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Abstract: A novel CoS@Fe3O4@rGO aerogel with a unique 3D porous heterostructure was prepared
via the solvothermal method, in which cobalt sulfide (CoS) microspheres embedded with Fe3O4

nanoparticles were randomly scattered on reduced graphene oxide (rGO) flakes. The introduction
of magnetic Fe3O4 nanoparticles and rGO regulated the impedance matching, and the excellent
electromagnetic wave (EMW) absorption capability of the CoS@Fe3O4@rGO aerogel could be
attributed to optimal dielectric loss and abundant conductive networks. The results demonstrated
that the minimum reflection loss (RL) value of CoS@Fe3O4@rGO aerogel was −60.65 dB at a 2.5 mm
coating thickness with an ultra-wide bandwidth of 6.36 GHz (10.24–16.6 GHz), as the filler loading was
only 6 wt%. Such a lightweight CoS@Fe3O4@rGO aerogel with an outstanding absorbing intensity
and an ultra-wide effective absorption bandwidth could become a potential EMW absorber.
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1. Introduction

In recent years, wireless communication technology and radar detection have been widely used in
daily life and military fields [1,2]. With a lot of attention being paid to the increasing pollution of serious
electromagnetic waves (EMWs), high-performance absorbing materials have come into people’s field of
vision, which have the characteristics of lightweight, strong absorption, broad absorption bandwidth,
thin matching thickness, and so on [3–5]. The attenuation capability of EMWs can be characterized by
their electromagnetic parameters; it is critical to design materials with good microstructure and phase
composition [6,7]. According to reports in recent years, common wave-absorbing materials include
ferrites [8], carbon nanomaterials [9], conductive polymers [10], and transition metal oxides [11].
Because of its low price, good stability, and high permeability, Fe3O4 stands out from many other
EMW-absorbing materials and has been widely studied [12–17]. With its unique nanostructure and good
magnetic loss properties, Fe3O4 shows great EMW absorption potential; however, defects such as easy
corrosion, high density, and narrow absorption frequency band seriously limit its practical application.

As the thinnest two-dimensional materials at present, graphene oxide (GO) and reduced graphene
oxide (rGO) exhibit superior properties of lightweight, a large and specific surface area, good chemical
stability, and mechanical performance [18–20]. At present, rGO has excellent performance in energy
storage [21], catalysis [22], stealth technology [23], and other fields [24–26]. Owing to its high electron
mobility and remarkable conductivity, electrons migrate on the surface of rGO to form a conductive
network, which gives full play to the role of dielectric loss [27]. In addition, the abundant defects
and functional groups in rGO may cause polarization relaxation and dipole relaxation, which are
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conducive to increasing the absorption of EMWs [28]. However, due to poor impedance matching,
the absorbing performance of pure rGO is not ideal. Therefore, decorated with Fe3O4 magnetic
nanoparticles, the impedance matching and EMW absorption capacity of rGO-based composites could
be significantly improved. For instance, Li et al. reported nitrogen-doped GO nanosheets assembled
by Fe3O4 nanoparticles, and the optimal reflection loss (RL) could achieve −65.3 dB at 6.8 GHz and
3.4 mm [29]. Zhu et al. prepared Fe3O4/rGO composites, and the optimal RL was −45 dB at 8.96 GHz,
the absorber thickness was 3.5 mm, while the corresponding effective absorbing frequency bandwidth
was 3.2 GHz [30]. However, it is worth noting that Fe3O4 nanoparticles tend to agglomerate on the
surface of rGO due to magnetic attraction, affecting the absorption of incident EMWs. It was found that
the introduction of sulfide into the rGO–Fe3O4 composites could significantly reduce the agglomeration
of ferrite nanoparticles and could enhance the EMW absorption performance [31]. In our previous
studies, cobalt sulfide (CoS) exhibited impressive wave-absorbing properties. Hence, it is feasible to
synthesize a CoS@Fe3O4@rGO composite, which can not only reduce the density of magnetic materials,
but also has excellent impedance matching and a strong wave-absorbing ability.

