the number
of intervals in addition to the interval length and the fuzzy order.
We present two ways of optimizing the FTS hyperparameters,
called nested FTS-PSO and exhaustive search FTS-PSO that are
described as two separate algorithms in Sections 6.1 and 6.2,
respectively. Steps of proposed modifications of FTS-PSO have
been presented in Algorithms 1 and 2.

Algorithm 1 : Nested FTS-PSO
1: initialize random number of partitions n from [nmin, nmax] and

velocity of all particles’ of outer PSO which is denoted as
PSO-1.

2: while the maximum iterations of PSO-1 is not reached do
3: for particle q, (1 ≤ q ≤ maxParticlesOfOuterPSO) do
4: set number of partitions equal to n which is passed by

PSO-1, and initialize position and velocity of all particles’
of inner PSO which is denoted as PSO-2.

5: sort particles’ position vector into ascending order.
6: while the maximum iterations of PSO-2 is not reached

do
7: for particle k, (1 ≤ k ≤ maxParticlesOfInnerPSO) do
8: create intervals by using current position of particle

k
9: define linguistic values according to all intervals

10: fuzzify time series data by Step 4 in Section 4
11: for fuzzy-order m, (1 ≤ m ≤ maxFuzzyOrder) do
12: create m order fuzzy relationships and groups by

Step 5 in Section 4
13: calculate forecasting values by Step 6 in Section 4
14: calculate the MSE for fuzzy order m for the particle

k based on Eq. (9)
15: end for
16: update the personal best mbest_k fuzzy order and

Pbest_k position of particle k according to the calcu-
lated MSE for PSO-2.

17: end for
18: update the global best mgbest order and Pgbest position

among all the particles according to the calculated
MSEgbest for PSO-2.

19: update PSO-2 inertia weight wpso2 according to Eq. (7)
20: for particle k, (1 ≤ k ≤ maxParticlesOfInnerPSO) do
21: update particle k position according to Eqs. (5) and

(6)
22: limit particle k position using Eq. (8).
23: end for
24: end while
25: return global best combination (mgbest ,MSEgbest , Pgbest ) to

PSO-1
26: update the personal best nbest_q number of partitions of

particle q in PSO-1 according to the received MSE from
PSO-2.

7: end for
8: update the global best ngbest number of partitions among all

the particles in PSO-1.
9: update PSO-1 inertia weight wpso1 according to Eq. (7)
0: for particle q, (1 ≤ q ≤ maxParticlesOfOuterPSO) do
1: update particle q number of partitions according to Eqs.

(5) and (6)
2: limit number of partitions n for a particle q within [nmin,

nmax] using Eq. (8).
3: end for
4: end while
5: return global best combination (ngbest , mgbest , Pgbest )

6.1. Nested FTS-PSO

PSO algorithm finds optimum interval lengths in UOD for a
given number of partitions [19,22]. In FTS forecasting problems,
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e may need to determine the optimum number of partitions
lso, along with the optimum length of partitions, to generate
etter forecasting results. Length of partitions and the number of
artitions are dependent variables in a FTS forecasting problem.
n such a scenario, we can use nested operations to optimize
he dependent variables. We can say that finding an optimum
ombination of number of partitions, length of partitions, and
uzzy-order is an integrated optimization problem. One solution
e propose for the integrated optimization is nested FTS-PSO.
his approach has two PSO loops: (i) the inner PSO optimizes
he combination of fuzzy order and partition-intervals for a given
umber of partitions determined by the outer loop, and the
esultant cost will be fed back to the outer PSO; (ii) the outer
SO optimizes the number of partitions to reduce the cost while
eeting the defined constraint. All steps of nested PSO are pre-
ented in Algorithm 1. To find the optimum FTS hyperparameter
sing Algorithm 1, parameters of outer PSO are initialized along
ith the random number of partitions within a given range,
s mentioned in the step-1 of the algorithm. The step-2 is the
teration loop for outer PSO. Outer PSO is responsible to optimize
he number of partitions.

