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Abstract

We reveal that an introduction of frequency-weighted inter-layer coupling term in networks

of frequency dipoles can induce explosive synchronization transitions. The reason for explo-

sive synchronization is that the oscillators with synchronization superiority are moderately

suppressed. The findings show that a super-linear correlation induces explosive synchroni-

zation in networks of frequency dipoles, while a linear or sub-linear correlation excites chi-

mera-like states. Clearly, the synchronization transition mode of networks of frequency

dipoles is controlled by the power-law exponent. In addition, by means of the mean-field

approximation, we obtain the critical values of the coupling strength within and between lay-

ers in two limit cases. The results of theoretical analysis are in good agreement with those of

numerical simulation. Compared with the previous models, the model proposed in this

paper retains the topological structure of network and the intrinsic properties of oscillators,

so it is easy to realize pinning control.

Introduction

Synchronization is widely distributed in human society and natural environment. Synchroni-

zation in human society requires a unified command driven by external factors. For instance,

when the monitor suddenly calls “stand up” in class, everyone stands up in unison, which is

the synchronization mechanism under a unified command. However, the formation of syn-

chronization in natural environment mainly depends on the cohesion of the system itself. In

order to grasp the synchronous behaviors of complex systems, the synchronization dynamics

of coupled phase oscillators has been widely studied in recent years [1–4]. Among the collec-

tive phenomena observed in these systems, the chimera states of coupled phase oscillators have

aroused great interest of researchers [5–13]. The chimera state here refers to a transient state

in the process of synchronization transition, in which some oscillators are locked and the

remaining ones are in the drift state, that is, a coexistence state of synchronization and

drifting.

In the past, researchers always thought that the synchronization in networks of coupled

oscillators was a continuous and gradual phase transition process. This one-sided opinion was
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not ended until an explosive synchronization was found [14]. The so-called explosive synchro-

nization means that the mode of synchronization transition is sudden without any omen. In

the relation curve of order parameter versus coupling strength, the order parameter will jump

sharply when the coupling strength increases to the critical value of the system. Meanwhile,

the system transits abruptly from synchronization to incoherence state as the coupling strength

is decreased, and the forward and backward continuations do not overlap, which results in a

hysteresis loop [15–24].

In the field of electro-magnetism, how to analyze the polarization phenomenon of dielec-

tric, the first thing is to discretize the dielectric into a system composed of multiple electric

dipoles. In medical research, some dipole source models that produce scalp potential are estab-

lished to speculate the source of electrical activity in the brain [25]. In industrial automation

devices, when the ferromagnetic target is far enough from the sensor, it can be regarded as a

magnetic dipole [26]. Inspired by these ideas, we try to discretize a complex system into a net-

work composed of frequency dipoles. A double-layer network is considered because only one

single-layer network is not enough to place multiple pairs of frequency dipoles. In this way, we

can use the tool of complex network to study the dynamical behavior of complex systems [27].

Recently, the synchronization dynamics of multiplex networks has been deeply and care-

fully studied by employing different methodologies, for instance, phase-shift [28], adaptive

inter-layer coupling [29], and inter-layer Hebbian plasticity [30]. As for the choice of coupled

oscillators, the Kuramoto oscillator is the most mature and widely used tool in the research

field of synchronization theory [31, 32], so it has also become our first choice. We use a dou-

ble-layer network composed of two globally connected layers as the substrates, in which the

upper and lower oscillators form frequency dipoles.

The follow-up parts of this paper are organized as follows. First of all, some basic notions

on the frequency dipoles are introduced. In the next place, we give the main results of numeri-

cal simulations. Once again, the theoretical analysis and numerical simulation are carried out

for the critical values of coupling strength within and between layers in two limit cases. Finally,

we summarize our main findings and discuss open problems.

Materials and methods

Description of network model

We consider a two-layer network, in which each layer is composed of N globally connected

nodes. In order to realize the connection between the two layers, N edges are added between

the nodes with the same label in the upper and lower layers. After this step, a two-layer net-

work similar to the pavilion structure is completed. The number of edges of the whole network

is N2.

