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Abstract: In recent years, research on solar absorbers provides a significant breakthrough to solve
the energy crisis. A perfect solar absorber based on a four-corner star array is designed and the
absorption performance is analyzed numerically. The results show that the absorber reaches more
than 90% of the full band in the range of 400–2000 nm. In particular, the absorption efficiency of the
continuous more than 95% of the bandwidth reached 1391 nm, and the average absorption efficiency
of the whole study band is more than 98%, and the loss of the solar spectrum only accounted for 2.7%.
At the same time, the absorption efficiency can be adjusted by changing the geometric structure of the
absorber. In addition, due to the perfect symmetry of the structure, it has an excellent insensitivity
of the incident angle and polarization angle. In general, the proposed solar absorber has exciting
prospects in solar energy collection and utilization, photothermal conversion and other related fields.

Keywords: plasma; perfect absorber; ultra-wideband; metamaterial

1. Introduction

The performance metamaterials are widely used in various fields due to their unique
electromagnetic properties, such as metamaterial lenses [1–3], invisibility cloaks [4,5], sur-
face sensors [6–9], wave absorbers [10–15], energy harvesters [16], etc. It is especially
noteworthy that the energy crisis has brought new challenges and opportunities to all coun-
tries around the world [17,18], and solar energy has quickly won the favor of researchers
because of its unique advantages. The research data show that the spectrum of solar energy
radiation to the earth’s surface is mainly distributed in the range of 295–2500 nm, and
nearly half of the energy is mainly concentrated in the visible region [19]. Therefore, it is
urgent to design a device for broadband and efficient absorption of solar energy spectrum.

Up to now, the research on solar absorbers has mainly been focused on the joint design
of material and structure. In terms of materials, the imaginary part of the metal determines
the loss of incident light and the ability of plasma resonance. Meanwhile, the absorber
should adapt to various special environments such as high temperature, which makes a
class of metals with large constant imaginary part and high melting point, such as Ti and
W, stand out from other traditional metals [20]. Compared with traditional metals such as
gold and silver, which have plasmon resonance that can only work in a narrow band range,
refractory metals have better plasmon properties and can improve the absorption efficiency
in a wide frequency range due to their inherent losses [21]. In terms of structure design, the
absorbers studied so far can be mainly divided into three types. The first type mainly refers
to the simple structure preparation and the realization of broadband absorption within a
certain range, such as a structure composed of periodic arrangement of titanium and silicon
cubes and aluminum film [22], a periodic array based on Ti ring [23] and a multi-port ring
based on two materials consisting of Ti and TiN [24], etc. However, the drawback is that

Nanomaterials 2021, 11, 2172. https://doi.org/10.3390/nano11092172 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-9052-119X
https://orcid.org/0000-0001-7777-5208
https://orcid.org/0000-0002-7452-9658
https://orcid.org/0000-0002-0299-0955
https://doi.org/10.3390/nano11092172
https://doi.org/10.3390/nano11092172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11092172
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11092172?type=check_update&version=1


Nanomaterials 2021, 11, 2172 2 of 10

the absorption bandwidth is narrow, and the absorption efficiency of the continuous over
90% absorption wavelength can only reach around 1300 nm. The second type mainly refers
to the realization of a large absorption bandwidth of the absorber, such as a four-layer
ring-disk structure (SiO2–W-SiO2–W) [19] or an elliptical titanium nanodisk array based
on a silica–titanium–silica–titanium four-layer structure [25], but unfortunately this type of
absorber has a low absorption rate in the visible light region. The broadband absorption
is mainly due to the broadening of the absorption in the near infrared band, while nearly
half of the energy in the solar spectrum is concentrated in the visible light region. The last
one can better solve the problems of a narrow absorption bandwidth and low absorption
efficiency in the visible light region, such as a quadruple staircase structure [26] or a stack
structure consisting of multiple layers of disks of different sizes [21]; although this kind
of structure achieves good absorption efficiency, it mainly relies on the complex structure,
which will directly lead to the problems of high precision, difficulty and high cost of the
preparation process. The wide spectrum absorption generated by the above three types of
absorbers is mainly due to the novel structural design and the use of high melting point
materials. In general, it is due to the continuous exploration of researchers that the study
of absorbers is flourishing.

