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Abstract: In this research, a heartbeat classification method is presented based on evolutionary feature
optimization using differential evolution (DE) and classification using a probabilistic neural network
(PNN) to discriminate between normal and arrhythmic heartbeats. The proposed method follows
four steps: (1) preprocessing, (2) heartbeat segmentation, (3) DE feature optimization, and (4) PNN
classification. In this method, we have employed direct signal amplitude points constituting the
heartbeat acquired from the ECG holter device with no secondary feature extraction step usually
used in case of hand-crafted, frequency transformation or other features. The heartbeat types include
normal, left bundle branch block, right bundle branch block, premature ventricular contraction, atrial
premature, ventricular escape, ventricular flutter and paced beat. Using ECG records from the MIT-
BIH, heartbeats are identified to start at 250 ms before and end at 450 ms after the respective R-peak
positions. In the next step, the DE method is applied to reduce and optimize the direct heartbeat
features. Although complex and highly computational ECG heartbeat classification algorithms have
been proposed in the literature, they failed to achieve high performance in detecting some minority
heartbeat categories, especially for imbalanced datasets. To overcome this challenge, we propose an
optimization step for the deep CNN model using a novel classification metric called the Matthews
correlation coefficient (MCC). This function focuses on arrhythmia (minority) heartbeat classes by
increasing their importance. Maximum MCC is used as a fitness function to identify the optimum
combination of features for the uncorrelated and non-uniformly distributed eight beat class samples.
The proposed DE-PNN scheme can provide better classification accuracy considering 8 classes with
only 36 features optimized from a 253 element feature set implying an 85.77% reduction in direct
amplitude features. Our proposed method achieved overall 99.33% accuracy, 94.56% F1, 93.84%
sensitivity, and 99.21% specificity.

Keywords: arrhythmia; electrocardiogram; differential evolution; imbalanced class; matthews corre-
lation coefficient

1. Introduction

An electrocardiogram (ECG) represents electrical activity of the heart in a graphical
manner. It is a non-invasive and commonly-used tool by clinicians and cardiology special-
ists to monitor the function of the heart and diagnose both critical and non-critical heart
diseases. The ECG signal is defined by a standard PQRST sequence of waves as shown
in Figure 1. The P wave indicates atrial depolarization. The QRS complex consists of a Q
wave, R wave and S wave and represents ventricular depolarization. The T wave comes
after the QRS complex and indicates ventricular repolarization. Each of these entities, i.e., P
wave, QRS complex and T wave (possibly a U wave) have a unique pattern in terms of du-
ration, amplitude and consecutive inter-beat correlation. A deviation in this normal pattern
signifies an abnormal event. The diseased state in the case of cardiovascular monitoring
is called an arrhythmia. The occurrence of an arrhythmic event is rare but critical and life
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threatening leading to a sudden cardiac arrest or sudden cardiac death incident. Recently,
cardiovascular health monitoring has shifted from traditional in-clinic ECG machines [1,2]
to portable and wearable ECG devices [3–5] that accumulate 24 h single-lead patient ECG
data for long-term and continuous monitoring scenario. Identifying deviating patterns
from the normal heartbeats in this large accumulated data is a tiresome and tedious job for
clinicians and suffers from inter- and intra-observer variation error. This problem has led to
the evolution in the development of computer-aided diagnostic methods for cardiovascular
disease pathology indication for early referral to cardiac specialists and initiation of proper
and timely medical attention.

Recent developments in the use of wearable ECG devices and on devices based on the
Internet of Medical Things (IoMT) have led to an explosion of routinely collected individual
ECG data. The use of feature engineering and computational intelligence methods to turn
these ever-growing ECG monitoring data into clinical benefits seems as if it should be an
obvious path to take. Computer-aided ECG arrhythmia classification systems that use
intelligent techniques for the development of smart healthcare monitoring platforms are
popular nowadays. A computer-aided early referral arrhythmia classification system [6–8]
usually involves a feature extraction process in which a set of features is calculated for
each individual heartbeat (the type of features used might be hand-crafted, statistical,
morphological or spectral, etc.) and classifier construction to learn the features and classify
incoming heartbeats. Using all the features calculated in the feature extraction step and
a multi-layered classifier not only introduces heavy computational cost but also affects
classifier performance due to the presence of redundant/corrupted features. The latest
systems deploy a feature reduction/optimization step before classification to remove all
unnecessary features. This also allows the use of a single layered or a computationally less
intensive learning algorithm for classification.

