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Abstract: The cyclic AMP receptor protein (CRP) is one of the best-known transcription factors,
regulating about 400 genes. The histone-like nucleoid structuring protein (H-NS) is one of the
nucleoid-forming proteins and is responsible for DNA packaging and gene repression in prokaryotes.
In this study, the binding of ppGpp to CRP and H-NS was determined by fluorescence spectroscopy.
CRP from Escherichia coli exhibited intrinsic fluorescence at 341 nm when excited at 280 nm. The
fluorescence intensity decreased in the presence of ppGpp. The dissociation constant of 35 ± 3 µM
suggests that ppGpp binds to CRP with a similar affinity to cAMP. H-NS also shows intrinsic
fluorescence at 329 nm. The fluorescence intensity was decreased by various ligands and the
calculated dissociation constant for ppGpp was 80 ± 11 µM, which suggests that the binding site
was occupied fully by ppGpp under starvation conditions. This study suggests the modulatory
effects of ppGpp in gene expression regulated by CRP and H-NS. The method described here may be
applicable to many other proteins.
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1. Introduction

Since the discovery of cAMP by Sutherland and Rall (1958), molecules in combination
with cAMP receptor protein (CRP) and adenylate cyclase have served as the model for sig-
nal transduction pathways [1]. A CRP dimer binds two cAMPs with an anti-conformation
and two additional cAMPs with a syn-conformation (with a substantially lower affinity).
The anti-cAMP binding is responsible for the global allosteric transition of CRP [2,3]. In
Escherichia coli, CRP (also referred to as catabolite gene activator protein, CAP) regulates
the transcription of about 400 genes [4,5]. The cellular concentrations of cAMP in an
Escherichia coli strain have been reported to vary between 1.5 and 5 µM in the presence of
glycerol, and 0.4 and 1.5 µM in the presence of glucose [6,7]. The binding of cAMP to CRP
shows negative cooperativity under a low ionic strength, although this is still debated. The
dissociation constants for the first cAMP binding to CRP have been reported as 25 and
11 µM by equilibrium dialysis using radioactive cAMP [8,9]. We describe a simple method
to determine the binding affinity of ligands to proteins. Since the binding of cAMP to CRP
has been studied extensively, previous studies using radioactive ligands may serve as a
reference to corroborate the method described in this study.

At least 12 nucleoid-associated proteins, which play a role in DNA packaging such
as eukaryotic histone proteins have been described in Escherichia coli [10]. Among them,
histone-like nucleoid structuring protein (H-NS) is involved in the biogenesis of flagella;
H-NS mutation reduces the transcription of flhD and fliA genes, and thereby results in the
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complete loss of flagella [11]. The expression of approximately 5% of the genes is altered
in the H-NS mutant strain. In most cases, H-NS appears to repress gene expression [12].
Transcription of the H-NS gene is down-regulated by ppGpp, the signaling molecule in
bacterial stringent responses [13]. H-NS is an abundant protein, about 20,000 copies of
which are present in each cell [14,15]. The binding effect of abundant proteins to signaling
molecules may have a more significant impact in cells by sequestering a large portion of
signal molecules.

The stringent response is mediated by guanosine tetraphosphate (ppGpp) and guano-
sine pentaphosphate (pppGpp) in response to nutrient (phosphate, iron, carbon, and fatty
acid) deprivation [16,17]. (p)ppGpp also serves as a global regulator in replication, tran-
scription, and translation, including the expression of about 1400 genes [18–21]. Despite its
importance in bacterial physiology and gene regulation and nearly half a century of study,
the mechanisms concerning how ppGpp acts on stringent responses remains incompletely
understood since the full set of effector proteins is unknown. Recently, CRP has been
identified as a ppGpp binding protein in a study utilizing a photo-crosslinking ppGpp
analog [22]. H-NS is also captured to a ppGpp-immobilized resin (unpublished data).
Nevertheless, the binding of ppGpp to CRP and H-NS has yet to be reported.

In this study, ppGpp binding to CRP and H-NS was determined by fluorescence
spectroscopy, while cAMP-binding to CRP was used as a reference. The dissociation
constant of cAMP to CRP was similar to those reported previously, implying that the
method described here is valid. We report here for the first time that CRP and H-NS bind to
ppGpp with ‘high’ affinity, suggesting that their binding may play a role in the regulation
of gene expression in Escherichia coli.