Therefore, the main problem to be solved in this paper is to design an absorber
that perfectly combines the advantages of large absorption bandwidth, high absorption
efficiency in visible light region, simple structure and low preparation cost. For this purpose,
we proposed a four-corner star nanoarray, in which the novel design of the polygonal
star greatly enhances the absorption of the solar spectrum, and the use of high melting
point materials also makes the absorber adaptable to a variety of environments. Numerical
analysis results further show that the absorption efficiency of the structure is not only more
than 90% in the whole band, but also that more than 95% of the bandwidth reaches 1391
nm. More prominent is that the average absorption efficiency of the structure reaches 98%,
and the solar energy loss of the whole band only accounts for 2.7%. The perfect symmetry
of the structure also makes it insensitive to the angle of polarization and incidence. The
above results indicate that the absorber will have a promising future in the fields of solar
energy absorption and utilization, photothermal conversion, etc.

2. Materials and Methods

The structure diagram of the broadband absorber proposed in this paper is shown in
Figure 1. Specifically, it is mainly composed of a four-corner star array in which the whole
structure only uses two basic materials (silica and Ti) with high melting point properties,
which greatly reduces the preparation cost and process difficulty. Both silica and Ti come
from the materials database of FDTD software (FDTD Solutions 8.0, Lumerical, Vancouver,
BC, Canada). The novel four-corner star structure is mainly constructed by the combination
of the circumscribed circle and the inscribed circle. The four external vertex angles of the
four-corner star are connected to the large circle with the radius of Rout, and the four
internal vertex angles are connected to the small circle with the radius of Rin. The specific
structure is shown in Figure 1b.

Figure 1 is a schematic diagram of the structure of the wide spectrum absorber designed
in this paper. The meanings of the parameters in the structure are shown in Table 1.

Table 1. Related parameters of the nanostructure.

Variable Name Significance Variable Name Significance

Rout Circumscribed Radius h4 Substrate thickness

Rin Inscribed Radius T The period length of
the small cell

h1 Top height θ Incident light angle

h2 The height of the
four-corner star ψ Polarization angle

h3 Bottom height
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Figure 1. Schematic of the proposed nanostructure. (a) Three-dimensional diagram; (b) The X–Y
plane graph; (c) The X–Z plane graph.

In this paper, the finite difference time domain (FDTD) is used to simulate the struc-
ture. The 400–2000 nm plane wavelength spectrum light source is incident in the vertical
direction. As for the boundary conditions, since the structure is in the form of an array, the
X and Y directions are set as periodic boundary conditions. In the Z direction, the perfect ab-
sorbing layer boundary conditions are used, and the grid size is set as 3 nm × 3 nm × 3 nm.
For the monitor, power detectors are placed above and below the structure to obtain the
reflectivity R and transmittance T of the structure, and the absorption efficiency of the
nanostructure is calculated by the formula A = 1 − R − T. The substrate h4 (composed
of Ti) is not only used for physical support but is also thick enough to ensure that the
light transmittance of the whole structure is almost zero. The equation [19] was shown
as follows.

η =

∫ λmax
λmin

(1 − R(ω)− T(ω))∗IAM1.5(ω) ∗ dω∫ λmax
λmin

IAM1.5(ω)dω
(1)

In the above equation, IAM1.5(ω) is the energy corresponding to the standard solar
spectral data, R(ω) is the reflectivity and T(ω) is the transmittance. The absorption
efficiency was obtained by Equation (1).