Figure 1. PQRST wave and primary fiducial markers for ECG heartbeat.

In the latest competitive research, novel features and various classifiers have been
utilized for ECG beat classification tasks. Sayantan et al. [9] feature representation of ECG
is learnt using the Gaussian–Bernoulli deep belief network followed by a linear support
vector machine (SVM) training in the consecutive phase. Elhaj et al. [10] investigated
principal components of discrete wavelet transform coefficients and higher order statistics.
Afkhami et al. [11] used parameters of Gaussian mixture modeling together with skewness,
kurtosis and 5th moment and applied an ensemble of decision trees to classify the heartbeats
using a class-oriented scheme. Liu et al. [12] improved the dictionary learning algorithm
for vector quantization of ECG. Shen et al. [13] used wavelet transform-based coefficients,
signal amplitude and interval parameters. A new classifier, which integrates k-means
clustering, one-against-one SVMs, and a modified majority voting mechanism, is proposed
to further improve the recognition rate for extremely similar classes. Qin et al. [14]
developed wavelet multi-resolution analysis to extract time-frequency domain features
and applied one-versus-one support vector machine to characterize six types of ECG beats.
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Zhai [15] and Acharaya et al. [16] used a CNN classifier. Oh et al. [17] used CNN and LSTM
in combination to propose a refined classification method and generated synthetic data
to overcome imbalance problem with accuracies of 94.03% and 93.47% with and without
noise removal, respectively.

Recently, researchers have presented different feature reduction methods to reduce the
input dimensions of ECG signals for neural classifiers. To name a few of the latest, Zhang
et al. [18] extracted statistical features applying a combined method of frequency analysis
and Shannon entropy and used information gain criteria to select 10 highly effective features
to obtain a good classification on five types of heartbeats. Yildrim et al. [19] implemented a
convolutional auto-encoder-based nonlinear compression structure to reduce the feature
size of arrhythmic beats. Tuncer et al. [20] applied the neighborhood component analysis
feature reduction technique to obtain 64, 128 and 256 features from a 3072 feature vector size.
Wang et al. [21] proposed an effective ECG arrhythmia classification scheme consisting of a
feature reduction method combining principal component analysis with linear discriminant
analysis. Alonso-Atienza et al. [22] used a filter-type feature selection procedure which
was proposed to analyze the relevance of the computed parameters. Chen and Yu [23]
applied nonlinear correlation-based filters, calculated feature–feature correlation to remove
redundant features prior to the feature selection process based on feature–class correlation.
Asl et al. [24] proposed the feature reduction scheme based on generalized discriminant
analysis. Haseena et al. [25,26] used a fuzzy C-mean (FCM) clustered probabilistic neural
network (PNN) for the discrimination of eight types of ECG beats. The performance has
been compared with FCM clustered multi layered feed forward network trained with the
back propagation algorithm. Important parameters are extracted from each ECG beat
and feature reduction has been carried out using FCM clustering. Polato et al. [27] used
principal component analysis. Genetic algorithms have also been applied recently for
the optimization of ECG heartbeat features [28–31] and proved to be advantageous in
improving the time-cost value in heartbeat classification methods.