2. Results
2.1. Cloning, Over-Expression, and Purification of CRP and H-NS from E. coli

The CRP gene was cloned into E. coli BL21 (DE3). CRP and H-NS were over-expressed
and isolated as described in the Materials and Methods section. In SDS-PAGE, the isolated
CRP and H-NS migrated as single bands with molecular masses around 24 kDa and
16 kDa, respectively (data not shown). CRP was eluted as a single peak in a size exclusion
chromatography and the molecular mass was determined as 39–42 kDa, suggesting that
the isolated CRP was a dimer, as expected (data not shown).

2.2. Binding of ppGpp and cAMP to CRP

E. coli CRP showed an intrinsic fluorescence when excited at 280 nm. The fluorescence
intensity was decreased by the presence of ppGpp (Figure 1a). The dissociation constant
of ppGpp binding to CRP was calculated as 35 ± 3 µM based on the changes in the areas
below the spectra (Figure 1b). The binding of various ligands (including cAMP) was also
investigated (Supplementary Figure S1) and the results are summarized in Table 1. The
dissociation constant for cAMP to CRP was determined as 22± 3 µM, which was consistent
with previous reports [8,9,23]. The calculated dissociation constants for cGMP and ATP
were 17 ± 1 and 33 ± 4 µM, respectively, suggesting that ppGpp, cGMP, and ATP bound
to CRP with a similar affinity as cAMP. Based on equilibrium dialysis utilizing radioactive
ligands, the binding of cGMP and cAMP to CRP (with a similar affinity) was reported
previously [8], suggesting that the method described here was valid. The current method
was much simpler and not limited by the availability of radioactive ligands. ATP binding
to CRP with a high affinity was an unexpected observation.
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presence of ppGpp. Following excitation at 280 nm, the emission spectra of CRP (2 µM) were recorded at 25 °C. (b) The 

fluorescence change (ΔF(area)) against ppGpp concentrations. Instead of using the fluorescence change at a fixed 

wavelength, the area below the spectra between 334 and 348 nm was used, and the area decrease (ΔF(area)) upon addition 

of ppGpp was utilized to calculate the extent of fluorescence quenching. The KD value for ppGpp-binding to CRP was 

calculated as 35 ± 3 µM. 

Table 1. The KD’s for nucleotide ligands on CRP. 

Ligand KD (µM) 

ppGpp 35 ± 3 

GDP 62 ± 4 

GTP 35 ± 3 

cGMP 
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17 ± 1 

22 ± 3 

ATP 33 ± 4 

cAMP a  25 and 11 a 
a, reported previously by equilibrium dialysis [8,9]. 

2.3. The Binding Site for ppGpp on CRP 

X-ray crystallography showed significant structural changes in CRP upon binding 

with cAMP and cGMP [2,24]. Since the crystal structure of ppGpp-bound CRP was not 

available, a docking simulation for ppGpp binding to CRP was performed. Since the 

protein structures served as templates and remained constant during docking simulation, 

the structural changes upon binding of ligand could not be simulated. In this study, two 

crystal structures of the ligand-bound forms, including cAMP and cGMP-bound forms, 

were used and compared. It was reasoned that one of the structures might be a better fit 

with ppGpp and resemble the CRP structure following ppGpp binding. Five amino acid 

residues including Q80, E81, R82, S83, and A84, composing of the binding site for cAMP 

and cGMP, were selected as the ‘binding pocket residues’. The energy minimization 

results from an individual selection of the amino acids are summarized in Table 2, as the 

docking software provided the results of simulations. The software predicted that ppGpp 

might form a more stable complex with the cGMP-bound structure of CRP in general, 

which suggested that ppGpp, like cGMP, might down-regulate CRP activity. 

  

Figure 1. Binding of ppGpp to CRP determined by fluorescence spectroscopy. (a) The fluorescence Spectra of CRP in
the presence of ppGpp. Following excitation at 280 nm, the emission spectra of CRP (2 µM) were recorded at 25 ◦C.
(b) The fluorescence change (∆F(area)) against ppGpp concentrations. Instead of using the fluorescence change at a fixed
wavelength, the area below the spectra between 334 and 348 nm was used, and the area decrease (∆F(area)) upon addition
of ppGpp was utilized to calculate the extent of fluorescence quenching. The KD value for ppGpp-binding to CRP was
calculated as 35 ± 3 µM.

Table 1. The KD’s for nucleotide ligands on CRP.

Ligand KD (µM)

ppGpp 35 ± 3
GDP 62 ± 4
GTP 35 ± 3

cGMP 17 ± 1
cAMP 22 ± 3
ATP 33 ± 4

cAMP a 25 and 11 a

a, reported previously by equilibrium dialysis [8,9].