To explore the dynamics behavior of this network, each node in the network is embedded

with a variant Kuramoto oscillator. The natural frequency of the ith oscillator in the upper

layer is set to ou
i ¼ � 1þ 2ði � 1Þ=ðN � 1Þ. The value of ol

i in the lower layer is set to

ol
i ¼ � o

u
i , so a pair of frequency dipoles are formed. Here u and l are identifiers of the upper

and lower layers, respectively. The dynamics of the ith oscillator in the network is governed by

the following equations,

d�u
i

dt
¼ ou

i þ
m

N

XN

j¼1

sinð�u
j � �

u
i Þ þ ljo

u
i j
bsinð�l

i � �
u
i Þ;

d�l
i

dt
¼ ol

i þ
m

N

XN

j¼1

sinð�l
j � �

l
iÞ þ ljo

l
ij
bsinð�u

i � �
l
iÞ;

ð1Þ
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where i = 1, 2, 3, . . ., N. The parameter ϕi is the instantaneous phase of the ith oscillator. The

initial phase of each oscillator is randomly assigned within the range [−π, π]. The nonnegative

parameter μ represents the intra-layer coupling strength, whereas the inter-layer coupling

strength is denoted with λ.

Three types of positive correlations, i.e., β = 1, 0< β< 1 and β> 1 are considered in this

paper, which are also known as linear, sub-linear, and super-linear correlations, respectively.

For better comparison, we supplement the case of β = 0, which corresponds to the homoge-

neous coupling.

In this paper, the size of each layer is set to N = 200 for numerical simulations, unless other-

wise specified, because we find that the results described below do not change significantly for

larger network sizes. The number of connected edges of each oscillator in these networks is

constant, i.e., k = 200.

Results

In this part, we reveal the detailed characteristics of frequency synchronization of coupled

oscillators. The commonly used method is to introduce the effective frequency, which is

defined as follows [14],

O
uðlÞ
i ¼

1

T

Z t0þT

t0

_�i
uðlÞðtÞdt: ð2Þ

where t0 is the relaxation time and T is the length of time used to obtain the average.

Emergence of chimera-like state

Fig 1a and 1b show the snapshots of instantaneous phases and effective frequencies of all oscil-

lators in the upper layer under the case of homogeneous coupling, respectively. The effective

frequencies of the oscillators in the central region of the frequency spectrum tend to be the

same, but the effective frequencies of the oscillators at both ends of the spectrum fluctuate

greatly, which means that there is a chimera-like state. It is worth noting that the phenomenon

is not a chimera state in the real sense. In fact, the chimera state is a unique synchronization

phenomenon in a system with identical oscillators, whereas these oscillators in this paper are

heterogeneous. Therefore, the phenomenon appearing in Fig 1b is called a chimera-like state.

Fig 2a and 2b show that for the linear correlation, the system also induces a chimera-like

state. For the homogeneous coupling and the linear correlation, the processes of phase locking

and frequency synchronization of coupled oscillators are similar, that is, the central region is

synchronized first, and then extends to both ends. It can be inferred that for the sub-linear cor-

relation, the synchronization transition of the system should be gradual rather than abrupt.

Fig 1. Snapshots of the instantaneous phases (left panel) and the effective frequencies (right panel) for the

homogeneous coupling when the intra-layer and inter-layer coupling strength are set to 0.42 and 0.5, respectively.

https://doi.org/10.1371/journal.pone.0274807.g001
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In order to characterize the coherence degree of the coupled oscillators in each layer, two

separate phase order parameters are considered [33],

RuðlÞeicuðlÞ ¼
1

N

XN

j¼1

ei�
uðlÞ
j ð3Þ

where Ru(l)�[0, 1] is a measure of the coherence of coupled oscillators in the upper (lower)

layer. The greater its value, the higher the coherence. The parameter ψu(l) is the average phase

of coupled oscillators in the upper (lower) layer.

In the following numerical simulations, Eq 1 is integrated by the fourth-order Runge-Kutta

method with time step 0.01. Excluding the randomness of initial phases, the network parame-

ters of the upper and lower layers are exactly the same. In order to avoid repetition, the evolu-

tion law of order parameter of the lower layer is omitted.

Fig 3 shows that for the sub-linear correlation, a continuous phase transition does occur in

the system, which confirms our above inference. However, due to the strong coupling between

layers, the system cannot return to the original state after desynchronization. The smaller the

value of β, the worse the desynchronization performance, as shown in Fig 3a.