Previously proposed automated cardiovascular disease diagnosis systems have mostly
followed the design objective of achieving high performance by maximizing accuracy,
F1-score, sensitivity and precision measures. A major limitation in the case of general and
particularly cardiovascular disease diagnosis is a highly unbalanced ratio or frequency
of occurrence of normal to abnormal events. Furthermore, existing multi-class learning
approaches mainly focus on exploiting label correlations to facilitate the learning process.
However, an intrinsic characteristic of multi-class learning, i.e., class-imbalance [32] has
not been well studied [33–35]. The Matthews correlation coefficient (MCC) was first
used by B.W. Matthews for the performance assessment of protein secondary structure
prediction [36]. Since then, it has become a widely used performance measure in biomedical
research. MCC and Area Under ROC Curve (AUC) have been chosen as the elective metric
in the US FDA-led initiative MAQC-II that aims to reach a consensus on the best practices
for the development and validation of predictive models for personalized medicine [37].

This research models a metaheuristic search algorithm Differential Evolution (DE) [38]
which is a very robust and highly effective heuristic algorithm. Differential evolution has
also been used in many applications in many fields. For example, surface and Beizer curve
optimization [39], electronic circuitry [40], lithology [41], optimizing solar cells [42] and
many others. Although not directly related, these papers should be cited to show the wide
range of uses of the differential evolution algorithm. The current work implements DE to
optimize direct ECG heartbeat amplitude features to maximize MCC for eight arrhythmia
beat classes having imbalanced and uncorrelated class distributions. The algorithm is tuned
to find a minimized optimum combination of features that performs better as compared to
all features. The motivation here is to remove noisy or redundant signal points, specifically
for the task of classification. Classification using PNN is performed with optimum and
all features to show the difference. The proposed method is simply depicted in Figure 2.
Using PNN for classifying abnormal heartbeats with reduced direct heartbeat amplitude
points diminishes the computation of a secondary feature extraction step, produces higher
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classification performance due to removal of unnecessary features and is faster due to
the optimized minimum number of features and less complex PNN learning algorithm.
The rest of this paper is organized as follows. In Section 2, the clinical data, cardiac
cycle identification and normalization, DE feature reduction and the PNN classification
for arrhythmia identification are described in detail. Section 3 includes the performance
evaluation measures and data division for training and testing. Results are presented in
Section 4. A detailed discussion on the achieved results plus some future possibilities are
presented in Section 5.

Figure 2. Methodology flowchart.

2. Materials and Methods
2.1. Clinical Data

ECG data for this study belongs to “MIT−BIH arrhythmia database” developed in
1987 and are available as open source on Physionet (https://physionet.org, accessed on
15 December 2020) [43,44]. The database consists of 48 two-channel ambulatory ECG
records, each of approximately 30 min duration digitized at a sampling rate of 360 Hz
acquired from 47 subjects out of which 25 subjects were men aged 32 to 89 years, and 22
were women aged 23 to 89 years (2 records came from the same subject). Each record has
simultaneous recordings from 2 leads, MLII and V5. For the purpose of testing a wearable
ECG sensing scenario that mostly uses a single lead for acquisition [45], this work uses ECG
signal from only the MLII lead. Each record is supported by an annotation file providing
the R-peak positions and corresponding beat labels (Lb). Hence, for this research, 107,800
heartbeats are used having corresponding labels for 8 classes, i.e., normal (NORM), left
bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular con-
traction (PVC), atrial premature contraction (PAC), ventricular escape (VESC), ventricular
flutter wave (VFLT) and paced (PACE) beat. The selected 8 classes include less frequent but
clinically significant arrhythmic beats too to prove the validity of the proposed algorithm.
An sample of all beat patterns is shown in Figure 3 as an example.

https://physionet.org


Sensors 2022, 22, 4450 5 of 16

Figure 3. Sample beats for eight ECG beat classes: (a) NORM, (b) LBBB, (c) RBBB, (d) PVC, (e) PAC,
(f) VESC, (g) VFLT and (h) PACE.

2.2. Proposed Methodology

The proposed methodology as graphically shown in Figure 2 and in detail in Figure 4
is explained in four steps; (1) preprocessing, (2) cardiac cycle identification and normaliza-
tion, (3) feature optimization, and (4) disease-based classification as follows:

Figure 4. Detailed methodology: Differential Evolution-based feature optimization with Probabilistic
Neural Network for imbalanced arrhythmia classification.