Herein, wepreparedanovelCoS@Fe3O4@rGOaerogelvia thesolvothermalmethod. Themicrostructure,
elemental composition, EMW absorption performance, and possible mechanism of the products
were carefully investigated. The morphology of the CoS@Fe3O4@rGO aerogel indicated that CoS
microspheres embedded with many Fe3O4 nanoparticles were randomly scattered on the rGO flakes,
forming a unique 3D porous heterostructure. Moreover, due to the introduction of magnetic Fe3O4

nanoparticles, the impedance matching of the material could be effectively optimized. The outstanding
EMW-absorbing performance of the CoS@Fe3O4@rGO aerogel was revealed.

2. Materials and Methods

2.1. Material Preparation

The graphite powder (200 mesh) was received from XFNANO (XFNANO Materials Tech
Co., Ltd., Nanjing, China). Cobalt chloride hexahydrate (CoCl2·6H2O) and sodium acetate
(NaAc) were purchased from Aladdin Technology Co. Ltd. (Shanghai, China). Thioacetamide
(TAA), absolute ethanol (CH3CH2OH), ethylene glycol (EG), trisodium citrate (Na3C6H5O7·2H2O),
ascorbic acid, and ferric chloride hexahydrate (FeCl3·6H2O) were provided by Sinopharm Chemical
Reagent Factory (Shanghai, China). All of the above materials were of analytical grade and used directly.

2.2. Fabrication of the Fe3O4 Nanoparticles

First, 4.3 g of FeCl3·6H2O and 1 g of Na3C6H5O7·2H2O were dispersed in 70 mL of EG. Then,
the mixed solution was stirred continuously for 30 min. Four grams of NaAc was added into the
suspensions, followed by sonication for 30 min until a uniform solution was formed. Afterward,
the solution was sealed and maintained at 200 ◦C for 10 h in a 200 mL Teflon-lined autoclave.
After cooling to room temperature, the black precipitates were collected by centrifuge and washed
alternately with deionized water and absolute ethanol, and then dried at 50 ◦C for 12 h.

2.3. Preparation of the CoS@Fe3O4 Microspheres

CoCl2·6H2O (2.5 mmol) and as-prepared Fe3O4 (0.58 g) were dissolved in 25 mL of absolute
ethanol, respectively, and the two solutions were mixed together at room temperature and then given
an ultrasound treatment for 30 min. TAA (5 mmol) was dissolved in 50 mL of absolute ethanol and
added dropwise into the above suspension, followed by ultrasonic treatment for 30 min. Then the
obtained solution was transferred into a reaction vessel, sealed, and kept at 160 ◦C for 24 h. The final
products were washed with ethanol and deionized water and dried in a vacuum oven at 50 ◦C for 10 h.
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2.4. Fabrication of the CoS@Fe3O4@rGO Aerogel

The graphene oxide (GO) was obtained by a modified Hummers method [32,33]. GO (40 mg) was
dispersed in 70 mL of deionized water and then placed in an ultrasonic bath to form a homogeneous
suspension. The as-prepared CoS@Fe3O4 microspheres were added into the above suspension and
mechanically stirred for 30 min. Afterward, ascorbic acid (72 mg) was dissolved in the resulting
mixture, followed by ultrasonic treatment for 5 min. The final product was moved and sealed into a
Teflon-lined autoclave (100 mL), and then maintained at 120 ◦C for 4 h. Finally, the CoS@Fe3O4@rGO
aerogel was obtained after freeze-drying for 24 h.

