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Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of incurable motor neuron diseases (MNDs) characterized by a
selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately
5–10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their underlying pathogenesis,
including oxidative stress, endoplasmic reticulum stress, excitotoxicity, mitochondrial dysfunction, neural inflammation, protein
misfolding and accumulation, dysfunctional intracellular trafficking, abnormal RNA processing, and noncell-autonomous
damage, has begun to emerge. It is currently believed that a complex interplay of multiple toxicity pathways is implicated in
disease onset and progression. Among such mechanisms, ones that are associated with disturbances of protein homeostasis, the
ubiquitin-proteasome system and autophagy, have recently been highlighted. Although it remains to be determined whether
disease-associated protein aggregates have a toxic or protective role in the pathogenesis, the formation of them results from
the imbalance between generation and degradation of misfolded proteins within neuronal cells. In this paper, we focus on the
autophagy-lysosomal and endocytic degradation systems and implication of their dysfunction to the pathogenesis of ALS/MNDs.
The autophagy-endolysosomal pathway could be a major target for the development of therapeutic agents for ALS/MNDs.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a heterogeneous group
of inexorable neurodegenerative disorders characterized by a
selective loss of upper and lower motor neurons in the brain
and spinal cord [1, 2]. Most patients die of respiratory failure
within 3–5 years. Although ALS is one of the best studied and
a well-known form of motor neuron diseases (MNDs), the
molecular pathogenesis of ALS is still unclear [1, 2]. To date,
no effective therapeutic interventions to cure or even relieve
symptoms are available [3].

Most cases of ALS are sporadic, while approximately 5–
10% cases are familial. Recent advances in human genetics
and genomics greatly facilitate the chromosomal mapping
of disease loci, and the identification of causative genes

and mutations predisposing to many familial forms of
ALS/MNDs [1]. Thus far, more than 16 ALS causative
genes including SOD1, ALS2, SETX, SPG11, FUS, VAPB,
ANG, TARDBP, FIG4, OPTN, ATXN2, VCP, C9orf72,
UBQLN2, SIGMAR1, and CHMP2B have been identified [1,
4] (http://neuromuscular.wustl.edu/index.html) (Table 1).
The following characterizations of the disease-causing and
-related gene products, in conjunction with the creation
of animal models, have successfully unveiled the molecular
basis underlying the pathogenesis of ALS/MNDs, such as
oxidative stress, endoplasmic reticulum (ER) stress, excito-
toxicity, mitochondrial dysfunction, neural inflammation,
protein misfolding and accumulation, dysfunctional intra-
cellular trafficking, abnormal RNA processing, and noncell-
autonomous damage [4–11]. It is currently believed that
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Table 1: Genes associated with ALS and other neurodegenerative diseases.

Disease type Locus Gene Protein Inheritance∗ Onset Function
Mutation linked
to other diseases

ALS1 21q22.11 SOD1 SOD1 D Adult Oxidative and ER stress response

ALS2 2q33.1 ALS2 ALS2/alsin R Juvenile Trafficking and protein degradation PLSJ, IAHSP