Algorithm 2 : Exhaustive search FTS-PSO
1: initialize search space of number of partitions [nmin, nmin +

1, ..., nmax]
2: for partitions n, (nmin ≤ n ≤ nmax) do
3: initialize all particles’ positions Xk, velocity Vk, and PSO

parameters
4: sort particles’ position vector into ascending order.
5: while the maximum iterations is not reached do
6: for particle k, (1 ≤ k ≤ maxParticles) do
7: create intervals of UOD by using particle current

position
8: define linguistic values for the intervals
9: fuzzify time series data by Step 4 in Section 4

10: for fuzzy-order m, (1 ≤ m ≤ maxFuzzyOrder) do
11: create m-order fuzzy relationships and grouping by

Step 5 in Section 4
12: calculate forecasting values by Step 6 in Section 4
13: calculate the MSE for fuzzy order m for the particle k

based on Eq. (9)
14: end for
15: update the personal best Pbest_k position and mbest_k

fuzzy order of particle k according to the calculated
MSE.

16: end for
17: update the global best mgbest fuzzy order, and Pgbest po-

sition among all the particles according to the calculated
MSE.

18: update inertia weight w according to Eq. (7)
19: for particle k, (1 ≤ k ≤ maxParticles) do
20: update particle k position according to Eqs. (5) and (6)
21: end for
22: end while
23: update global best ngbest number of partitions
24: end for
25: return global best combination (ngbest , mgbest , Pgbest )

Step-3 is the loop to iterate the number of particles. The value
f the number of partitions is passed to the inner PSO. UOD
s randomly divided into unequal intervals using the received
umber of partitions as given in step-4. Inner PSO optimizes the
ength of the partition intervals using Eq. (6) in each iteration,
nd for each particle, as shown in steps 6 and 7. FTS forecasting
teps are followed from step-8 to step-14 to find the optimum
ombination of partition intervals and the fuzzy order. Optimum
esult from the inner PSO in the form of best intervals, best fuzzy
rder, and best MSE is fed back to the outer PSO. The outer PSO
pdates the value of number of partitions according to Eq. (6)
5

based on received MSE. The steps are repeated as long as the
maximum iterations are not reached. Final result is produced as
the optimum value of number of partitions, length of partition
intervals, and fuzzy-order. Due to use of nested loops, the time
complexity of the proposed FTS-PSO increases non-linearly [38].
But, to analyse all the parameters in a single run, we can use
nested loops with optimum range of the loop parameters to
reduce the time complexity. We have proposed a new variant
of the nested FTS-PSO called exhaustive search FTS-PSO having
lesser time complexity.

6.2. Exhaustive search FTS-PSO

We have proposed another approach called exhaustive search
FTS-PSO to find the optimum combination of the three hyper-
parameters of FTS as mentioned in Section 6.1. This approach
also has two loops where the inner loop is similar to nested
FTS-PSO whereas the outer loop iterates over a search space of
given number of partitions, and stores the optimum result among
all iterations. The approach is more efficient in term of time
complexity as compared to nested FTS-PSO because it iterates
over a fixed search space instead of a swarm of particles trying all
ranges in nested FTS-PSO. We have provided an estimate of the
time complexity of the proposed algorithms in the results section.
All the steps of the exhaustive search FTS-PSO is presented in
Algorithm 2.

In steps 1 and 2 of Algorithm 2, search space of the number
of partitions is initialized, and iterations are defined to find the
optimum value. For each value of partitions, PSO is used to find
the optimum value of length of partition intervals and the fuzzy
order, using the defined number of iterations and number of
particles as given in steps 5 and 6 of the algorithm. In an iteration,
each particle position is updated using Eq. (6), and FTS forecasting
on the training data is performed using the steps from 7 to 11.
Best result from the PSO is recorded in each iteration over the
search space of the number of partitions. Final optimum result is
generated as the optimum value of number of partitions, length
of partition intervals, and fuzzy-order.