2.3. The Binding Site for ppGpp on CRP

X-ray crystallography showed significant structural changes in CRP upon binding
with cAMP and cGMP [2,24]. Since the crystal structure of ppGpp-bound CRP was not
available, a docking simulation for ppGpp binding to CRP was performed. Since the
protein structures served as templates and remained constant during docking simulation,
the structural changes upon binding of ligand could not be simulated. In this study, two
crystal structures of the ligand-bound forms, including cAMP and cGMP-bound forms,
were used and compared. It was reasoned that one of the structures might be a better fit
with ppGpp and resemble the CRP structure following ppGpp binding. Five amino acid
residues including Q80, E81, R82, S83, and A84, composing of the binding site for cAMP
and cGMP, were selected as the ‘binding pocket residues’. The energy minimization results
from an individual selection of the amino acids are summarized in Table 2, as the docking
software provided the results of simulations. The software predicted that ppGpp might
form a more stable complex with the cGMP-bound structure of CRP in general, which
suggested that ppGpp, like cGMP, might down-regulate CRP activity.
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Table 2. The docking parameters.

Binding Pocket Residue 1g6n (cAMP Form) 1n9i (cGMP Form)

Q80 −9.90 −10.53
E81 −7.07 −10.43
R82 −9.42 −13.48
S83 −10.05 −14.01
A84 −10.33 −12.60

The proposed three-dimensional structure and the ligand-protein interactions, when
S83 was designated as the binding pocket residue, are shown in Figure 2. The comparison
of cAMP- and cGMP-bound CRP structures showed that G71, R82, and S83 interacted
with ribose and phosphate moieties of the ligands [2,24]. In contrast, the adenine base
interacted with S83 with an anti-conformation while guanine base with T27 with a syn-
conformation. As shown in Figure 2b, G71, R82, and S83 were proposed to participate
again in the interaction with ppGpp. The guanine base of ppGpp, like cGMP, was present
as a syn-conformer in a hydrophobic pocket.
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Figure 2. Interaction of ppGpp with CRP. (a) The ppGpp-binding site proposed by a molecular modeling study. The
interactions between ppGpp and CRP are shown as dotted lines. (b) Interacting residues at the binding site. G71, R82, and
S83 are commonly interacting amino acid residues in cAMP, cGMP and ppGpp-bound CRP.

2.4. Binding of ppGpp and cAMP to H-NS

E. coli H-NS also showed an intrinsic fluorescence when excited at 280 nm, and the
fluorescence intensity decreased in the presence of ppGpp (Figure 3a). The sole tryptophan
residue at the position 109 might be responsible for the fluorescence of H-NS. The fluores-
cence changes were again utilized in determining the dissociation constants (Figure 3b). As
shown in Table 2, the dissociation constants of ppGpp and cAMP to H-NS were 80 ± 11 µM
and 270 ± 40 µM, respectively. ATP binding did not show a saturation curve, indicating a
high KD value (Table 3 and Supplementary Figure S2). We compared in vitro transcription
in the presence and absence of ppGpp and found no changes with ppGpp (data not shown).
The effect of ppGpp binding with H-NS is not clear at this point.
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Figure 3. Determination of the dissociation constant KD for ppGpp on H-NS by fluorescence spectrometry. (a) The emission
spectra of H-NS in the presence of ppGpp. While H-NS (10µM) was excited at 280 nm, the emission spectra in the presence
of various concentrations of ppGpp were recorded at 25 ◦C. (b) The difference in fluorescence (∆F(area)) between 322 and
336 nm against ppGpp concentrations. The KD for ppGpp was calculated as 80 ± 11 µM.

Table 3. The KD’s for nucleotide ligands on H-NS.

Ligand KD (µM)

ppGpp 80 ± 11
GDP 72 ± 6
GTP 120 ± 25

cAMP 270 ± 40
ATP NS 1

1 NS, not saturated.

2.5. The Binding Site for ppGpp on H-NS

E. coli H-NS is a protein with 137 amino acids. The three-dimensional structure of
H-NS full sequence from any sources has not been reported yet. For E. coli, the NMR
structures of fragment 2–58 (1LR1), fragment 2–47 (1NI8), and fragment 1–47 complexed
with Hha (2MW2) are available at the protein data bank. A structure of C-terminal fragment
91–137 (1HNR) is also presented. The fragment 91–137 is monomeric, while all of the other
fragments are described as dimers. The three-dimensional structures of three N-terminal
fragments are very different, suggesting a flexible nature of H-NS. The docking with
GalaxyWeb server did not provide the binding pocket when the above four structures were
used as templates.