2.5. Material Measurement

The microstructure information of the products was revealed by a scanning electron microscope
(SEM; Quanta 250, FEI, Hillsboro, OR, USA) and a transmission electron microscope (TEM; JEM-2100F,
JEOL, Tokyo, Japan). The elemental states were measured by energy-dispersive X-ray spectroscopy
mapping (EDS; XFlash 5030T, BRUKER, Leipzig, Germany). The crystal structures were investigated by
a D-MAX-2500 X-ray powder diffractometer (XRD, Rigaku, Beijing, China). Raman spectroscopy was
characterized by a confocal Raman spectrometer (RM 2000, Renishaw PLC, London, UK). The surface
properties of the materials were tested using X-ray photoelectron spectroscopy (XPS; ESCALAB 250XI,
Shanghai, China). At room temperature, the products were blended with paraffin wax at different
loading ratios (i.e., 4, 6, and 8 wt%), and then pressed into a coaxial ring (Φin = 3.04 mm, Φout = 7.0 mm).
For convenience, the corresponding products were coded as S1, S2, and S3, respectively, and the
electromagnetic parameters of the products were calculated using a vector network analyzer (VNA,
Agilent E8363B, Palo Alto, CA, USA) ranging from 2 to 18 GHz.

3. Results

3.1. Characterization of the Products

The X-ray diffraction analysis of Fe3O4, CoS@Fe3O4, and CoS@Fe3O4@rGO is shown in Figure 1a.
The characteristic diffraction peaks located at 2θ = 18.34◦, 30.09◦, 35.35◦, 37.03◦, 43.08◦, 53.30◦, 56.77◦,
and 62.43◦ are consistent with the (111), (220), (311), (222), (400), (422), (511), and (440) planes,
respectively, which reveals the formation of the spinel Fe3O4 (JCPDS no. 19-0629) [34]. In addition,
the peaks located at 2θ = 20.12◦, 24.39◦, and 25.44◦ could correspond to the (110), (120), and (310)
of α-FeOOH (JCPDS card no. 9003076). This is because of uneven heating in the hydrothermal
process, resulting in part of the residual FeOOH [35,36]. The peaks assigned to (100), (101), (102),
and (110) indicate hexagonal CoS (JCPDS no. 42-0826) [37]. No diffraction peaks of rGO were
detected because the reaction process destroyed the structure of rGO, resulting in its low crystallinity.
Raman spectroscopy was used to observe the degree of crystallinity and graphitization of the materials.
As can be seen in Figure 1b, the peaks located at 1361.57 cm−1 and 1592.95 cm−1 correspond to the
D and G bands of GO, respectively. As regards CoS@Fe3O4@rGO, the D and G bands are located
at 1342.5 cm−1 and 1579.07 cm−1. The D peak is related to the lattice defects of graphene sheets,
while the G peak is induced by the vibration of hybrid carbon atom sp2 [38]. The degree of carbon
crystallization is usually characterized by the relative strength value of D and G peaks (ID/IG), and the
crystallization is inversely proportional to the ID/IG value [39]. The results show that the ID/IG value of
CoS@Fe3O4@rGO increased from 0.93 to 1.08, indicating more defects within the composite. By contrast,
it was demonstrated that most of the oxygen in functional groups had been removed, the disorder
of carbon in CoS@Fe3O4@rGO increased, and the GO was successfully reduced to rGO during the
hydrothermal process [40]. Additionally, the four characteristic peaks between 400 and 800 cm−1

may be attributed to CoS, and the low crystallinity of CoS is probably due to the low-temperature
preparation [41,42].
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Figure 1. (a) X-ray powder diffraction (XRD) curves of Fe3O4, CoS@Fe3O4, and CoS@Fe3O4@rGO;
(b) Raman spectra of graphene oxide (GO) and CoS@Fe3O4@rGO.

To further observe the detailed surface electronic state of CoS@Fe3O4@rGO, the XPS analysis is
given in Figure 2. The Fe 2p spectrum curve can be fitted by two peaks located at 710.6 eV and 724.2 eV,
which are in agreement with Fe 2p3/2 and Fe 2p1/2 (Figure 2a) [43]. A shakeup satellite peak located
at approximately 719 eV cannot be observed, which means that the iron oxide in the composite is
Fe3O4, not γ–Fe2O3 [29]. In Figure 2b, the O 1s spectrum displays a stronger peak of C–O at 532.3 eV
compared to the O–H peak at 531.2 eV and the Fe–O peak at 529.9 eV. These oxygen vacancy defects
may be beneficial to the absorption of EMWs [44,45]. As for C 1s (Figure 2c), the peaks at 284.67 eV
and 286.2 eV are related to the C–C/C=C and C–O bonds. Figure 2d represents the spectra of Co
2p, in which the peaks indexed to Co 2p3/2 and Co 2p1/2 are at 779.8 eV and 794.5 eV, respectively.
Moreover, the peaks at 785.3 eV and 805.2 eV in the Co 2p spectrum are ascribed to the satellite binding
energies, which can be attributed to the oxidation of metal cobalt in the air [46]. With respect to
the S 2p spectra (Figure 2e), two peaks corresponding to S 2p3/2 and S 2p1/2 are located at 161.92 eV
and 163.22 eV [47], respectively, and the other strong binding energy at 168.7 eV may be due to SOx,
which can be caused by partial sulfur oxidation [48]. Hence, the XPS results further confirm the
formation of a CoS@Fe3O4@rGO composite.