Emergence of explosive synchronization

Fig 4a and 4b show the snapshots of instantaneous phases and effective frequencies of all oscil-

lators in the upper layer under the case of linear correlation, respectively. As shown in Fig 4b,

the effective frequencies of the oscillators located in the central region of the frequency

Fig 2. Snapshots of the instantaneous phases (left panel) and the effective frequencies (right panel) for the linear

correlation when the intra-layer and inter-layer coupling strength are set to 0.7 and 0.5, respectively.

https://doi.org/10.1371/journal.pone.0274807.g002

Fig 3. The evolution of order parameter of the upper layer with the increase of intra-layer coupling strength for

different values of β, (a) β = 0.25, (b) β = 0.75. The inter-layer coupling strength λ is set to 0.5. Every data point in the

two panels is the average of 2000 time steps after discarding the initial 2000 time steps.

https://doi.org/10.1371/journal.pone.0274807.g003
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spectrum are convergent, while the effective frequencies of the oscillators located at both ends

of the spectrum are divergent, indicating the emergence of a chimera-like state.

Fig 5a and 5b show that for the super-linear correlation, the system also induces a chimera-

like state. However, the process of phase locking and frequency synchronization first occurs at

both ends, and then gradually spreads to the middle, which is just opposite to Fig 4.

For the case of β = 1, the frequency synchronization of coupled oscillators starts in the mid-

dle of the spectrum, but for β = 2, the frequency synchronization first occurs at both ends of

the spectrum. We speculate that if β takes a value between 1 and 2, the oscillators in the system

will not be able to determine the location where synchronization occurs first. Therefore, the

oscillators in the system reach a consensus, either out of synchronization or collective synchro-

nization, which leads to the emergence of explosive synchronization.

To verify this speculation, both synchronization and desynchronization diagrams are plot-

ted for two different values of β, as shown in Fig 6. For the super-linear correlation, the system

does induce an explosive synchronization. However, due to the influence of inter-layer cou-

pling, the system can not return to the original state after desynchronization.

For the super-linear correlation, why does the network induce an explosive synchroniza-

tion? Our theoretical explanation is as follows. The frequencies of the oscillators who located

in the central region of the spectrum of natural frequency are close to the frequency of ensem-

ble equilibrium state, so they are most likely to evolve into condensation nuclei of network

synchronization, that is, to achieve synchronization first. However, the oscillators at both ends

of the spectrum enjoy greater relative inter-layer coupling strength. Here, the relative inter-

layer coupling strength refers to the ratio of the absolute inter-layer coupling strength to the

positive natural frequency of the frequency dipoles, i.e., lr ¼ ljou
i j
b
=jou

i j ¼ ljou
i j

1� b
. Due to

Fig 4. Snapshots of the instantaneous phases (left panel) and the effective frequencies (right panel) for the linear

correlation when the intra-layer and inter-layer coupling strength are set to 0.23 and 0.9, respectively.

https://doi.org/10.1371/journal.pone.0274807.g004

Fig 5. Snapshots of the instantaneous phases (left panel) and the effective frequencies (right panel) for the super-

linear correlation when the intra-layer and inter-layer coupling strength are set to 0.72 and 0.9, respectively.

https://doi.org/10.1371/journal.pone.0274807.g005
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the difference of advantages, each oscillator in the network has equal opportunity to evolve

into the first synchronous condensation center. As long as their advantages are balanced, an

explosive synchronization will be ignited.

Next, we keep the intra-layer coupling strength unchanged and study the synchronization

transition characteristics of coupled oscillators by increasing the inter-layer coupling strength.

The same law is found that the second-order phase transition occurs in the sub-linear coupled

system, as shown in Fig 7a. It is easy to see that there is a hysteresis loop in the super-linear

coupled system, indicating the emergence of explosive synchronization, as shown in Fig 7b. It

is worth noting that the desynchronization effect is the most thorough in this system.

