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Abstract: Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2, 
PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The N-
terminal region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The 
serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to 
other members of the PKC superfamily. 

In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal 
organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as 
amyotrophic lateral sclerosis and Alzheimer’s disease. We have recently identified a candidate role of PKN1 in the 
regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was 
significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal 
cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actin-
associated cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1 
deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes.  

This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in 
hypoxia. 
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INTRODUCTION  

 Protein kinase C-related kinase 1 (PKN1/PRK1) belongs 
to the protein kinase C (PKC)-related kinase family (PKN/ 
PRK), a recently discovered subfamily of the AGC serine/ 
threonine protein kinases [1-3]. PKNs are widely distributed 
in eukaryotic organisms, such as starfish, amphibians, insects 
and mammals [4, 5]. To date three different PKN isoforms 
have been described: PKN1 (PKN alpha/PRK1/PAK-1), 
PKN2 (PKN gamma/PRK2/PAK-2) and PKN3 (PKN 
beta/PRK3) [1, 6, 7]. Although PKN isoforms are intimately 
related they may not substitute for one another, consistent 
with the isoform-specific effects and varying tissue expression 
levels, as reviewed: [8]. The expression of PKN1 in human 
and rat tissue [6, 9, 10] and PKN2 in mouse tissue [11] is 
rather ubiquitous. However, PKN3 expression is more 
restricted to specific tissues including skeletal muscle, heart, 
liver [12] and human cancer cell lines [7]. In neurons PKN1 
is the most abundant isoform and has been implicated in a 
variety of functions including cytoskeletal organization  
and neuronal differentiation [5, 13-17]. A role of PKN1 in 
amyotrophic lateral sclerosis (ALS) [18, 19] and in Alzheimer’s 
disease [20, 21] has been implicated. Furthermore our own 
data suggested that PKN1 is a key-signaling element in  
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purine nucleoside- and nerve growth factor (NGF)-mediated 
protection of hypoxic neurons [22, 23].  

BASIC STRUCTURE OF PKNs 

 The PKN family members PKN1, PKN2, and PKN3 
share the same overall domain structure. The N-terminal 
region encompasses a conserved repeated domain, termed 
HR1a-c (for homology repeat, also known as ACC1-3) as 
well as a HR2/C2 domain. The latter one is related to the 
calcium-dependent membrane-targeting domain in PKC and 
contains a C-terminal auto-inhibitory region (IR) [24]. The 
serine/threonine kinase domain is found in the C-terminal 
region of the protein and shows high sequence homology to 
other members of the PKC superfamily [4, 5] (Fig. 1).  

REGULATION OF PKNs 

 The N-terminal region plays an important role in the 
regulation of PKNs, for reviews see: [8, 25, 26]. The HR1 
region is involved in the interaction with the small GTPases 
Rho and Rac [2, 4, 5, 25, 27-36]. Rho, binds to PKN and 
induces a conformational change that allows binding to 
phosphoinositide-dependent protein kinase 1(PDK1), which 
phosphorylates PKN in the activation loop and stimulates its 
protein kinase activity [5, 25, 37]. The HR2/C2-like domain, 
does not bind Ca2+ as expected, but is potentially involved in 
the activation of PKNs by lipids or the targeting of PKNs to 
the membrane [4, 5, 25, 38]. The C-terminal part of the C2- 
 



214    Current Neuropharmacology, 2014, Vol. 12, No. 3 Thauerer et al. 

like region functions as an arachidonic acid-sensitive auto-
inhibitory region (IR) [1, 24, 25, 39-42]. N-terminally 
truncated PKNs e.g. by caspase cleavage [18] apparently 
behave as constitutively-active isoforms [1, 6, 9, 25, 43-46]. 
In addition, PKNs were shown to be activated by various 
fatty acids and phospholipids in vitro, although the in vivo 
significance is as yet not fully characterized too [1, 6, 7, 9, 
43, 44, 47, 48].  

CELLULAR PKN UPSTREAM SIGNALS 

 The individual PKN isoforms have been linked to 
selective upstream signals [8] and signaling modules like 
neurotrophins [22, 23] and androgen receptors [49, 50] for 
PKN1, Platelet-derived growth factor (PDGF) and cell 
surface molecule CD44 for PKN2 [51] and insulin for PKN3 
[52], suggesting that each isoform is associated with 
different adaptor proteins [11, 53, 54]. PKNs are implicated 
in signal transduction as effectors of Rho, Rac, PI3K 
(phosphoinositide 3-kinase) and Rho-like Rho-kinase [51, 
52, 55-57] and all three PKN isoforms can support Rho-
dependent cell migration [8].  

GENERAL FUNCTION OF PKNs 

 As diverse as the distribution of the PKN family are its 
functions, which were recently reviewed [26], including 
regulation of cell cycle [58], receptor trafficking [59], vesicle 
transport [60] and apoptosis [61]. More than 20 proteins and 
several peptides were shown to be phosphorylated by PKN1 
and PKN2, including the cytoskeletal proteins α-actinin and 
vimentin, as reviewed [26]. Recently, the same authors also 
showed that CLIP-170 (cytoplasmic linker protein of 170 
kDa) and EGFR (epidermal growth factor receptor) are 
substrates for PKN1 and PKN3 [26]. Data by us [16] and 
others [60-63] link PKN1 to several stress induced pathways. 