By optimizing the structure of the absorption of the related parameters to get optimal
results, as shown in Figure 2, specifically, the geometrical parameters of the structure under
the optimal results are as follows: h1 = 80 nm, h2 = 90 nm, h3 = 46 nm, h4 = 300 nm,
Rout = 110 nm, Rin = 45 nm, T = 240 nm. At the same time, in order to further demonstrate
the actual absorption of solar spectrum, Figure 2a shows the actual solar spectrum energy
and absorb solar energy spectrum diagram. It can be seen that the overall absorption
efficiency of the absorber performance is perfect, and the energy of the loss spectrum is
very small; at the same time, the absorption efficiency curve shows three absorption peaks,
namely peak α, peak β and peak γ, respectively. The corresponding peak wavelengths are
480 nm, 690 nm and 1450 nm, respectively.
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3. Results and Discussion

Benefiting the absorption mechanism of the broadband absorber proposed in this
paper can be summarized as the result of localized surface plasmon resonance, strong
plasma near-field coupling, Fabry–Perot resonance and the unique properties of high-loss
materials [19,24,25,27,28]. In order to better explain the internal mechanism causing wide
spectrum absorption, this paper further studies the electric field intensity distribution
diagram and the magnetic field intensity distribution diagram corresponding to three
absorption peaks, as shown in Figure 3, in which (a)–(f) are the electric field diagrams in
X–Y plane and the X–Z plane, and (g)–(l) are the magnetic field diagrams in X–Y plane and
the X–Z plane.
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plane) and (j–l) magnetic field |H| (color bar in the X–Z plane); the corresponding wavelengths of each
column of images are 480 nm, 690 nm and 1450 nm, respectively.
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For λ = 480 nm corresponding to peak α, it can be seen from Figure 3a that the tip
of the four-pointed star presents a strong electric field, which means that the plasma
near-field coupling between the metal arrays is excited. Moreover, the distribution of the
strong electric field around the side of the four-pointed star and the diagrams (g), (j) show
the magnetic field mainly concentrated in the vicinity of the four-pointed star and the
upper surface. These can be regarded as the local surface plasmon resonance of the metal
surface. At the same time, it can be seen from Figure 3d that there is a strong electric
field between the four-pointed star and the bottom layer, which is mainly attributed to the
fact that the four-corner star array, the bottom layer of Si02 and the base layer Ti jointly
form a Fabry–Perot cavity with a low quality factor, leading to the wide-band absorption
resonance caused by the resonance of the F–P cavity [22]. To sum up, the absorption peak
at 480 nm is mainly acted on by three mechanisms. For λ = 690 nm corresponding to
peak β, the corresponding electric field diagrams (b), (e) and magnetic field diagrams (h),
(k) are all compared with the electric field diagrams (a), (d) and magnetic field diagrams
(g), (j) corresponding to λ = 480 nm, showing a weakening trend. The strong electric field
near the four-pointed star in diagrams (b) disappears, which indicates that the broadband
absorption at this wavelength is mainly caused by the near-field coupling of plasmons
between the metal arrays and the Fabry–Perot (FP) cavity excitation. For λ = 1450 nm in
peak γ, the electric field shown in diagrams (c), (f) is mainly concentrated at the tip of the
four-pointed star. It can be seen that only the plasmon near-field coupling between the
metal arrays is excited.

In order to better illustrate the superiority and rationality of the structure designed
in this paper, we will further analyze the composition and design of the structure and the
influence of structural parameters on absorption performance.

The dimensions of each geometric parameter in the following four cases are selected
from the optimal results in Figure 2. First of all, by comparing the absorption efficiency
in various cases in Figure 4, we discuss the influence of the existence of the four-corner
star array on the absorption efficiency. Specifically, from the absorption efficiency dia-
grams of case 1 and case 2, case 2 with a four-pointed star has a better absorption effi-
ciency at 400–1200 nm and can continuously achieve broadband absorption of over 90%
at 400–800 nm. However, in case 1, the absorption efficiency was lower than 80%. At the
same time, it is more obvious by comparing case 1 and case 4. The existence of the four-
pointed star is of great significance to the absorption efficiency, which greatly improves the
absorption efficiency for the whole study wavelength. It can be seen that the broadband ab-
sorption of the absorber is mainly caused by the combination of four-pointed star array and
other layers. Then, in order to explore the influence of the specific position for four-pointed
array on absorption performance, we further analyze case 3 and case 4. It can be found
that the position of the four-pointed star also has a great influence on the performance of
absorption efficiency. Although case 3, where the four-pointed star is placed on the top, can
also cause high-efficiency absorption to some extent, the absorption efficiency at 0.4–2 µm
is far from the absorption effect of case 4. Therefore, through comprehensive analysis, this
paper finally selects a four-layer structure, namely the nested design of Si02-Ti-Si02-Ti.