H-NS from Salmonella typhimurium is 95% identical to that from E. coli. The structure
from an x-ray crystallographic study of H-NS fragment 1–83 (3NR7) is available as a
monomeric peptide. Only two amino acids, L79 and V82, are different in the fragment and
the docking with GalaxyWeb server suggests the binding site for ppGpp. As shown in
Figure 4, the amino acids at the N-terminal of H-NS are proposed to interact with ppGpp.
Since the structure of the whole H-NS is not available, the relationship between binding
site and the fluorophore W109 is unknown. The structural flexibility of H-NS suggests that
H-NS may undergo a structural transition in the presence of ppGpp.
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Figure 4. Interaction of ppGpp with N-NS. (a) The ppGpp binding site proposed by a molecular modeling study. The
interactions between ppGpp and H-NS are shown as dotted lines. (b) Interacting residues at the binding site. S2, E3, K6,
and N10 interact with phosphate groups of ppGpp.

3. Discussion

Two tryptophan residues at the positions 14 and 86 of CRP contribute to the intrinsic
fluorescence. Wasylewski et al. suggested the predominance of fluorescence by W14 [25],
which might attenuate the complexity due to the presence of multiple fluorophores. Taka-
hashi et al. reported that cGMP bound to CRP competitively with cAMP had a similar
affinity, but the effect of their binding on CRP deferred. The cGMP binding properties
remained unchanged in the presence of double-stranded deoxyribonucleic acid (dsDNA),
while cAMP bound more efficiently to dsDNA-bound CRP [8]. This is the first report
showing ppGpp binding to CRP, suggesting that the effect of ppGpp binding to CRP
may be similar to cGMP-binding and that the gene expression by CRP may be further
modulated by ppGpp binding to CRP under starvation conditions.

Surprisingly, ATP bound to CRP with a similar affinity as cAMP. In glucose-fed,
exponentially growing Escherichia coli, the cellular concentrations of ATP and cAMP
were 9600 µM and 35 µM, respectively [26]. Since over-estimation of cAMP is well-
documented [7], it can be assumed that the difference in ATP and cAMP concentrations
may be substantially higher. To overcome the huge difference in concentration, the binding
affinity for cAMP must increase significantly in the presence of DNA and RNA polymerase.
Otherwise, cAMP will never have a chance to compete with ATP.

Johansson et al. reported that H-NS stimulated stringently controlled bacterial
genes [27]. E. coli lacking both H-NS and its paralog, StpA, showed a lower expres-
sion of CRP and reduced growth. The growth rate was restored in the mutant with
impaired ppGpp synthesis; overexpression of CRP partially compensated the reduced
growth. Although their study links CRP with the (p)ppGpp regulons in E. coli, this study,
demonstrating direct interactions of ppGpp to H-NS and CRP, seems to be unrelated to
their studies. The cellular concentrations of ppGpp reaches millimolar levels under star-
vation conditions [28,29]. Therefore, the cellular ppGpp concentration under starvation
conditions may be 10–20 times higher than the dissociation constant (80 ± 11 µM), and the
binding site on H-NS may be fully occupied by ppGpp under physiological conditions.
Based on the cellular concentration of ppGpp and the dissociation constants, the binding
affinities of ppGpp to H-NS and CRP may be considered as ‘strong’ ones.

CRP is a dimeric protein and each CRP monomer binds with 2 molecules of cAMP.
The first binding of cAMP, with an approximate KD of 20 µM, activates CRP. The second
binding with syn-conformation of cAMP, however, down-regulates CRP. The KD for the
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second site is around 2 mM [30]. The binding site of cAMP on H-NS, with eight-fold higher
affinity than the second cAMP site on CRP, appears to be occupied fully only when the
second binding site on CRP is occupied by cAMP.

Recent developments in proteomics report larger numbers of proteins for analysis. For
example, one study utilizing a photo-crosslinking ppGpp analog has captured 299 proteins
as ppGpp binding proteins [22]. To analyze the binding affinities of those proteins for
ppGpp, a rapid and reliable method may be required. Fluorescence spectroscopic analysis,
used to determine ligand binding, has been introduced over 30 years ago. However,
intrinsic fluorescence of proteins may be considered too weak and its utilization for ligand
binding study has not been explored much. This study demonstrates that the fluorescence
intensities of CRP and H-NS are significant in that the binding of various ligands can
be measured without the labelling of proteins with fluorophores. In addition to the new
findings of ppGpp binding to CRP and H-NS, this provides a simple and label-free method
to screen various protein-ligand binding.