2.2.1. Preprocessing

In the preprocessing stage, power and low-frequency components are removed from
the raw ECG signal by using a 6th-order bidirectional Butterworth band-pass filter with
lower and upper cut-off frequencies of 0.5 and 40 Hz, respectively. The baseline is computed
as a cubic spline interpolation of fiducial points placed 90 milliseconds before R-peak
positions as an approximation for baseline PR-segment and subtracted from the bandpass-
filtered signal.
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2.2.2. Cardiac Cycle Identification and Normalization

Using the R-peak positions provided with each record, a heartbeat sample is identified
as having an onset of 250 ms before each R-peak position to 450 milliseconds after each
R-peak position. This definition makes each heartbeat consist of 253 sampling points and
ensures that the important characteristic points of ECG such as P, Q, R, S, and T waves
are included [46] as shown in Figure 5. The signal amplitude biases in the waveforms
of the ECG beat samples are inconsistent due to instrumental and human errors. Hence,
we utilize the Z-score method to reduce the above-mentioned differences in each ECG
beat sample. Through the Z-score method, the mean value of each ECG sample is first
subtracted from each ECG sample to eliminate the offset effect and then divided by its
standard deviation [21]. This procedure results in a normalized ECG beat sample with zero
mean and unity standard deviation. Figure 3 shows samples for all 8 ECG beat classes used
in this research.

Figure 5. Cardiac cycle identification.

2.2.3. Feature Optimization

The mathematical model followed for feature optimization using DE to find the mini-
mum number of features that result in maximum classification performance is explained
as follows.

Population Initiation

An initial population matrix P is generated as in Equation (1) to represent the possible
solution/optimization space consisting of np number of binary row vectors p called popu-
lation individuals each of length n f (number of features in heartbeat samples in this case
253 as mentioned in Section 2.2.2).

Pnc,nf =



p1
p2
.
.

pi
.
.

pnp−1

pnp


=



p1,1 p1,2 . . . p1,nf

p2,1 p2,2 . . . p2,nf

. . . . .

. . . . .
pi,1 pi,2 . pi,j . pi,nf

. . . . .

. . . . .
pnp−1,1 pnp−1,2 . . . pnp−1,nf

pnp,1 pnp,2 . . . pnp,nf


(1)

where, pi,j represents bit value at jth feature position in ith population individual. Here,
j = 1 to n f and i = 1 to np. 1’s and 0’s in each population individual represent the
selected and non-selected features, respectively. pi,j for p1 to pnp−1

are generated setting
probability equal to 0.8 for a bit being 1. The last row population individual pnp

is set
to pall and is defined as a population individual representing an ’All-feature’ set in the
optimization space. This tunes the DE optimization process to find a final subset of
optimized and reduced features that achieves even better fitness than the all feature set and
is mathematically represented in Equation (2).
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pnp
= pall =

[
1 1 1 . . . 1

]
1 x n f

(2)

The number of individuals np is chosen as 50 so that it is large enough to avoid
stagnancy and small enough to avoid excessive computing time [47,48].

Fitness Evaluation

The fitness function, fit in this case, is modeled as the k-category MCC [36,49] mathe-
matically expressed as Equation (3) considering one versus rest strategy taking all 8 classes
one by one as positive (P) and the rest of 7 classes as negative class (N). All feature subsets
represented by p in P are selected from the dataset and individually trained using PNN as
explained in Section 2.2.4 and fit is calculated on the testing subset.

MCCk =
TP · TN + FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

Here, TP = number of samples for which positive class was correctly identified,
TN = number of samples for which negative class was correctly identified, FP = number
of samples for which positive class was wrongly identified and FN = number of samples
for which negative class was wrongly identified and k denotes the number of classes and
k = 8 for the current problem. Hence, FP and FN represent misclassifications or error
made by the classification algorithm. Mean calculated over MCC individually for 8 classes
is modeled as fit. A maximization of fit is carried out to find the optimum combination
of features. Maximization of the defined fitness function is carried out using maximum
200 generations.

f it = max(mean(MCCk)) (4)

Crossover

Randomly selecting two different individuals pi1 and pi2 from P, a 1-point crossover
is performed where, i1, i2 are randomly generated index values between 1 and n f with
crossover probability (CR = 0.8). The population individual vi obtained after the crossover
operation is called an offspring. Similarly, an offspring vector is created corresponding to
every row in P to create a trial population matrix V.