ALS3 18q21 — — D Adult —

ALS4 9q34.13 SETX Senataxin D Juvenile DNA damage response AOA2

ALS5 15q21.1 SPG11 Spatacsin R Juvenile — SPG11

ALS6 16p11.2 FUS FUS D Adult DNA and RNA metabolism ALS-FTD

ALS7 20p13 — — D Adult —

ALS8 20q13.32 VAPB VAPB D Adult ER and Golgi membrane trafficking SMA4

ALS9 14q11.2 ANG Angiogenin D Adult Neuroprotection PD or ALS-PD

ALS10 1p36.22 TARDBP TDP-43 D, R, or S Adult DNA and RNA metabolism ALS-FTD, FTD

ALS11 6q21 FIG4 FIG4 D or S Adult PI (3,5) P2 regulation CMT4J

ALS12 10p13 OPTN Optineurin D or R Adult NFkB regulation GLC1E

ALS13 12q24.12 ATXN2 Ataxin-2 D Adult Gene regulation SCA2

ALS14 9p13.3-p12 VCP VCP or p97 D Adult Protein degradation IBMPFD

ALS15 Xp11.21 UNQLN2 Ubiquilin-2 D Adult Protein degradation ALS-FTD

ALS16 9p13.3 SIGMAR1 SIGMAR1 R Juvenile ER chaperon

ALS-FTD1 9q21-q22 — — D or S Adult —

ALS-FTD2 9p21.2 C9orf72 C9ORF72 D or S Adult — FTD

ALS-FTD3 3p11.2 CHMP2B CHMP2B D Adult Trafficking and protein degradation

DHN-7B 2p13.1 DCTN1 Dynactin-1 D Adult Trafficking Perry syndrome

CMT2B 3q21.3 RAB7 Rab7 D Adult Trafficking and protein degradation

CMT2O 14q32.31 DYNC1H1 Dynein D Adult Trafficking
SMA-LED and

MRD13

ALS∗∗ 5q35.3 SQSTM1
Sequestosome

or p62
? Adult Protein degradation PDB

∗
Inheritance (D: dominant, R: recessive, and S: sporadic). FTD: Frontotemporal dementia, DHN: distal hereditary motor neuronopathy, CMT: Charcot-

Marie-Tooth disease, PDB: Paget disease of bone, PLSJ: primary lateral sclerosis juvenile, IAHSP: infantile-onset ascending hereditary spastic paralysis,
AOA: ataxia-ocular apraxia-2, SPG: spastic paraplegia, SMA: spinal muscular atrophy, PD: Parkinson’s disease, GLC1E: glaucoma 1, open angle, E, SCA2:
spinocerebellar ataxia-2, IBMPFD: inclusion body myopathy with dementia and Paget disease of bone, SMA-LED: spinal muscular atrophy with lower limb
predominance, and MRD13: mental retardation, autosomal dominant 13. ∗∗ALS: Fecoto et al. reported several novel SQSTM1 mutations in patients with
ALS and predicted 8 of 9 missense variants behave like a pathogenic mutant by in silico analysis [64].

a complex interplay of such multiple toxicity pathways,
rather than a single independent mechanism, is implicated
in the ALS/MND’s pathogenesis [4–6].

Among these pathogenic mechanisms, ones that are
associated with disturbances of protein homeostasis have
been highlighted, as the accumulation of insoluble protein
aggregates is the cardinal pathological feature for ALS and
other neurodegenerative diseases [12]. Although it remains
to be determined as to whether such protein aggregates have
a toxic or protective role in the pathogenesis of ALS/MNDs,
it is conceivable that the formation of them results from the
imbalance between generation and degradation of misfolded
proteins within neuronal cells. In eukaryotes, there are two
main degradation systems for cytoplasmic proteins, that is,
the ubiquitin-proteasome system (UPS) and autophagy. The
UPS is mainly involved in selective clearance for short-lived
proteins [13], while autophagy is the mechanism by which
the long-lived as well as misfolded proteins can be removed
by the endolysosomal system [14, 15]. It is also noted that

the involvement of endocytosis and vesicle trafficking in
the regulation of protein homeostasis and degradation have
recently emerged [10, 16–18].

In this paper, we aim to give a comprehensive view on
the autophagy-endolysosomal system and implication of its
dysfunction to the pathogenesis of ALS/MNDs. Excellent
review articles specialized on the role of the UPS in
ALS/MNDs can be found elsewhere [13, 19].

2. The Autophagy-Endolysosomal System

2.1. Autophagic Pathways. Autophagy is an evolutionally
conserved lysosomal degradation system that is tightly linked
to a wide variety of physiological processes such as protein
homeostasis, removal of pathogens, and antigen presenta-
tion. There are at least three forms of autophagic pathways;
macroautophagy, microautophagy, and chaperon-mediated
autophagy, among which macroautophagy, hereafter referred
to as “autophagy”, plays a crucial role in the removal
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Figure 1: Endocytic trafficking and the autophagy-endolysosomal system in neurons.

of cytoplasmic long-lived as well as misfolded proteins
[14, 20–23]. Autophagy comprises three sequential steps;
autophagosome formation, maturation, and degradation
within lysosomes, through which entrapped cargo molecules
within autophagosomes can be degraded and reutilized for
the synthesis of newer cellular components.