4. Materials and Methods

Imidazole, ATP, GTP, GDP, and cAMP were purchased from Sigma-Aldrich Korea,
Ltd. (Seoul, Korea). E. coli DH5α and BL21 (DE3) were obtained from Promega Korea
Ltd. (Daejeon, Korea). The restriction enzymes were ordered from New England Biolabs
(Ipswich, MA, USA). Ni-NTA and desalting columns were purchased from GE Healthcare
Korea (Seoul, Korea). PCR primers were obtained from Bioneer corp. (Daejeon, Korea).
ppGpp was synthesized and isolated as described previously [31,32].

4.1. Cloning of CRP from E. coli

A genomic DNA was prepared from E. coli K12 MG1655. The CRP gene encoding
cAMP receptor protein was amplified by polymerase chain reaction (PCR), using these
primers; 5′-GTTAATTACACTCAATCGAGTGAGTAATCC-3′ (forward) and 5′-CAATTAA
TGTGAGCTCACTCATTAGG-3′ (reverse). The PCR product and pET21a(+) vector were
treated with NdeI and XhoI, and ligated. The plasmid construct was transformed to DH5α
and subsequently to BL21 (DE3).

4.2. Over-Expression and Isolation of H-NS and CRP

The strain over-expressing H-NS was obtained from Dr. Hyon E. Choy at Chonnam
National University, and was originally constructed at Dr. Bremer’s laboratory in FRG. The
transformed BL21 (DE3) strains were grown at 37 ◦C in LB media containing 50 µg/mL of
ampicillin until OD600 reached 0.5–0.6. IPTG (0.2 mM) was added for induction, and the
cells were further incubated for 4 h at 37 ◦C and harvested by centrifugation at 4000× g for
30 min. For isolating H-NS, the cells were re-suspended in 50 mM Tris-HCl buffer, pH 8.0,
containing 1 mM PMSF, and disrupted by sonication. The soluble fraction was applied
to a Ni-NTA column pre-equilibrated with 50 mM Tris-HCl, pH 8.0 containing 10 mM
imidazole and 300 mM NaCl. H-NS was eluted with a linear gradient (10–500 mM) of
imidazole gradient in the same buffer. Fractions containing H-NS were pooled and applied
to a desalting column pre-equilibrated with 50 mM Tris-HCl, pH 8.0 for buffer exchange.
For isolating CRP, the cells were suspended in 50 mM KH2PO4 buffer, pH 6.0, containing
1 mM PMSF, and disrupted by sonication. The supernatant was applied to the Ni-NTA
column pre-equilibrated with 50 mM KH2PO4, pH 6.0, containing 0.3 M NaCl and 20 mM
imidazole. CRP was eluted with a linear gradient (20–800 mM) of imidazole in the same
buffer. The fractions containing CRP were pooled and applied to a desalting column to
exchange buffer with 50 mM MOPS, pH 7.5. The purities of H-NS and CRP were assessed
via SDS-PAGE. The protein concentrations were determined by measuring absorbance at
280 nm [33].
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4.3. Determination of Ligand Binding by Fluorescence Spectroscopy

Fluorescence intensities were measured at 25 ◦C using a F-4500 Fluorescence Spec-
trophotometer (Hitachi corporation). H-NS and CRP in 50 mM MOPS buffer, pH 7.5 were
excited at 280 nm and the emission spectra were recorded from 290 to 400 nm under
various ligand concentrations. The dissociation constant, KD, was calculated using the
equation, ∆F/∆FM = (([L] + [P] + KD) − (([L] + [P] + KD)2 − 4·[L]·[P])0.5)/2·[P], where ∆F,
∆FM, [P], and [L] represent fluorescence change, the maximal fluorescence change, total
protein concentration, and total ligand concentration, respectively [34,35]. The area below
the spectra in the 15 nm ranges was used to calculate ∆F in this study. The corrections
for the inner filter effect, introduced by the ligands, was performed using the formula,
Fcor = F × 10(P + ∆A)/2, where F and Fcor denote fluorescence intensity before and after
the correction, whereas P and ∆A indicate the initial sample absorption at the excitation
wavelength and the change in absorption introduced by ligands, respectively [36].

4.4. Computational Prediction of ppGpp-Binding to CRP

The two structures (1g6n and 1n9i) of E. coli CRP, occurring as cAMP- or cGMP-bound
forms, were used for docking simulation. The docking models were prepared by removing
the corresponding ligands from the structures. The prepared ppGpp (CID: 135398636)
and the CRP models were simulated for the protein-ligand docking. The docking, energy
minimization, and scoring of the results were performed using GalaxyWEB server as
described previously [37–39] The generated structures were visualized using PyMol [40,41].
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