Now we systematically study the influence of power-law exponents on the synchronization

transition of coupled oscillators. In Fig 8, the order parameter of the upper layer is described

by chromaticity in the λ − μ parameter plane for different power-law exponents. It is generally

realized that with the increase of the coupling strength within and between layers, the oscilla-

tors in the network tend to be synchronized. The simulation results are consistent with our

intuition. For the homogeneous coupling, sub-linear correlation and linear correlation, the

boundary lines between different degrees of synchronization is clear and recognizable, as

shown in Fig 8a–8c. Nevertheless, for the super-linear correlation the boundary lines between

different degrees of synchronization are intertwined and even distorted in certain areas as

shown in Fig 8d, which may be the internal cause of the emergence of explosive

synchronization.

Let us now investigate the influence of system size on the hysteresis loop width. Fig 9a

shows the forward and backward continuous diagrams of upper layers of different sizes. It is

Fig 6. The evolution of order parameter of the upper layer with the increase of intra-layer coupling strength when

the inter-layer coupling strength λ is set to 0.9. Both of them correspond to the super-linear correlations, (a) β = 1.3,

(b) β = 1.7. Every data point in the two panels is the average of 2000 time steps after discarding the initial 2000 time

steps.

https://doi.org/10.1371/journal.pone.0274807.g006

Fig 7. The evolution of order parameter of the upper layer with the increase of inter-layer coupling strength for

different values of β, (a) β = 0.5, (b) β = 2.0. The intra-layer coupling strength μ is set to 0.8. Every data point in the

two panels is the average of 2000 time steps after discarding the initial 2000 time steps.

https://doi.org/10.1371/journal.pone.0274807.g007
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found that the width of the hysteresis loop increases with the size of the system until it reaches

saturation. However, there is an interesting phenomenon in the process of backward transi-

tion. As shown in Fig 9a, the critical point of the backward continuation in the model is robust,

which does not change with the increase of system size [14, 16]. For each size, there is a pair of

corresponding forward and backward transition points μf and μb, with d = μf − μb. Fig 9b

reports the corresponding dependence of< d> on N for twenty realizations. The simulation

results show that when the size of the upper layer increases to N = 700 (the size of the lower

layer changes synchronously) the width of the hysteresis loop tends to be saturated, which also

indicates that the characteristics of explosive synchronization in the system have not changed.

Fig 9 verifies that an increase in system size does not change the type of synchronization

transition.

Theoretical analysis

In this section, we give the critical values of intra-layer and inter-layer coupling strength in

two limit cases from the perspective of theoretical analysis. Considering the case of λ = 0, the

Fig 8. Order parameter of the upper layer is described by chromaticity in the λ − μ parameter plane. The

chromaticity ranges from 0 (black) to 1 (red). The greater its value, the higher the degree of phase coherence. The

values of β in each panel are (a) β = 0, (b) β = 0.5, (c) β = 1, (d) β = 2, respectively.

https://doi.org/10.1371/journal.pone.0274807.g008

Fig 9. (a) Synchronization and desynchronization diagrams of upper layers with different sizes. (b) Dependence of

hysteresis loop width on network size. Other parameters are set to β = 1.5 and λ = 0.9.

https://doi.org/10.1371/journal.pone.0274807.g009
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bilayer network is split into two incoherent globally connected networks. The critical value of

intra-layer coupling strength is obtained [33],

mc ¼
2

pgð0Þ
¼

4

p
� 1:27 ð4Þ

where g(�) is a probability distribution function. The four panels in Fig 8 show that the position

where the blue area disappears on the horizontal axis occurs at about μ = 1.3. Obviously, our

theoretical analysis is consistent with the numerical simulation.

When the connection between the two layers is restored, the average coupling strength of

each edge is given by,

�l ¼
1

N

XN

i¼1

ljo
uðlÞ
i j

b
�

1

N
2
R 1

0
lobdo

2=N
¼

l

1þ b
ð5Þ

Eq 5 shows when the values of λ and μ remain unchanged, the increased β weakens the syn-

chronization ability of the network. When the value of β increases, it causes the intersections

between the boundary lines with different degrees of synchronization and the longitudinal axis

to move upward, as shown in Fig 8.

The left and right sides of Eq 3 are multiplied by a factor e� i�
uðlÞ
i and substituted into Eq 1.