Mutation

A bit-flip is performed with mutation probability (MR = 0.2) for all vi’s in V. Hence,
currently there exists a parent population PG and an offspring population VG+1 (after
crossover and mutation) both of size np x n f .

Selection

The fitness function fit for each individual in the V is calculated using Equation (4).
Applying the current-to-best strategy, if vi shows a higher fit value than the corresponding
pi, then pi in the P is replaced with vi. Otherwise, the pi retains its position. This compari-
son and replacement process is repeated for every (pi, vi) pair an evolved version of P is
obtained at the end of the generation. This process evolves and accumulates better individ-
uals until the maximum number of generations, i.e., 200 is reached. After looping through
all generations every individual in the P is replaced with the best possible candidate, i.e.,
having the highest fit value. psel with the best fit in the end P is selected as the optimum
feature subset with 1’s representing the selected features out of total n f .

Termination

The process terminates if the maximum number of given generations 200 is reached or
fit becomes stagnant for a consecutive 20 generations. For every new generation, a new V is
generated using the updated P. Hence, crossover and mutation occur in every generation.
The default control parameters are summarized in Table 1.
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Table 1. DE control parameters summary.

Parameter Value

Population size 50
Population type Binary bits

Crossover 1-point crossover
Mutation Uniform

Selection scheme Current-to-best
Population individual length 253

Maximum number of generations 200
Crossover probability 0.8
Mutation probability 0.2

2.2.4. Disease-Based Classification

Training and testing subsets composed of optimized subset of features psel obtained in
the last step are now extracted from complete training and testing subsets and can now be
used to classify unseen beats using PNN [50]. The PNN consists of an input layer, a pattern
layer, a summation layer, and a output layer. This architecture is illustrated in Figure 4
(Step 4). The neurons of the input layer convey the input features a = [a1, a2, . . . aj, . . . , ans ]

T

to the neurons of the pattern layer directly, where ns represents the number of optimized
features in psel and ns <= n f .

In the pattern layer of PNN, Gaussian function is used to calculate the output of the
neuron ako as in Equation (5) using the input vector a transferred down from the input layer:

gki(a) =
1√

(2πσ2)n f
exp(−‖a− aki‖2

2σ2 ) (5)

where, aki is the vector of neurons, σ defines the standard deviation also called spread for
the Gaussian function and ns is the size/dimension of the pattern vector a. ‖a − aki‖ is
the Euclidean distance between a and aki. The neurons in the summation layer calculate
the maximum likelihood of the pattern vector a being categorized into class k by averaging
the output of all neurons in the pattern layer that belong to the same class as mentioned in
Equation (6).

sk(a) =
1

(
√
(2πσ2)nb

1
nk

nk

∑
1

exp(−‖a− aki‖2

2σ2 ) (6)

where nk is the total number of the samples in class k. The neuron in the decision layer
applies Bayes’s decision rule to determine the class belongingness of the pattern a by
Equation (7).

c(a) = max(pk(a)) (7)

where k denotes the number of classes in the training samples and c(a) is the estimated
class of the pattern a. In this paper, the output of the PNN is represented as the Lb of the
eight types of ECG beats (i.e., NORM, LBBB, RBBB, PVC, APC, VESC, VFLT and PACE
are labeled as ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, and ‘8’, respectively). The detailed pseudocode for
the proposed DE-based feature optimization and PNN classification strategy is given in
Algorithm 1.
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Algorithm 1 Pseudocode of DE-PNN algorithm for feature optimization in heartbeat
classification problem