These multiple steps of autophagy are highly orchestrated
by a common group of proteins called ATG (autophagy-re-
lated), such as Atg5 and Atg7 [14], and Rab GTPases, a large
family of small G proteins [24]. While most autophagic path-
ways are Atg5/Atg7-dependent, an Atg5/Atg7-independent
but Rab9-dependent alternative autophagic pathway has
recently been found in mammals [25]. Although autophagy
is highly upregulated under stress conditions such as nutri-
tional starvation [14] and exercise [26] (BCL2/Beclin-1-
dependent inducible autophagy), several lines of evidence
support the existence of basal or constitutive autophagy
(BCL2/Beclin-1-independent basal autophagy) in most cell
types including neuronal and muscle cells [26–30]. In fact,
despite that starvation does not induce autophagy in the
brain [31], either Atg5 or Atg7 deficiency in neurons results

in the accumulation of misfolded proteins and neurodegen-
eration [29, 30], indicating that basal autophagy has a crucial
role in the central nervous system (CNS).

Whichever autophagic mechanisms except Atg5/Atg7-
independent alternative [25] are involved, their activa-
tion can be monitored by the level and distribution of
two autophagy-associated proteins. One is microtubule-
associated protein 1 light chain 3 (LC3), a yeast Atg8
homolog, whose lipidated forms (LC3-II) are highly enriched
onto autophagosomal membranes [32] (Figure 1). The
other is p62 (a.k.a. sequestosome 1/SQSTM1), an adap-
tor molecule for selective autophagosomal degradation of
ubiquitinated targets, which directly binds to LC3, thereby
promoting the recruitment and engulfment of cargos to
autophagosomes [33–35] (Figure 1).

2.2. Endocytic Pathways. Endocytosis is an evolutionally
conserved cellular process involving the internalization
of a wide variety of molecules from the surface of cells.
There are at least four distinct well-recognized endocytic
pathways in eukaryotes: phagocytosis, macropinocytosis,
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clathrin-mediated endocytosis (CME), and caveola-
mediated endocytosis [36–38] (Figure 1). In addition,
several other uncharacterized clathrin- and caveolin-
independent pathways exist [38]. Each endocytic pathway
mediates the transport of specific cargo molecules and
delivers them to the correct destinations within cells. It is
highly appreciated that most internalized vesicles and/or
vacuoles containing specific cargos mature to or fuse with
early endosomes before the cargos are delivered to their
end destinations [38], and that a variety of the distinctive
Rab GTPases, such as Rab5 and Rab7, control endocytosis
and vesicle trafficking as well as cargo transportation [39].
Interestingly, a recent study has demonstrated that certain
types of endocytosis (macropinocytosis) and autophagy
are oppositely regulated by a phospholipid binding protein
Annexin A5, suggesting a coordinated cross-talk between
endocytic and autophagic pathways [40].

2.3. Maturation of Autophagosomes, Macropinosomes, and
Endosomes. Nascent autophagosomes undergo a stepwise
maturation, resulting in the creation of amphisomes and
autolysosomes by fusion with multiple endocytic com-
partments, such as early endosomes, multivesicular bodies
(MVBs), late endosomes, and lysosomes [41, 42]. Amphi-
somes, an intermediate hybrid vesicular compartment, con-
tain both autophagosomal and endosomal contents, while
autolysosomes are formed either from amphisomes or
directly from autophagosomes by fusion with lysosomes
[41] (Figure 1). Notably, not only the internalized vac-
uoles such as macropinosomes that are generated through
macropinocytosis but also early endosomes themselves
sequentially mature into MVBs, late endosomes, and lyso-
somes [15] (Figure 1). Further, it has recently been shown
that fusion of autophagosomes with early endosomes is
required for autophagy [43]. These findings strongly support
an intimate crosstalk between autophagic and endocytic
pathways particularly in their maturation steps.