7. Experimental setup and evaluation

We have used Python 3.8 to implement the proposed ap-
proaches. We have run our experiments in Intel Core i5 pro-
cessor clocked at 2.40 GHz, 8 GB RAM, and 4 GB NVIDIA GTX-
1650 GPU. Evaluated datasets, performance measures, experi-
mented parameters, and results are described in the following
sub-sections.

7.1. Datasets

In our study, we have adopted 10 countries viz. France, Ger-
many, India, Iran, Italy, Russia, Spain, Turkey, UK, and the US
for COVID-19 confirmed cases predictions. The adopted countries
are the top most affected countries by COVID-19 in the world.
We have performed prediction of COVID-19 data in two phases;
(i) COVID-19 phase-1 (starting phase), (ii) COVID-19 phase-2
(evolved phase). In the first phase, we have used cumulative day-
level infected cases of COVID-19 of each country from April 1,
2020 to October 30, 2020. In the second phase, we have used
cumulative day-level infected cases of COVID-19 of India and the
US from Jan 1, 2021 to May 15, 2021 for COVID-19 predictions
because these two countries are highly affected in the second
phase. We have taken COVID-19 datasets from GitHub reposi-
tory [39] which is maintained by the Center for Systems Science
and Engineering (CSSE), USA.
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Table 1
FTS prediction accuracy with increasing number of partitions for the US data.

FTS Partitions in UOD 46 47 48 49 50 51 52 53 54 55

MSE (×106) 23.476 24.330 23.108 21.903 21.964 23.143 22.007 21.973 22.889 22.005
Table 2
FTS accuracy pattern with increasing number of partitions in the UOD.

FTS Fuzzy order 1 2 3 4 5

MSE (×106) 21.964 5.028 1.273 0.351 0.299

7.2. Performance measures

We have used the statistical measures; the Mean Square Error
MSE) in training phase and Mean Absolute Percentage Error
MAPE) in testing phase to evaluate the forecasting accuracy of
he experimented approaches. MSE and MAPE are defined as
ollows.

SE =
1
N

N∑
i=1

(zi − ẑ i)2 (9)

APE =
100
N

N∑
i=1

⏐⏐⏐⏐ zi − ẑ i
zi

⏐⏐⏐⏐ (10)

here zi and ẑ i denote actual and predicted value, respectively,
or the ith instance, and N is the size of the testing set.

.3. Experimental setup

Accuracy of FTS forecasting highly depends on the identifi-
ation of optimum value of hyperparameters. We have experi-
ented with various ranges of the number of partitions, length
f the partition intervals, and fuzzy orders. Our experiment with
arying the number of partitions in the UOD is shown in Table 1.
e have shown MSE values of predictions with the number of
artitions ranging from 46 to 55 at first order FTS of COVID-19
onfirmed case of the US, during the first phase. We can observe
hat improvement in FTS prediction accuracy is obtained with
luctuations. So, determining an optimum value of the number
f partitions is a gray area to explore. We can apply optimization
lgorithms like PSO to find the optimum value of the number of
artitions in the UOD.
Secondly, we have experimented with high order FTS fore-

asting of day-level COVID-19 confirmed cases of the US during
hase-1. Prediction accuracy results, denoted by MSE with the
umber of partitions set to 50 and fuzzy order ranging from 1
o 5, are shown in Table 2. We adopted range of fuzzy orders
rom [14] in our experiments. We can observe that prediction
ccuracy is improving with the increasing fuzzy order of the FTS
f the US data, similar to the findings in the study [19].
Next, we have experimented with combination of the number

f partitions and fuzzy orders of FTS using infected cases of phase-
of COVID-19 in the US. We use PSO algorithm to optimize

he length of the partition intervals in the UOD. The prediction
ccuracy results, in terms of MSE, for different combinations are
hown in Table 3. We can observe from the results of FTS-PSO
odel that forecasting accuracy initially increases with increasing
umber of partitions and starts fluctuating after some point, and a
imilar trend is observed with increasing fuzzy orders. So, a best
ombination can be found somewhere within the given ranges.
n case of FTS-PSO model, we can observe that FTS forecasting
ccuracy has improved due to use of PSO for interval length
ptimization.
From the experimental analysis, we can conclude that op-
imum values of the hyperparameters can be determined by