Figure 3 shows the SEM images of Fe3O4, CoS@Fe3O4 and CoS@Fe3O4@rGO composites.
In Figure 3a, there is obvious agglomeration in the Fe3O4 nanospheres, whose average diameter
is approximately 121–158 nm. Figure 3b shows the morphology of CoS, and the CoS samples present a
hierarchical spherical structure with a diameter of approximately 2.8 µm. In Figure 3c, the CoS samples
are comprised of some interlaced and stacked nanosheets, embedded with many Fe3O4 microspheres.
As shown in Figure 3d, the rGO displays a loosely porous structure with Fe3O4 and CoS@Fe3O4

microspheres distributed on it. The unique geometrical structure can not only reduce the density
of the composite, but can also increase the attenuation of EMWs in the material. To further study
the microstructures of the materials, the TEM images and corresponding EDS image can be seen in
Figure 4. As shown in Figure 4a, most Fe3O4 nanoparticles display a regular spherical shape and
a few have a hollow structure. In Figure 4b, the CoS presents an irregular spherical solid structure.
From Figure 4c, the formation of the ultra-thin rGO nanosheets can be confirmed with CoS@Fe3O4

microspheres firmly adhering to them. The corresponding EDS image is shown in Figure 4d, and no
other impurity elements can be detected. Combined with the element mappings in Figure 5, the C, O,
Fe, Co, and S elements are uniformly distributed in the sample, indicating the successful formation of
a CoS@Fe3O4@rGO aerogel.
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Figure 4. Transmission electron microscopy (TEM) images of Fe3O4 (a), CoS (b), CoS@Fe3O4@rGO (c),
and its corresponding energy-dispersive X-ray spectrometry image (d).
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3.2. Electromagnetic Parameters and Absorption Capability

Figure 6 shows the relative complex permittivity (εr = ε′ − jε′′) and the relative complex
permeability (µr = µ′ − jµ′′) of the CoS@Fe3O4@rGO aerogel at different filler loadings with paraffin.
The mixtures were made into a coaxial ring and the electromagnetic parameters were measured in the
frequency range of 2–18 GHz and calculated by the standard Nicolson–Ross–Weir theory. In Figure 6a,b,
the real part of the complex permittivity (ε′) values decrease gradually with the increasing frequency,
while the imaginary part of the complex permittivity (ε′′) value curves decrease with some fluctuations.
Compared to S1 and S2, S3 shows the highest ε′ value (10.5) and ε′′ value (5.4), indicating that it
exhibits excellent energy storage and dielectric loss properties. As regards Figure 6c,d, the µ′ curves
fluctuate between 1.16 and 1.02, while the µ′′ curves show a decreasing trend from 0.218 to 0.009.
To better evaluate the microwave absorption capability of the CoS@Fe3O4@rGO aerogel, the dielectric
loss tangent (tan δε = ε′′/ε′ ) curves and the magnetic loss tangent (tan δµ = µ′′/µ′ ) curves are given
in Figure 7. The tan δε values of S2 and S3 fluctuate between 0.57 and 0.43, and the curves show some
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obvious resonance peaks at 9–18 GHz, which could be due to the superior dielectric loss property of
rGO. It can be speculated that S2 and S3 have better microwave absorption performance. In Figure 7b,
the three tan δµ curves show a downward trend, overlapping with each other. The magnetic loss mainly
includes eddy current loss, natural resonance loss, hysteresis loss, and domain wall resonance loss [49].
Due to the domain wall, resonance losses usually occur in the low frequency range (1–100 MHz)
and the effect of hysteresis losses can be negligible in the weak magnetic field; therefore, it can be
concluded that eddy current losses and natural resonance losses play a major role in the magnetic loss
of materials [31]. The Eddy current loss in a material is usually characterized by the eddy current loss
coefficient (C0 = µ′′ (µ′)−2 f−1), and when eddy current loss occurs inside the materials, C0 should be a
constant [50]. However, in Figure 7c, the C0 curves decrease with the frequency, indicating that the
major source of magnetic loss in the CoS@Fe3O4@rGO aerogel is natural resonance.Materials 2020, 13, x 7 of 14 