Elaborate molecular mechanisms regulating the matura-
tion of intracellular vesicular/vacuolar compartments have
recently begun to emerge. Those include Rab-switching,
phosphatidylinositol (PI) conversion, endosomal sorting
complex required for transport (ESCRT) machinery, as well
as lumenal acidification, as reviewed in detail elsewhere
[15, 41, 42, 44]. Among the systems, the sequential action
of the small GTPases Rab5 and Rab7, that is, the Ra5-
Rab7 switching, plays a central role in the early step of the
endosome maturation; early to late endosomes [15, 45, 46].
Further, it has been reported that the sequential reaction of
Rab5-Rab21-Rab7 plays a pivotal role in macropinocytosis
and the macropinosome maturation [47]. PI conversions
mediated by VPS34 and PIKfyve also tightly link to the
maturation from Rab5- to Rab7-positive endosomes [15]. Of
particular, the Class III phosphatidylinositol-3 kinase (PI3K)
complexes containing p150, Beclin-1, VPS34, and UVRAG
positively regulate the maturation of both autophagosomes
and endosomes [15, 42, 48]. On the other hand, the
ESCRT complexes play a major role in the later step of
the autophagosome, amphisome, and endosome matura-
tion [49]. Moreover, histone deacetylase-6 (HDAC6), a

ubiquitin-binding deacetylase acting as a central component
of basal autophagy, selectively targets the ubiquitinated pro-
teins to autophagosomes [35], and controls the autophago-
some maturation rather than the autophagosome formation
[50]. Despite of such recent progress, molecular mechanisms
underlying coordinated regulation of multiple maturation
steps by these factors are still incompletely understood.

Since autophagosomes as well as endosomes are motile
within cells [51, 52], it is reasonable that their movements
are linked to their maturation stages, particularly in dif-
ferentiated neuronal cells. Indeed, Rab5 and Rab7 act in
a coordinated manner in controlling the early stage of
maturation and the axonal retrograde transport of vesicles
in motor neurons [52]. Further, Snapin, a neuronal SNARE-
binding protein acting as an adaptor linking late endosomes
to the dynein complex, plays key roles not only in dynein-
mediated retrograde transport but also in late endosomal-
lysosomal maturation in neurons [53]. Most recently, it has
also been shown that autophagosomes are formed and fuse
with late endosomes and/or immature lysosomes distally,
and their maturation progresses during transport along the
axons in primary dorsal root ganglion (DRG) neurons [54].

2.4. Lysosomal Degradation. The final step of the autophagy-
endolysosomal system is degradation of cargo molecules
within lysosomes. Two classes of proteins; lysosomal acid
hydrolases and lysosomal membrane proteins (LMPs), play
essential roles in degradation of cargos in lysosomes. Lyso-
somal acid hydrolases such as cathepsins are involved not
only in bulk degradation of substrates (cargos) but also
in other physiological processes such as antigen processing.
On the other hand, LMPs have a wide variety of functions
including lumenal acidification, import of cytosolic proteins,
and transport of degraded materials to cytosol. Excellent
review article specialized on lysosome biogenesis is available
elsewhere [55].

Lysosomal positioning is dynamically regulated by nutri-
tional conditions, in which a starvation induces preferential
relocalization of lysosomes from cell peripheries to the
juxtanuclear regions close to the microtubule-organizing
center (MTOC), thereby regulating the autophagic flux in
cells [56]. In neurons, bidirectional movements of lysosomes
within axons are observed [57, 58]. While autophagosomes
and endosomes are also bidirectionally moved in the distal
axons [54], they are rather exclusively transported in a
retrograde direction upon fusion with lysosomal-associated
membrane protein 1 (LAMP-1)-positive late endosomes
and/or immature lysosomes [51, 52, 54, 57]. Further, fully
matured lysosomes containing active lysosomal hydrolases
are confined to the proximal region of axons or the cell body
[54, 57]. Thus, autophagosomes and endosomes formed in
axons must be transported to the cell body for a complete
digestion of their cargos [27] (Figure 1). Recent evidence
showing that defective Snapin-dynein-mediated retrograde
transport in neurons results in the aberrant accumulation
of immature lysosomes and impaired lysosomal degradation
[53] supports this notion. Taken together, lysosomal degra-
dation of either engulfed or internalized cargos in neurons
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might be strictly dependent on retrograde transport and late
endosomal-lysosomal trafficking [51, 53, 58].