 PKN2 is involved in actin cytoskeletal organization [31], 
mainly through activation by Rho GTPases [5]. PKN2 also 
plays a role alongside Fyn in controlling cell–cell adhesion 
in keratinocytes [64] and the maturation of apical junctions 
[38]. In addition, PKN2 can modulate migration in astrocytes 
by up-regulating cortactin phosphorylation [51] PKN3 has 
been identified as an effector required for malignant cell 
growth, downstream of activated phosphoinositide 3-kinase 
(PI3K) [52]. More recently, it has been shown that 
knockdown of PKN3 can decrease the growth of prostate 
and pancreatic tumors, and prevent lung metastases in mouse 
models [65, 66].  

ROLE OF PKN1 IN NEURODEGENERATIVE 
DISEASES 

 In neurons, PKN1 is the most abundant isoform and has 
been implicated in a variety of functions including 

cytoskeletal organization and neuronal differentiation [5, 13, 
17]. PKN1 was shown to phosphorylate neurofilaments  
at sites important for neurofilament assembly [14, 15]. 
Dysfunction of neurofilament metabolism was strongly 
implicated in amyotrophic lateral sclerosis (ALS) and in 
some forms of Charcot-Marie-Tooth disease [18, 19]. In 
ALS, accumulating neurofilaments represent one of the 
earliest pathological changes seen in several transgenic 
mouse models of ALS [67-69]. Along this line, it was shown 
that caspase-mediated processing of PKN1, induced by 
excitotoxic glutamate release and other disease-associated 
insults leads to deregulation of PKN1 [18] and subsequently 
to a disruption of neurofilament organization, axonal transport 
mechanisms [18, 46] and potentially also to apoptosis [45]. 
Other results [20, 21], suggested a specific role for PKN in 
neurofibrillary tangle formation and neurodegeneration in 
damaged neurons in Alzheimer’s disease. Authors showed 
that PKN phosphorylated tau protein, potentially playing an 
important role in the aggregation of tau into helical 
filaments. However, any clear evidence for the involvement 
of PKN1 in the pathogenesis of neurodegenerative diseases 
is as yet missing. 

ROLE OF PKN1 IN HYPOXIC NEURONS 

 Hypoxic stress (1% O2) induces an increase in cell death 
of PC12 neuronal cells and primary neurons [23, 70, 71]. 
Targeting apoptotic processes after ischemic stroke has been 
a key focus of neuroprotective therapeutic interventions. 
Numerous authors, (see reviews [72-74]) have proposed 
adenosine and its receptors as targets for therapeutic 
approaches in stroke and related disorders. We have previously 
studied neuronal signaling in hypoxia and observed a 
protective capacity of the purine nucleosides adenosine, 
guanosine and inosine in both PC12 cells [22, 71, 75, 76] 
and in primary cerebellar granule neurons [71, 77-79]; see 
also our latest review: [70], which was inhibited by adenosine 
receptor (ADORA) antagonists, as reviewed [70]. 

 Furthermore exposure of neuronal cells to low oxygen 
lead to increased phosphorylation of PKN1, which was 
augmented by NGF and purine nucleosides [16, 22]. siRNA-
mediated knockdown of PKN1 in neuronal PC12 cells leads to 
an increase of cell death and inhibition of neurite formation 
accompanied by disturbance of the F-actin-associated 
cytoskeleton [16]. These results complement a previous 
report [80], showing the binding of PKN1 to the actin 
bundling protein alpha-actinin in a phosphatidylinositol-4,5-
bisphosphate dependent manner.  

 These results indicate that PKN1 may act as a key-
signaling element for purine nucleoside- and potentially 
ADORA-associated protective mechanisms in hypoxic 
neuronal cells (Fig. 2).  

 

Fig. (1). Structure of protein kinase C-related kinase (PKN). 
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CONCLUSION 

 In neurons, PKN1 is the most abundant isoform and  
has been implicated in a variety of functions including 
cytoskeletal organization and neuronal differentiation [5, 13, 
17]. PKNs are also involved in regulation of stress response 
of neuronal cells as well as primary neurons and 
deregulation of PKN1 may contribute to neuropathological 
processes such as amyotrophic lateral sclerosis [18] and 
Alzheimer’s disease [20, 21].  

 Our lab has focused on neuronal stress response during 
hypoxia. We observed that addition of the neurotrophins 
NGF and purine nucleosides (PN) resulted in significant 
neuroprotection [16, 71], whereby the effect associated with 
PN was inhibited by adenosine receptor (ADORA) antagonists, 
as reviewed [70]. As observed in our experiments purine 
nucleosides as well as NGF also lead to the activation of 
PKN1 and to stabilization of cell viability and neurite 
formation, whereas knockdown of PKN1 leads to the 
inhibition of PKN1 and to neurodegeneration [16, 22]. Thus, 
PKN1 is apparently part of a key-signaling module fostering 
the response to hypoxic stress and likely indispensable for 
neurotrophin-mediated protection of hypoxic neuronal cells 
[16, 22, 70].  
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