 

 
Figure 6. Complex permittivity and permeability of S1, S2, and S3: (a) ε′, (b) ε″, (c) μ′, and (d) μ″. 

 

Figure 7. (a) Dielectric loss tangent, (b) magnetic loss tangent, and (c) C0–f curves of the samples. 

Based on the Debye theory [51], the relaxation polarization process in dielectric materials can be 
characterized by the plots of ε′’ versus ε′ (Cole–Cole semicircle). Generally, every single Cole–Cole 
semicircle corresponds to a polarization process [52]. In Figure 8, several irregular semicircles can be 
observed in the plots, and these distortions may be related to the multiple polarizations in the 
composite. Due to the special heterostructure of the CoS@Fe3O4@rGO aerogel, in alternating EM 
fields, electrons accumulate at the heterogeneous interface, inducing interfacial polarization. In 
addition, dipole polarization can be improved by local defects, abundant functional groups, and 
unsaturated coordination in the CoS@Fe3O4@rGO aerogel. It is worth noting that the Cole–Cole 
curves are close to a straight line at a high frequency, suggesting that the conductivity loss has a 
leading effect on the dielectric loss [53]. 

To investigate the absorption property of the CoS@Fe3O4@rGO aerogel, the variation of the RL 
of the products with frequency is shown in Figure 9. Based on the transmission line theory, the value 
of RL can be calculated by the following equations [54]: 

𝑍 = 𝑍ඨ𝜇𝜀 tanh ሾ𝑗 2𝜋𝑓𝑑𝑐 ඥ𝜇𝜀ሿ (1) 

RL = 20log ฬ𝑍 − 𝑍𝑍 + 𝑍ฬ (2) 

where Zin is the normalized input characteristic impendence, Z0 is the impendence of air, and d 
represents the thickness of the absorbers. As shown in Figure 9a, when the doping ratio is 4 wt%, the 

Figure 6. Complex permittivity and permeability of S1, S2, and S3: (a) ε′, (b) ε′′, (c) µ′, and (d) µ′′.

Materials 2020, 13, x 7 of 14 

 

 
Figure 6. Complex permittivity and permeability of S1, S2, and S3: (a) ε′, (b) ε″, (c) μ′, and (d) μ″. 

 

Figure 7. (a) Dielectric loss tangent, (b) magnetic loss tangent, and (c) C0–f curves of the samples. 

Based on the Debye theory [51], the relaxation polarization process in dielectric materials can be 
characterized by the plots of ε′’ versus ε′ (Cole–Cole semicircle). Generally, every single Cole–Cole 
semicircle corresponds to a polarization process [52]. In Figure 8, several irregular semicircles can be 
observed in the plots, and these distortions may be related to the multiple polarizations in the 
composite. Due to the special heterostructure of the CoS@Fe3O4@rGO aerogel, in alternating EM 
fields, electrons accumulate at the heterogeneous interface, inducing interfacial polarization. In 
addition, dipole polarization can be improved by local defects, abundant functional groups, and 
unsaturated coordination in the CoS@Fe3O4@rGO aerogel. It is worth noting that the Cole–Cole 
curves are close to a straight line at a high frequency, suggesting that the conductivity loss has a 
leading effect on the dielectric loss [53]. 