3. Dysfunction of
the Autophagy-Endolysosomal System in
Motor Neuron Diseases

Growing evidence supports a role of the autophagy-
endolysosomal pathway in the pathogenesis of ALS/MNDs.
Indeed, the accumulation of autophagosomes were observed
in the spinal cord of sporadic ALS patients [59], indi-
cating autophagic dysfunction in ALS. Autophagic dys-
function includes defects in the initiation (formation of
autophagosomes) and/or maturation stages of autophagic
processes, as well as imbalance between them, resulting
in aberrant accumulation of misfolded and/or aggregated
proteins within cells. Such pathological conditions disturb
neuronal homeostasis, leading to neurodegeneration. In
this section, we focus on causative and/or associated genes
for ALS/MNDs, whose gene products functionally link to
the autophagy-endolysosomal system; including SOD1 [60],
FIG4 [61], VCP [62], CHMP2B [63], SQSTM1 [64], DCTN1
[65], DYNC1H1 [66], and RAB7A [67] (Table 1). We describe
ALS2 [68, 69] and its product ALS2/alsin, an emerging
regulator for autophagy-endolysosomal system [70, 71], in a
separate section (see Section 4). Other ALS/MND causative
genes, such as TARDBP [72], OPTN [73], and UBQLN2
[74], which are also associated with protein degradation, are
described in detail elsewhere [4, 75].

3.1. Superoxide Dismutase 1 (SOD1): ALS1. Mutations in
SOD1 that encodes superoxide dismutase 1 (SOD1) account
for an approximately 20% of familial ALS cases [1]. It
is currently believed that the SOD1-mediated dismutase
enzymatic activity is not a major determinant for the
phenotypic modification in ALS, since there is no correlation
between disease severities and the SOD1 dismutase activities
[76, 77]. Rather, the propensity for the aggregate formation
associated with mutant SOD1 proteins, that is, gain of toxic
function, might be related to the phenotypic expression
of disease [78]. Recently, it has been reported that the
normal as well as mutant SOD1 proteins are degraded
both by the UPS and the autophagy-endolysosomal system
[70, 79]. SOD1 mutants can be recognized by p62 in an
ubiquitin-independent manner and targeted for degradation
through the autophagy-endolysosomal pathway [80, 81].
Importantly, progressive enhancement of autophagy and/or
decrease of autophagic flux are detected in a mutant
SOD1 (SOD1G93A)-expressing ALS mouse model [82–84].
Most recently, heat-shook protein 70 (Hsp70) and Bcl2-
associated athanogene 3 (BAG3) mediate the ubiquitination-
independent autophagic degradation of misfolded proteins
including SOD1 mutants [85]. It is also noted that SOD1
mutants directly bind to the retrograde motor protein
complex, thereby disturbing axonal transport [86–88] (see
Section 3.6). Taken together, it is conceivable that increased
accumulation of SOD1 mutants as disease progresses disturb
the autophagy-endolysosomal system.