6

Table 3
Prediction accuracy with number of partitions and fuzzy order.
Approach UOD partitions Fuzzy order (MSE×106)

1 2 3 4 5

FTS-PSO

46 18.680 4.956 0.637 0.511 0.270
47 18.688 3.831 0.573 0.321 0.382
48 18.393 4.976 0.700 0.339 0.328
49 20.744 3.833 1.140 0.294 0.366
50 20.996 3.423 0.443 0.392 0.285
51 19.322 3.907 0.800 0.326 0.334
52 19.555 3.130 0.677 0.278 0.287
53 18.746 5.442 0.481 0.283 0.263
54 18.221 3.592 0.454 0.318 0.246
55 17.745 4.333 0.567 0.394 0.249

Table 4
Parameter values used in the experimentation.
Method Parameter Value

FTS
Number of partitions (COVID-19
phase-1)

{30, 35, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90}

Number of partitions (COVID-19
phase-2)

{20, 25, 30, 35, 40, 45,
50, 55, 60}

Fuzzy order range {1, 2, 3, 4, 5}

PSO

Number of particles 30

Maximum number of iterations 50

Inertia weight [wmin, wmax] [0.4, 0.9]

C1, C2 2

experimenting with various values and using optimization tech-
niques. But finding all the hyperparameters in an integrated way
is a challenging and time-consuming task. We can say that it is
an integrated optimization problem. In this study, we present the
nested and exhaustive techniques to optimize the FTS hyperpa-
rameters.

We have used COVID-19 confirmed cases datasets to evaluate
the performance of the proposed and comparison techniques.
The COVID-19 dataset is different from other existing time series
datasets because it has a continuously increasing pattern for the
time period we have selected for our study. Training and testing
accuracy of the presented approaches is estimated using MSE (9)
and MAPE (10) functions, respectively. We have experimented
with the number of partitions of UOD ranging from 30 to 90 in
phase-1 and from 20 to 60 in phase-2, and fuzzy-order ranging
from 1 to 5 for FTS as shown in Table 4. We selected the range
of the number of UOD partitions in such a way that its maximum
value shall be less than half of the data points in UOD. We have
experimented with the PSO parameters as shown in Table 4 for
FTS-PSO, nested FTS-PSO and exhaustive search FTS-PSO.

We have adopted optimum values of PSO parameters from
literature studies, and per experiments in [19]. Selection of max-
imum count of iterations in our experiments is finalized after
analyzing various MSE convergence patterns with respect to iter-
ation counts. Convergence graph of accuracy (MSE) with iteration
counts for training data of confirmed cases of the US is shown
in Fig. 1. We can observe that accuracy is improving with the
increasing number of iteration counts. MSE value converges, in
this example, to an acceptable low value at iteration count 50.
We observed the same MSE convergence pattern in most of the
experiments with other datasets.

Further, we have analyzed the time complexity of the pro-

posed techniques. As we have used nested loops to optimize all
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Fig. 1. Prediction accuracy (MSE) convergence with iteration counts for the US COVID-19 confirmed cases.
able 5
un time analysis of the proposed approaches.
Approach Single run

time (A)
Outer loop
iterations (B)

Inner loop
iterations (C)

Total time
(A x B x C)

Nested FTS-PSO 37.869 ms 50 50 94.673 s
Exhaustive FTS-PSO 37.869 ms 13 50 24.615 s

the hyperparameters in a single run which increases the time
complexity non-linearly [38]. We have recorded run time of the
techniques on a computing system having specifications as men-
tioned in the Section 7. We have recorded run time using number
of partitions as 50, fuzzy order 1 to 5, and number of particles as
1 for phase-1 COVID-19 data of the US. We estimate the overall
time based on the number of iteration used in the outer loop and
the inner loop of the approaches as shown in Table 5. We can
see that run time of exhaustive search FTS-PSO is very less due
to lesser number of iterations in the outer loop. Predictions and
comparative analysis of the study is presented in the next section.