Next, we will specifically discuss the influence of some geometric parameters on
the absorption performance. When Rout and Rin are changed, the change of absorption
efficiency is shown in Figure 5a. The dimensions of other geometric parameters are the
same as those of the optimal structure shown in Figure 2. When Rout increases from
80 nm to 120 nm, it can be seen that the absorption efficiency increases significantly
between 0.8–1.4 µm. In particular, the absorption efficiency of the absorption concave peak
corresponding to the wavelength of 1 µm increases from the initial 0.9 to 0.97. This can be
attributed to the increase of Rout, the strong plasmon near the field coupling caused by the
tip of the four-corner star array and the enhancement of the F–P resonant cavity after area
expansion. For the increase of Rin, it can be seen from Figure 5b that when Rin grows from
30 nm to 70 nm, the overall peak absorption efficiency in the long-wavelength region is
red-shifted. Moreover, the absorption efficiency corresponding to the absorption peak near
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1 µm decreases from 0.96 to 0.83, which is mainly attributed to the fact that the tip effect
of the four-corner star is weakened with the increase of Rin, thus reducing the near-field
coupling effect of the strong plasmon.
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Then, the influence of different thickness of silica layer on absorption efficiency is
discussed, and all the geometrical parameters of the structure adopt the size of the optimal
result as shown in Figure 2, and change the height of h1, h2 and h3 successively to obtain
the absorption efficiency diagram as shown in Figure 6. As shown in Figure 6, the influence
of the changes in h1 on performance was significantly lower than that of the changes in
h2 and h3 on absorption performance. In the later stage of this paper, h1 = 80 nm was
selected as the research object. In addition, the absorption peak showed a gradual red
shift. In Figure 6c, with the increase of h3, the absorption efficiency in almost the whole
wavelength range showed a downward trend. The internal mechanism of the influence
of these parameters on absorption efficiency is mainly due to the variation of plasmon
resonance and the intensity of the Fabry–Perot resonant cavity. Appropriate thickness can
reduce the reflection of incident light and thus enhance the absorption of incident light,
but too great a thickness further affects the surface plasmon resonance of the four-corner
star array [19].
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In addition, we also tested the sensitivity of the incident angle and polarization angle
of the absorber, which is also a particularly important index in practical use. Figure 7a,b
show that when the incident angle varies from 0◦ to 60◦, it keeps high-quality absorption
in 0.4–1.2 µm, especially when the incident angle is 60◦, as it is close to 100% perfect
absorption in this band. However, at the wavelength of 1.2–2 µm, the absorption efficiency
corresponding to 60◦ decreases significantly, while other incident angles still maintain a
high absorption efficiency, which makes the average absorption efficiency corresponding to
60◦ lower than that corresponding to other incident angles. Fortunately, because the energy
of the solar energy spectrum is small in the long wavelength region, it has little influence
on the absorption of the solar energy spectrum in practice. The irrelevance of this incident
angle can be mainly attributed to the complete symmetry of the absorber structure [23].
At the same time, it can be seen from Figure 7c that the intensity of the electric field at a
fixed wavelength does not change with the change of the polarization angle. Therefore,
the absorber designed in this paper has good independence of the incident angle and
polarization angle.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 10 
 

 

 
Figure 7. Absorption efficiency of different incident angles and polarization angles. (a) The ab-
sorption efficiency diagram when the incident angle is changed; (b) The electric field diagram 
when the incident angle is changed; (c) The electric field diagram when the polarization angle is 
changed. 