3.2. Phospholipid Phosphatase Fig4: ALS11. Mutations in
FIG4 account for a form of autosomal recessive Charcot-
Marie-Tooth type 4J (CMT4J) [89]. Interestingly, an approx-
imately 2% of patients with ALS and primary lateral
sclerosis (PLS) carry heterozygous deleterious mutations
(nonsynonymous variants) in FIG4 [61], indicating that
FIG4 is implicated in the pathogenesis of both peripheral
neuropathy and ALS/MNDs. FIG4 encodes a phosphoinosi-
tide 5-phosphatase, Fig4, that regulates the intracellular
level of phosphatidylinositol-3,5,-bisphosphate (PI(3,5)P2).
It has been shown that mutation in FIG4 results in a
significant reduction of the PI(3,5)P2 level in cultured cells
[88]. Further, mice lacking Fig4, exhibit the accumulation
of LC3-II, p62, and LAMP-2 in neurons and astrocytes, and
die earlier than wild-type litters [90]. Thus, deregulation of
the autophagy-endolysosomal system, namely the later stage
of autophagosome and/or endosome maturation, might be
associated with the pathogenesis of FIG4-linked ALS/MNDs
(Figure 2).

3.3. Valosin-Containing Protein (VCP/p97): ALS14. Muta-
tions in VCP have previously been identified in patients
with inclusion body myopathy associated with Paget disease
of bone and frontotemporal dementia (IBMPFD) [91].
Recently, exome sequencing reveals VCP mutations as a
cause of familial ALS, accounting for 1-2% of familial ALS
[62]. VCP encodes valosin-containing protein (VCP/p97)
that belongs to the AAA+ (ATPases associated with various
activities) protein family, being implicated in multiple cel-
lular processes including the UPS [92, 93]. A recent study
has shown that VCP/p97 regulates endolysosomal sorting of
endocytosed ubiquitinated cargos such as caveolin-1 [94].
Further, loss of VCP/p97 accelerates the accumulation of
autophagosomes [95], and expression of IBMPFD-linked
mutants results in the impaired maturation of autolysosomes
with accompanying the cytoplasmic accumulation of TAR
DNA-binding protein (TDP-43), a causative gene product
for ALS10 and a major constituent of ALS-linked cyto-
plasmic inclusions [72, 95–97]. Thus, VCP/p97 might play
essential roles not only in the maturation of autophagosomes
and endolysosomes, but also in the regulation of intracellular
dynamics of TDP-43.

3.4. Charged Multivesicular Body Protein 2B (CHMP2B):
ALS-FTD3. Mutations in CHMP2B have been identified
in patients with FTD and ALS-FTD [63, 98]. CHMP2B
encodes charged multivesicular body protein 2B (CHMP2B),
a component of the ESCRT-III complex. The ESCRT com-
plexes are known to play important roles in MVB biogenesis
and autophagosomal-endolysosomal maturation [99]. Either
functional loss of ESCRT-III or ectopic expression of disease-
linked CHMP2B mutants causes the accumulation of LC3-
positive autophagosomes accompanying protein aggregates
containing ubiquitinated proteins and p62 [49], and results
in dendritic retraction prior to neurodegeneration [100].
Interestingly, ESCRT-depleted cells also exhibit the accumu-
lation of TDP-43 positive cytoplasmic inclusions [49]. These
results indicate that deregulation of MVB biogenesis and
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Figure 2: ALS-linked mutations in the genes, whose protein products are associated with autophagy-endolysosomal system and/or endocytic
trafficking, underlie the pathogenesis of ALS and related motor neuron diseases.

autophagy is implicated in the pathogenesis of CHMP2B-
linked FTD and ALS-FTD (Figure 2).

3.5. Sequestosome 1 (SQSTM1/p62). SQSTM1 encodes
SQSTM1/p62 that was originally isolated as an interacting
protein for the atypical protein kinases (aPKCs) [101]. It
has been shown that p62 acts as an adaptor and/or scaffold
protein that regulates not only the NF-κB activation through
the binding with aPKCs but also the selective-autophagy
via association with ubiquitinated misfolded proteins [102–
104]. Further, accumulation of p62 by defective autophagy
causes competitive inhibition of the oxidative-stress
responsive transcription factor Nrf2-Keap1 interaction,
resulting in activation of Nrf2 and its target antioxidative
stress genes [105]. Conversely, genetic inactivation of Sqstm1
in mice results in the accumulation of hyperphosphorylated
tau and neurodegeneration [106]. Although mutations in