Input: dataset constructed using beat samples (DS) and associated class labels (Lb) as in
Section 2.1
population size (np) = 50
maximum number of generations (maxGen) = 200
crossover probability (CR) = 0.8
mutation rate (MR) = 0.2
feature size (n f ) = 253
current generation (gen) = 1
start DE: DS, Lb, np, maxGen, CR, MR
// Population Initialization %
for i = 1 np
for j = 1 n f
if rand[0,1] > 0.5
PG=0

i,j = 1
endif
endfor
endfor
// Replace the last population individual with an all feature vector PG=0

np ,j = 1 1 1 . . . 1
1 x n f

// For each population individual (i.e., bit string Pi) calculate ‘fit’
representing classification performance metric of PNN as in Equation (2)
for i = 1 np

f it|G+1
DS(Pi)

endfor

// Generate test vectors
while gen <= maxGen
for j = 1 n f
// Select two separate random population individuals (i.e., bit strings Pi1 and Pi2)
for i = 1 np
if rand(0,1) < CR
i1 = rand[1,np], i2 = rand[1,np] and 6= i1
ri = rand[1,n f ]
VG+1

i,j = [PG
i1,j[1 : ri], PG

i2,j[ri + 1 : n f ]]

endif
endfor
endfor
// Select the individual with better ’fit’
if f it|G+1

DS(Vi)
> f it|G+1

DS(Pi)

PG
i,j = VG+1

i,j
else
PG

i,j = PG
i,j

endif
gen = gen + 1
endwhile
endprocedure
// Return optimized combination of features

Output:
psel = pbest with maximum ’fit’ value as in Equation (3)
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3. Performance Evaluation

Out of the 108,700 beat samples, 50% were selected as the training subset and the
remaining 50% as the testing subset. Table 2 summarizes the details of the available beat
samples from each class. All the available class samples in the MIT-BIH database are used
in the current test to keep the arrhythmia instance ratio as close to real as possible.

Classification metrics; Matthew’s correlation coefficient (MCC), macro F1-score (Macro-
F1) and accuracy (Acc) and area under the curve (AUC) have been reported. MCC, Macro-F1,
Acc and additionally, sensitivity (Sen), and specificity (Spe) are reported according to
Equation (3), Equations (8)–(11) with fit modeled as MCC.

All the definitions mentioned below follow a one-versus-rest strategy [51]. Each
classification measure is calculated for each of the eight classes (taking one class as positive
and all the rest as negative) and then averaged to represent the mean classification measure.
The PNN classification was performed for All features set (as the exact solution) and
Optimized features subset obtained after DE. Hence, all measures are reported for both
All features and Optimized features cases to present a comparison between classification
improvement and feature reduction achieved using the proposed method. Here, TP, TN,
FP, and FN follow the same definition as mentioned in ’Fitness Evaluation’ part.

Acc =
TP + TN

TP + TN + FP + FN
(8)

Sen =
TP

TP + FN
(9)

Spe =
TN

TN + FP
(10)

F1 =
2 · TP

2 · TP + FP + FN
(11)

Macro-F1 =
1
N

N

∑
c=1

F1c, (12)

Table 2. MIT-BIH data selection details.

Beat Class Training Testing Total

NORM 36,907 36,907 73,814
LBBB 4031 4031 8062
RBBB 4533 4533 9066
PVC 3363 3363 6726
PAC 1270 1271 2541

VESC 53 53 106
VFLT 236 236 472
PACE 3506 3507 7013

Total 53,899 53,901 107,800

4. Results

Table 3 shows a comparison of the proposed DE-PNN algorithm with the selected ‘All
feature’ standard. The confusion matrices for both are reported in Table 4. The optimized
features which result in the maximum MCC are plotted in Figure 6. The average number
of generations by which the optimization is achieved was 78 ± 12 (10 trials). After an
average 78 generations, the fitness value becomes stagnant meaning the fitness function
has achieved its maximum value and is no longer improving.
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Table 3. Classification test result.

Features NumFeat MCC Acc Macro-F1 AUC

All 253 0.1248 99.05 92.44 0.8242
Optimized 36 0.1250 99.33 94.56 0.8370

Difference −217 +0.0002 +0.28 +2.12 +0.0128

Figure 6. Selected feature scan after DE with all beat classes (a), feature points on 1 representative
beat (b).