Finally, in order to verify whether the absorber has certain adaptability and extensi-
bility in terms of material and structure, we try to choose other polygons structure and 
high melting point materials, and then analyze the influence on absorption efficiency. As 
shown in Figure 8a, for several multi-star structures studied (such as triangular star, four-
corner star, five-corner star and hexagonal star), the results show that different multi-cor-
ner star arrays can bring relatively high absorption efficiencies, which is mainly due to the 
plasmon effect under the influence of multi-corner array. Meanwhile, when analyzed for 
other high melting point materials such as Ni, TiN, W, etc. on the absorption efficiency of 
the four-corner array, the influence of the results as shown in Figure 8b show that alt-
hough there are slight differences in absorption efficiency at different wavelengths, they 
overall have brought higher average absorption efficiency. For instance, in embedded as 
shown in the picture, it can be seen that the average absorption efficiency more than 
93%,Ti has the best absorption efficiency. 

 
Figure 8. Polyhedron and different absorption efficiency of materials. (a) The absorption efficiency diagrams for different 
polygonal stars; (b) The absorption efficiency diagram of the four-pointed star with different materials. 

In order to further demonstrate the excellent performance of the absorber designed 
in this paper, we compared the performance indexes of the absorber designed in this pa-
per with those of other absorbers that have been published, as shown in Table 2. The re-
sults show that the structure designed in this paper is better than the same type of ab-
sorber in terms of performance index. In particular, the absorber not only ensures the high 

Figure 7. Absorption efficiency of different incident angles and polarization angles. (a) The absorption
efficiency diagram when the incident angle is changed; (b) The electric field diagram when the
incident angle is changed; (c) The electric field diagram when the polarization angle is changed.

Finally, in order to verify whether the absorber has certain adaptability and extensibil-
ity in terms of material and structure, we try to choose other polygons structure and high
melting point materials, and then analyze the influence on absorption efficiency. As shown
in Figure 8a, for several multi-star structures studied (such as triangular star, four-corner
star, five-corner star and hexagonal star), the results show that different multi-corner star
arrays can bring relatively high absorption efficiencies, which is mainly due to the plasmon
effect under the influence of multi-corner array. Meanwhile, when analyzed for other
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high melting point materials such as Ni, TiN, W, etc. on the absorption efficiency of the
four-corner array, the influence of the results as shown in Figure 8b show that although
there are slight differences in absorption efficiency at different wavelengths, they overall
have brought higher average absorption efficiency. For instance, in embedded as shown in
the picture, it can be seen that the average absorption efficiency more than 93%, Ti has the
best absorption efficiency.
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In order to further demonstrate the excellent performance of the absorber designed in
this paper, we compared the performance indexes of the absorber designed in this paper
with those of other absorbers that have been published, as shown in Table 2. The results
show that the structure designed in this paper is better than the same type of absorber in
terms of performance index. In particular, the absorber not only ensures the high efficiency
of broadband absorption, but also makes the visible light absorption band which is mainly
concentrated by solar energy obtain a high efficiency absorption.

Table 2. Comparison of some absorbers with the absorber proposed in this work.

References Material Structure Continuous Absorption
over 90% Bandwidth/nm

Ref. [29] Ti Oval plate 1376
Ref. [22] Ti, Al cube 712.4

Ref. [20] Ti, TiN Double-size
cross-shaped 1182

Ref. [24] Ti, TiN Split ring 1182
This work Ti, SiO2 Four-corner star array 1600

4. Conclusions

Overall, we put forward a kind of broadband solar energy absorber based on the four-
corner array, the numerical analysis results show that the absorption apparatus with over
90% of all band absorption bandwidth (as much as 98% of the average absorption efficiency)
and an overall structure of only Ti and SiO2 (two kinds of basic material) has good thermal
stability and is easy to manufacture. The local surface plasmon resonance, strong plasmon
near field coupling, Fabry–Perot (F–P) resonance and the intrinsic properties of the material
contribute to the wide band absorption. At the same time, this paper studied the real
absorbing properties of the absorber under the solar radiation and discussed in detail
the geometric structure parameters and incident light angle and the polarization angle
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effect the performance of the absorption. The results show that the absorber has good
insensitivity to incident angle and polarization angle, which shows that the absorption
apparatus is good for environmental adaptability. Therefore, the absorber designed in this
paper will be in the field of solar energy absorption, and harvesting and other fields have a
promising prospect.
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