SQSTM1 have originally been identified in patients with
Paget disease of bone (PDB) [107], a recent study has
revealed several missense variants in SQSTM1 in familial
as well as sporadic ALS [64]. It is notable that abundant
p62-positive inclusions in the brain are a typical pathological
feature of ALS or ALS-FTD associated with hexanucleotide
repeat expansion in C9orf72 [108, 109]. Considering the facts
that two independent genes linking to forms of Paget disease
of bone; VCP for IBMPFD and SQSTM1 for PDB, are also
associated with ALS and/or ALS-FTD, and that both VCP
and p62 are key regulators for the autophagy-endolysosomal
system, dysregulation of such VCP/p62-associated common
pathological pathways might account for these seemingly
different diseases.

3.6. Dynein/Dynactin Complex. Mutation in DCTN1 encod-
ing the p150 subunit of the transporter protein dynactin
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has been identified in autosomal dominant form of lower
MNDs [65]. Dynactin functions as an adaptor between
dynein and various cargos, thereby regulating the efficiency
of dynein motor [11]. It has also been shown that expansion
of polyglutamine-tract in androgen receptor, which causes
a form of motor neuron disease; spinal and bulbar mus-
cular atrophy (SBMA), results in polyglutamine-dependent
transcriptional dysregulation of dynactin [110]. Moreover,
overexpression of dynamitin (p50) subunit of dynactin,
which causes a dissociation of the dynactin complex, thereby
interfering the dynein/dynactin-dependent retrograde trans-
port, causes MND in mice [111]. On the other hand, several
studies identify mutations in the component of dynein motor
complex itself. Exome sequencing reveals the mutation in
DYNC1H1 encoding cytoplasmic dynein heavy chain in
patients with dominant form of axonal CMT [66]. Mutations
in a mouse homolog Dync1h1 have also been identified,
resulting in progressive motor neuron degeneration in mice
[86]. It has been demonstrated that a mutant SOD1-
expressing ALS mouse model carrying dynein mutation
shows a defective axonal transport [86, 87]. Further, SOD1
mutants preferentially interact with the dynein complex,
disturbing their functions [88]. Interestingly, decreased
dynein function impairs the autophagy-dependent clear-
ance of misfolded protein aggregates in parallel with the
increased level of LC3-II-positive autophagosomes [112].
Collectively, defects in dynein/dynactin-mediated retrograde
axonal transport are involved in etiology of ALS/MNDs [11]
(Figures 1 and 2).

3.7. Small GTPase Rab7. Charcot-Marie-Tooth type 2B
(CMT2B) is an autosomal-dominant peripheral neuropathy
caused by the missense mutations in RAB7A [67]. These
mutations cause the constitutive activation of its encoding
protein Rab7 [113], a regulator of maturation of autophago-
somes, amphisomes, and late endosomes in cells [114–116]
(Figures 1 and 2). Although the molecular mechanism by
which dysfunction in a ubiquitously expressed Rab7 affects
only sensory and/or motor neurons remains unclear, recent
studies have demonstrated that these CMT2B-associated
Rab7 mutants exhibit a persistent elevation of endosome-
mediated nerve growth factor (NGF) signaling [117], and
inhibit neurite outgrowth in cultured neuronal cells [118].

4. ALS2/alsin:
A Regulator of Autophagy-Endolysosomal
Protein Degradation

Loss of function mutations in the ALS2 gene accounts
for juvenile recessive amyotrophic lateral sclerosis (ALS2),
juvenile primary lateral sclerosis (JPLS), and infantile-onset
ascending hereditary spastic paralysis (IAHSP) [68, 69, 119,
120]. The ALS2 gene encodes a 184 kDa protein of 1657
amino acids, ALS2 or alsin, comprising three predicted
guanine nucleotide exchange factor (GEF) domains: the
N-terminal RCC1-like domain (RLD), the central Dbl
homology and pleckstrin homology (DH/PH) domain, and
the C-terminal vacuolar protein sorting 9 (VPS9) domain