7.4. Results and discussions

We evaluate prediction approaches viz. FbProphet [29], ARIMA
30], FTS [13], FTS-PSO [22], nested FTS-PSO, and exhaustive
earch FTS-PSO using both the timelines 7.1 of COVID-19. We
how prediction results of COVID-19 day-level cumulative con-
irmed cases of the 10 adopted countries using the best of pre-
ented approaches. We split the datasets into training and testing
amples such that the last 20 and 15 samples are used as test-
ng samples for phase-1 and phase-2 of COVID-19 timelines,
espectively. We evaluate the forecasting accuracy as per the
rend followed in [28,40,41]. We have executed 10 runs of each
xperiment, and the best result of runs is taken as the final result.

.4.1. Prediction results of COVID-19 for phase-1 (Starting phase)
In this section, we have shown prediction results for COVID-

9 timeline from starting of April 2020 to end of October 2020
hat we call as phase-1. The prediction results are generated using
OVID-19 confirmed cases of the 10 adopted countries as shown
n Table 6. The results are achieved for the partitions range and
uzzy order range mentioned in Table 4 for COVID-19 phase-1.
he prediction accuracy for the test set is estimated using MAPE
10) function for all the compared models. One purpose of this
omparison is to evaluate the presented approaches on different
atasets.
In Table 6, the forecasting results from FbProhet is gener-

ted using daily seasonality. FbProphet has performed worst
mong the compared models. There are three major parameters
f ARIMA(P, D, Q) model viz. order of auto regressive (P), order
f differencing (D), and order of moving average (Q). Best per-
ormed (P, D, Q) parameters and respective prediction accuracy
MAPE) of ARIMA are shown in Table 6 for each country. It has

erformed better than FbProphet, which is in agreement with

7

Table 6
Best Performance of the methods for COVID-19 confirmed cases in adopted
countries.
Country Optimal hyperparameters for all methods and MAPE

FbProphet ARIMA FTS FTS-PSO Nested
FTS-PSO

Exhaustive
FTS-PSO

(P, D, Q) (N, O) (N, O) (N, O) (N, O)

France (5, 1, 1) (85, 4) (80, 3) (90, 5) (70, 5)
18.833 0.766 0.049970 0.045644 0.047976 0.033117

Germany (4, 1, 1) (80, 4) (85, 5) (90, 4) (70, 5)
17.195 0.868 0.028425 0.016065 0.020281 0.014956

India (4, 1, 1) (85, 3) (90, 2) (90, 5) (90, 5)
5.162 0.315 0.005724 0.003991 0.003837 0.003050

Iran (3, 1, 1) (70, 3) (80, 5) (90, 5) (85, 5)
5.164 0.025 0.004722 0.004520 0.004662 0.004417

Italy (4, 1, 1) (60, 5) (90, 4) (89, 5) (75, 5)
22.589 0.877 0.025832 0.022416 0.024141 0.021285

Russia (5, 1, 1) (55, 2) (90, 4) (90, 5) (65, 5)
8.389 0.778 0.003989 0.003450 0.003731 0.003314

Spain (3, 1, 1) (90, 5) (55, 4) (90, 5) (80, 5)
3.407 0.173 0.009503 0.008251 0.007637 0.006277

Turkey (5, 1, 1) (75, 5) (80, 3) (90, 5) (75, 5)
0.631 0.043 0.005271 0.004107 0.008281 0.003275