Table 4. Confusion matrices for testing subset with Optimized and All features with fit = MCC for 1
normal and 7 arrhythmia classes.

Optimized Features

T/P NORM LBBB RBBB PVC PAC VESC VFLT PACE

NORM 7467 4 76 21 40 1 1 0
LBBB 7 778 0 11 2 2 0 0
RBBB 80 0 1141 2 13 1 3 0
PVC 50 11 5 2409 10 5 11 0
PAC 105 0 15 4 657 0 0 0

VESC 2 0 0 0 0 51 0 0
VFLT 15 1 11 22 1 3 147 0
PACE 0 0 0 0 0 0 0 800

All Features

T/P NORM LBBB RBBB PVC PAC VESC VFLT PACE

NORM 7481 3 71 6 49 0 0 0
LBBB 7 785 0 4 2 2 0 0
RBBB 87 0 1146 2 2 1 2 0
PVC 109 9 4 2364 5 6 3 1
PAC 79 0 10 1 691 0 0 0

VESC 2 0 0 0 0 51 0 0
VFLT 23 1 12 19 3 4 137 1
PACE 1 0 0 0 0 0 0 799
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Using the DE-PNN scheme, the best and worst were the accuracy of 99.84% for VESC
and 95.41% for NORM, respectively. The DE-PNN scheme could classify NORM with
an accuracy of 99.45%, PVC with 99.18%, PACE with 100.00%, RBBB with 99.94%, LBBB
with 99.80%, APC with 99.76%, VFLT with 99.61%, and VESC with 99.94%. These results
demonstrate the abilities of the above-mentioned ECG arrhythmia classification schemes to
classify the eight ECG beats effectively. The overall accuracy of the DE-PNN scheme, the
DE-PNN scheme, and the DE-PNN scheme were 99.61%, 98.26%, and 99.71%, respectively,
as reported in Table 5.

Table 5. Classification results for testing subset with Optimized and All features with fit = MCC for 1
normal and 7 arrhythmia classes.

Optimized Features

Class Acc (%) Sen (%) Spe (%) F1 (%)

NORM 96.73 97.24 96.37 96.10
LBBB 99.65 99.06 99.73 98.60
RBBB 98.50 96.13 98.84 94.12
PVC 98.93 94.13 99.62 95.66
PAC 98.12 84.00 99.40 88.14

VESC 99.90 96.22 99.93 94.44
VFLT 99.28 84.78 99.86 90.06
PACE 99.90 99.20 99.96 99.39

Average 99.33 93.84 99.21 94.56

All Features

Class Acc (%) Sen (%) Spe (%) F1 (%)

NORM 94.46 97.52 92.30 93.58
LBBB 99.73 98.93 99.84 98.93
RBBB 98.44 93.46 99.14 93.71
PVC 97.97 86.26 99.64 91.38
PAC 98.34 86.40 99.42 89.62

VESC 99.91 96.22 99.95 95.32
VFLT 98.62 64.78 99.96 78.21
PACE 99.80 98.00 99.96 98.79

Average 99.05 90.20 98.77 92.44

To analyze the efficacy of optimized features in distinguishing between simulated
cardiac conditions, the receiver operating characteristic (ROC) is plotted using a one-versus-
all class strategy and area under the curve (AUC) is calculated. By analogy, the higher the
AUC, the better the capability of recognition of the particular class by the classification
algorithm. Figure 7 shows the ROCs and AUCs of every class in the case of optimized
and all features. The AUC for all arrhythmia classes except paced beat has increased with
maximum AUC improvement for VFLT (10%) which is the rarest class in the currently
used dataset and secondarily PVC (4%), both representing critical pathological conditions.
Overall, the recognition for all classes has improved or stayed consistent with 85.77%
reduction in number of features.
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Figure 7. ROC curves of 8 classes for Optimized feature subset (left panel) and All feature set
(right panel).