To investigate the absorption property of the CoS@Fe3O4@rGO aerogel, the variation of the RL 
of the products with frequency is shown in Figure 9. Based on the transmission line theory, the value 
of RL can be calculated by the following equations [54]: 

𝑍 = 𝑍ඨ𝜇𝜀 tanh ሾ𝑗 2𝜋𝑓𝑑𝑐 ඥ𝜇𝜀ሿ (1) 

RL = 20log ฬ𝑍 − 𝑍𝑍 + 𝑍ฬ (2) 

where Zin is the normalized input characteristic impendence, Z0 is the impendence of air, and d 
represents the thickness of the absorbers. As shown in Figure 9a, when the doping ratio is 4 wt%, the 

Figure 7. (a) Dielectric loss tangent, (b) magnetic loss tangent, and (c) C0–f curves of the samples.

Based on the Debye theory [51], the relaxation polarization process in dielectric materials can be
characterized by the plots of ε′′ versus ε′ (Cole–Cole semicircle). Generally, every single Cole–Cole
semicircle corresponds to a polarization process [52]. In Figure 8, several irregular semicircles can
be observed in the plots, and these distortions may be related to the multiple polarizations in the
composite. Due to the special heterostructure of the CoS@Fe3O4@rGO aerogel, in alternating EM fields,
electrons accumulate at the heterogeneous interface, inducing interfacial polarization. In addition,
dipole polarization can be improved by local defects, abundant functional groups, and unsaturated
coordination in the CoS@Fe3O4@rGO aerogel. It is worth noting that the Cole–Cole curves are close to
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a straight line at a high frequency, suggesting that the conductivity loss has a leading effect on the
dielectric loss [53].
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To investigate the absorption property of the CoS@Fe3O4@rGO aerogel, the variation of the RL of
the products with frequency is shown in Figure 9. Based on the transmission line theory, the value of
RL can be calculated by the following equations [54]:

Zin = Z0

√
µr

εr
tan h

[
j
2π f d

c
√
µrεr

]
(1)

RL = 20 log
∣∣∣∣∣ Zin −Z0

Zin + Z0

∣∣∣∣∣ (2)

where Zin is the normalized input characteristic impendence, Z0 is the impendence of air, and d
represents the thickness of the absorbers. As shown in Figure 9a, when the doping ratio is 4 wt%,
the optimal RL of S1 reaches −17.07 dB at 4.00 mm. Although the effective absorption bandwidth
(RL < −10 dB) can reach 3.6 GHz (7.04–10.64 GHz), the absorber thickness cannot meet the absorption
requirement of light-weight materials. In contrast, S2 exhibits superior microwave absorption capability.
The RL value curves of S2 are given in Figure 9b and the corresponding effective absorption bandwidth
at different thicknesses is shown in Figure 9d. It can be observed that the optimal RL of S2 is −60.65 dB
with an impressive absorption bandwidth of 6.36 GHz (10.24–16.6 GHz) at a 2.5 mm absorber thickness.
Moreover, the filler loading of S2 is just 6 wt%, suggesting that the CoS@Fe3O4@rGO aerogel (6 wt%)
can be used as an excellent absorption composite with the advantages of strong absorption, lightweight,
and ultra-wide bandwidth. As regards Figure 9c, the minimum RL value of −55.59 dB of S3 can
be obtained at 2.0 mm, along with a proficiency absorption bandwidth of 5.4 GHz (12.6–18 GHz).
Table 1 shows the comparison of the EMW absorption capability of the CoS@Fe3O4@rGO aerogel (S2)
with previously reported ferrite–graphene-based composites. It is obvious that the CoS@Fe3O4@rGO
aerogel (S2) is superior to similar absorbers in terms of absorption strength, absorption bandwidth,
and filler loadings, and it has a promising application potential in the EMW absorption field.
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Table 1. A comparison of the electromagnetic wave (EMW) absorption capability with some previously
reported ferrite–graphene-based composites.