[68]. Indeed, it has been shown that ALS2 acts as a GEF
for Rab5 [120–122], and regulates endosome fusion and
trafficking by activating Rab5 [120, 121, 123] (Figure 1).
ALS2 is also involved in Rac1-activated macropinocytosis
and the following macropinosome trafficking and fusion
[124, 125]. In particular, fusion between early endosomes
and macropinosomes is, at least in part, regulated by ALS2
in an ALS2-associated Rab5 GEF activity-dependent manner
[124]. Further, ALS2 plays some modulatory roles in axonal
outgrowth in neuronal cells [125, 126], and in cytoprotection
from oxidative stress-induced insults [127–130].

Recently, we have demonstrated that activated Rac1
interacts with ALS2 and induces the relocalization of ALS2
from cytoplasm to membranous compartments; for exam-
ple, membrane ruffle, macropinosome, and endosome [124].
This Rac1-mediated relocalization of ALS2 is required for
the ALS2-mediated Rab5 activation on the membranous
compartments [71, 124]. It is noted that ALS2 is also
colocalized with LC3/p62-positive autophagosomes and/or
amphisomes [70, 71]. Conversely, pathogenic missense ALS2
mutants fail to be localized to such vesicular compartments,
and lose the competence to enhance the formation of
amphisomes [71], indicating that the Rac1-induced relo-
calization of ALS2 might be crucial to exert the ALS2-
associated function linking to the autophagy-endolysosomal
degradative pathway. Indeed, loss of ALS2 results in a slower
degradation of endocytosed epidermal growth factor (EGF)
in mouse embryonic fibroblasts [131]. Further, an ALS2-
deficient SOD1H46R-expressing ALS mouse model exhibits
the aberrant accumulation of autophagosomes and vesicular
compartments in axons, delayed protein degradation by
the autophagy-endolysosomal system, accelerated neurode-
generation, and earlier death [70]. Although the exact
physiological function of ALS2 remains to be clarified, it
is currently believed that ALS2 plays an important role
in trafficking and maturation of several distinct vesicu-
lar compartments, including macropinosome, endosome,
and autophagosome, and is implicated in the autophagy-
endolysosomal degradative pathways (Figure 2).

5. Conclusions and Perspectives

Thus far, a large number of successful therapeutic inter-
ventions in preclinical animal studies have failed to trans-
late into human clinical applications in ALS/MNDs. Even
in such a discouraging situation, enormous efforts have
continuously been made towards defining the molecular
pathogenesis of these devastating diseases. The autophagy-
endolysosomal system is among the underlying mechanisms,
whose dysfunction is tightly associated with a variety of
neurodegenerative diseases. It plays a pivotal role not only in
ALS/MNDs as discussed in this paper, but also in other neu-
rodegenerative diseases including Alzheimer’s disease [57],
Parkinson’s disease [132], and Huntington’s disease [133,
134]. Thus, the autophagy-endolysosomal pathway could be
a major target for the development of novel therapeutic
agents for neurodegenerative diseases [135]. Indeed, the
induction of autophagy by lithium administration results
in a reduced level of aggregated proteins and extends
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lifespan in a SOD1G93A-expressing ALS mouse model [136].
However, a recent preclinical animal study has demonstrated
that the treatment with rapamycin, an another inducer of
autophagy, rather causes the accumulation of p62, more
severe mitochondrial impairment, higher Bax levels, and
greater caspase-3 activation, thereby augmenting motor neu-
ron degeneration in a same ALS mouse model [137]. These
conflicting results imply that the simple pharmacological
induction of autophagy cannot be always beneficial in vivo.
As such, our understanding of the intricate autophagy-
endolysosomal system and its functional linking to other
physiological systems in the CNS is still incomplete. Future
studies, which could uncover the molecular mechanisms
of a selective neurodegeneration in greater detail, will
be required for the development of proper and effective
therapeutic agents for the treatment of ALS/MNDs and other
neurodegenerative diseases.
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