UK (5, 1, 1) (85, 3) (90, 4) (90, 5) (90, 5)
26.075 0.128 0.006306 0.005590 0.005791 0.005188

US (5, 1, 1) (50, 5) (75, 2) (90, 4) (85, 5)
3.236 0.213 0.003933 0.003726 0.003891 0.002699

the conclusions in our previous work [35]. There are two major
parameters to be initialized in FTS forecasting viz. number of
partitions (N) and fuzzy-order (O). Best performing pair of (N,
O) which has yielded the best accuracy (MAPE) is shown in the
table for FTS, FTS-PSO, nested FTS-PSO, and exhaustive search
FTS-PSO. Optimization of the length of intervals for each pair is
performed using PSO in case of FTS-PSO and purposed techniques.
Effect of PSO can be seen by comparing the results of FTS and
FTS-PSO in Table 6. Accuracy has been improved significantly
by using PSO with FTS. We can see that nested FTS-PSO has
performed moderately well as compared to other approaches.
We observe that it was subject to overfitting during the training
phase. The approach consistently followed the same pattern for
all the datasets. A stop condition is required before actual predic-
tions in case of nested FTS-PSO. However the approach is able to
generate competitive results. We can see that exhaustive search
FTS-PSO has outperformed all the compared approaches in case
of all the adopted countries. It is able to adopt the scenarios and
generate the best forecasting results.

We have shown forecasting results of all the approaches on the
US dataset of phase-1 in Fig. 2. Training of the data is shown using
line plot and forecasting result is depicted with shaded area of
one percentage variation of the results. We can see that all mod-

els are well fitted during training period but forecasting results
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Fig. 2. Forecasting of COVID-19 confirmed cases of US for Phase-1.
able 7
rediction accuracy of the approaches for phase-2 timeline of COVID-19.
Country Optimal hyperparameters for all methods and MAPE

Prophet ARIMA FTS FTS-PSO Nested
FTS-PSO

Exhaustive
FTS-PSO

(P, D, Q) (N, O) (N, O) (N, O) (N, O)

India (0, 1, 1) (60, 4) (60, 2) (60, 5) (50, 5)
7.411 0.560 0.009233 0.008289 0.008137 0.005865

US (5, 1, 1) (50, 3) (60, 4) (60, 5) (60, 5)
0.698 0.022 0.003580 0.002961 0.003192 0.002410

have minor variations, and measured performance in numbers is
shown in Table 6 for better visualization.

7.4.2. Prediction results of COVID-19 for phase-2 (Evolved phase)
Most of the countries have faced or are facing the second

r third wave of COVID-19. So, we have preformed comparative
rediction analysis of the adopted and proposed approaches on
he latest data. In this prediction analysis, we have considered
nly India and the US because these countries were impacted
ost in the phase-2 timeline. We have shown the prediction
ccuracy results of all the approaches in Table 7 for both the
ountries. From the table, we can see that again exhaustive search
TS-PSO outperformed all the approaches on phase-2 timeline
ata of COVID-19. The pattern of performance is similar to the
esults in Table 6.

Further, we have depicted the performance of all the ap-
roaches on phase-2 timeline COVID-19 data of the US in Fig. 3.
e can visualize the forecasting results of all the approaches
8

in the figure. The approaches have followed the same pattern
of results on the phase-2 timeline data as shown for phase-1
timeline data of the US.

8. Conclusion

Hyperparameters of FTS forecasting model are the number of
partitions in UOD, partition intervals, and fuzzy order. Prediction
accuracy of any FTS forecasting model depends on the tuning of
its hyperparameters. In the literature, existing approaches have
provided solutions for FTS forecasting problems by optimizing
the interval lengths and the fuzzy order, but set the number
of intervals to a pre-determined value. In this paper, we have
tried to optimize the above-mentioned three hyperparameters
using PSO algorithm. We have proposed nested FTS-PSO, and ex-
haustive search FTS-PSO models for fuzzy time series forecasting
that determine the number of partitions, the length of partition
intervals, and the fuzzy order. We have adopted COVID-19 dataset
of confirmed cases in highly affected 10 countries. We have com-
pared the performance of our models with the ARIMA, FbProphet,
conventional FTS and FTS-PSO models. We have presented pre-
diction results of all the approaches on two timelines i.e. starting
and evolved phases of COVID-19. The proposed approaches are
able to find out the optimum combination of hyperparameters.
The proposed exhaustive search FTS-PSO has outperformed all
the compared approaches on the both the timelines data. We
can further improve the analysis of COVID-19 predictions by
incorporating lockdown effects and government policies.
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