Absorber Filler Loadings
(wt%)

RLmin
(dB)

Effective Bandwidth
(GHZ)

Thickness
(mm) Refs

Fe3O4/rGO 4 −45 3.2 3.5 [30]
CoS/RGO 20 −54.2 4.0 4.0 [37]

Fe3O4@rGO 50 −49.8 3.3 3.0 [55]
ZnFe2O4@RGO@CuS 20 −55.4 7.5 2.2 [56]

Fe3O4@LAS/rGO 50 −65.0 4.0 2.1 [57]
CoFe2O4/N–rGO 20 −60.4 6.48 2.2 [58]
CoS@Fe3O4@rGO 6 −60.65 6.36 2.5 This work

In order to further comprehensively evaluate the EMW absorption capability of the products,
the attenuation constant (α) was calculated as follows [59]:

α =

√
2π f
c
×

√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (3)

It can be seen from Figure 10a that with an increase in the filler loading ratio from 4 to 8 wt%,
the attenuation ability of the CoS@Fe3O4@rGO aerogel can be enhanced significantly. Compared to S1,
S2 and S3 exhibit better attenuation ability, which may be attributed to the improved conductivity
and magnetic losses. In addition, the impedance matching ratio Z (Z = Zin / Z0) curves of the
CoS@Fe3O4@rGO aerogel are shown in Figure 10b. The closer the Z value is to 1, the more EMWs can
be incident to the material. In Figure 10b, the impedance matching curve of S3 is lower than S1 and S2,
which may be due to the high conductivity and the influence of the skin effect [60]. The oscillating
skin current enhances the reflected waves, which is not conductive to the attenuation of EMWs.
From Figure 10, it can be confirmed that the excellent attenuation capability and good impedance
matching are responsible for the outstanding EMW absorption performance of S2.
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An illustration of the mechanism of microwave absorption for the CoS@Fe3O4@rGO aerogel is
shown in Figure 11. First, the combination of the heterostructure of magnetic Fe3O4 nanoparticles,
CoS, and rGO optimizes the impedance matching of the composite, which provides a prerequisite for
EMWs to enter the interior of the composite for further consumption. Next, CoS—modified by Fe3O4

nanoparticles—introduces a large number of heterointerfaces. More charges accumulate at various
heterogeneous interfaces as if they were moving in a capacitor structure, which may be beneficial
to enhancing interface polarization [61]. However, the loose 3D porous structure not only reduces
the density of the products, but also facilitates the attenuation of EMWs. During multiple reflections
and scatterings in the 3D porous structure, the EM energy is converted into heat energy through a
longer transmission path [62]. Furthermore, the CoS@Fe3O4@rGO aerogel can offer an extremely
large surface area with abundant functional groups and defects on it, in which many dipoles are
generated and the dipole polarization is enhanced [63]. Finally, owing to the excellent dielectric
properties of rGO and CoS, the hopping of electrons forms an induced current in an alternating electric
field, forming a 3D conductive network, which may be beneficial for improving conduction loss and
accelerating the EM attenuation. As a consequence, the CoS@Fe3O4@rGO aerogel exhibits excellent
EMW absorption performance.
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4. Conclusions

In this work, a unique CoS@Fe3O4@rGO aerogel was synthesized using the solvothermal method.
The microstructure, elemental composition, EMW absorption performance, and possible mechanism
of the products were carefully investigated. The high conductivity of graphene was modulated by
the heterogeneous components, and the impedance matching was optimized. The unique porous
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structure of the CoS@Fe3O4@rGO aerogel prolonged the propagation path of the electromagnetic
waves inside the material, which was conducive to the dissipation of electromagnetic waves through
scattering and reflection. As a result, the as-prepared CoS@Fe3O4@rGO aerogel exhibited a superior
microwave-absorbing property, and when the doping ratio was just 6 wt%, the optimal RL of
the CoS@Fe3O4@rGO aerogel could reach −60.65 dB with an ultra-wide bandwidth of 6.36 GHz
(10.24–16.6 GHz) at a 2.5 mm thickness. Due to the advantages of excellent dielectric loss and magnetic
loss, lightweight, strong absorption, and ultra-wide bandwidth, the CoS@Fe3O4@rGO aerogel possesses
great potential in the field of EMW absorption.
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