5. Discussion

The proposed method presents an accurate and computationally efficient arrhythmia
classification method using direct ECG amplitude signal features. More than 100,000 ECG
heartbeats are obtained with eight types of ECG beats including one normal and seven ar-
rhythmic beat types. Feature optimization is performed by modeling optimization input as
binary vectors representing different feature combinations using DE. An optimized feature
subset is obtained which is then used with a simple PNN classifier. The proposed method
achieved 85.77% reduction in directly acquired features with comparable classification
performance. Figure 6 shows the optimized and selected 36 out of 253 (total amplitude
feature points). The higher classification performance achieved could be due to better
beat definition (250 ms before and 450 ms after the R-peak positions) as compared to [52]
which arbitrarily used 200 samples around the R-peak. Our definition makes sure the
inclusion of important physiological characteristics necessary to distinguish between the
currently classified arrhythmia types which are most ventricular types. Furthermore, on
the algorithm design level, adding an all feature combination to the solution space pushes
the optimization process to find a solution better than the All features scenario.

Moreover, we compared the classification performance of the proposed DE-PNN
scheme for ECG arrhythmia classification with those of other schemes simultaneously
utilizing different feature reduction methods and neural classifiers presented in the lit-
erature as summarized in Table 6. Jun et al. [53] used the same direct ECG amplitude
features as used in this work and presented a comparison between 2D-CNN, AlexNet, and
VGGNet models. All three of the models were deployed using TensorFlow [54] which
is a deep learning Python library proposed by Google especially for GPGPUs and yet
used two Intel Xeon E5 CPUs and two NVIDIA K20m GPUs to reduce the learning time.
All tested classifiers had complex architectures implying extremely high computational
cost with no feature optimization/reduction function which is not suitable for continuous
monitoring using wearable sensing modality. Yildrim et al. [19], Tuncer et al. [20], and
Elhaj et al. [10] used wavelet features with multiple different combination of features
to perform arrhythmia classification adding feature computation layer in the process-
ing algorithms performing optimizations focused on classifier parameters rather than
feature engineering.
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Table 6. Comparison of the proposed DE-PNN scheme with latest literature.

Research Feature Type #Classes Feature Selection Classification Accuracy (%)

DE-PNN Morphology 8 DE PNN 99.33
[53] Morphology 8 None CNN 98.90
[53] Morphology 8 None AlexNet 98.80
[53] Morphology 8 None VGGNet 98.70
[19] Morphology 5 convolutional AE LSTM 99.00
[29] Wavelet 5 PSO LS-SVM, RF 98.95
[10] HOS+Wavelet 5 ICA+PCA SVM+NN 98.91

[28] PSD+DFT 17 GA SVM, kNN, PNN,
and RBFNN 98.85

[55] DCT+weighted
inter-beat 5, 15 none SVM 98.46

[20] Multilevel wavelet 17 NCA 1-NN 95.00

[12] k-medoids vector
quantization 4 none parallel regression

NN 95.00

[16] Morphology 5 none 9-layer Deep CNN 94.03

[56] Temporal
vectorcardiogram 3 PSO SVM 92.40

DE-PNN aimed at searching for the optimum feature combination that provides maxi-
mum recognition capability for arrhythmic heartbeats removing redundant and selecting
highly discriminating features. Overall, the achieved ECG arrhythmia classification result
indicates that the detection of arrhythmia using 14.23% (85.77% reduced) features of a com-
plete ECG heartbeat can be an effective approach to help general physicians and cardiology
specialists to diagnose critical cardiovascular diseases in continuous and long-term, online
or offline monitoring scenarios particularly well-suited for a wearable sensing setting. For
future work, the current algorithm may be extended to recognize 16 classes (1 normal
and 15 arrhythmic) for which the annotations are available with the MIT-BIH dataset. A
future DE optimization might focus on a multi-objective approach to maximize arrhythmia
recognition whilst minimizing percentage signal distortion (accuracy and compression
being the two objective functions) to make the ECG signal reproducible for clinical analysis.
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