Note that the first i in the factor is an imaginary unit and the second i is the label of the oscilla-

tor. Eq 1 can be rewritten as,

d�u
i

dt
¼ ou

i þ mR
usinðcu

� �
u
i Þ þ ljo

u
i j
bsinð�l

i � �
u
i Þ;

d�l
i

dt
¼ ol

i þ mR
lsinðcl

� �
l
iÞ þ ljo

l
ij
bsinð�u

i � �
l
iÞ;

ð6Þ

We mainly discuss the influence of inter-layer coupling on synchronization transition of

the network in the case of μ! 0. Except that the distribution of initial phases is slightly differ-

ent due to randomness, the other parameters of the upper and lower layers are exactly the

same. Therefore, these equations hold after the system reaches a stable synchronous state, i.e.,

d�u
i =dt ¼ d�l

i=dt, R
u = Rl and ψu = ψl. Ignoring the intra-coupling term, Eq 6 for a pair of fre-

quency dipoles becomes,

0 ¼ ou
i þ ljo

u
i j
bsinð�l

i � �
u
i Þ;

0 ¼ ol
i þ ljo

l
ij
bsinð�u

i � �
l
iÞ;

ð7Þ

Thus the relationship between phase difference and the inter-coupling strength can be

rewritten as,

l ¼ � jou
i j

1� b
=sinð�l

i � �
u
i Þ ou

i > 0;

l ¼ jol
ij

1� b
=sinð�u

i � �
l
iÞ ol

i < 0;
ð8Þ

In view of the boundedness of sinusoidal function, it is easy to obtain the critical value of λ,

lc ¼
�
�o

uðlÞ
i

�
�1� b ð9Þ

Fig 10a shows the dependence of Ru on λ in the case of β = 1. It is easy to see that the order

parameter undergoes a continuous transition, where the incoherent state with Ru� 0 is desta-

bilized via a supercritical Hopf bifurcation at λ = 1.0 [34]. It is in perfect agreement with the
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theoretical result of Eq 9. The simulation results show that in this case the instantaneous fre-

quencies of all oscillators have been synchronized as shown in Fig 10b, and the phase locking

has just started, as shown in Fig 10c. Fig 10d exhibits the detailed characteristics of phase dis-

tribution of the oscillators. The oscillators are almost evenly scattered on the circular plane, the

phases are unlocked, and the order parameter tends to zero in the macro view. The process of

phase locking continues until the phases of all oscillators are locked when λ� 1.8, as shown in

Fig 10c.

Discussion

Furthermore, for the super-linear correlation we reconstructed the bilayer network, in which

both the upper and lower layers of Fig 11a are random networks, both the upper and lower

Fig 10. (a) The evolution of order parameter of the upper layer for the linear correlation. (b) and (c) show the

evolutions of instantaneous frequencies and phases of the oscillators, respectively. (d) is the snapshot of instantaneous

phases at λ = 1.0. The intra-layer coupling strength is set to 0.02. The red solid circles represent the oscillators with

positive natural frequencies, while the oscillators with negative natural frequencies are described by blue hollow circles.

https://doi.org/10.1371/journal.pone.0274807.g010

Fig 11. The panels show the evolution of order parameter of the upper layer with the increase of intra-layer coupling

strength for different network topologies, (a) both the upper and lower layers are random networks, (b) both the upper

and lower layers are scale-free networks. The inter-layer coupling strength λ is set to 0.9. The natural frequency of each

oscillator in the upper layer is randomly selected in the interval [-1, 1], and the natural frequency of oscillators with the

same label in the lower layer changes synchronously. Because the upper and lower networks belong to the same type,

the evolution of order parameters is almost the same. In order to avoid repetition, the evolution law of order parameter

of the lower layer is omitted.

https://doi.org/10.1371/journal.pone.0274807.g011
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layers of Fig 11b are scale-free networks, the upper layer of Fig 12 is a scale-free network, and

the lower layer is a random network. For all subsequent simulations, each layer of the network

has 200 nodes and 2000 edges. The natural frequency of each oscillator in the upper layer is no

longer forcibly specified, but is randomly selected within the interval [-1, 1]. The essence of a

pair of frequency dipoles composed of oscillators with the same label in the upper and lower

layers continues to be retained. The initial phase of each oscillator is randomly assigned within

the range [−π, π]. Every data point in Figs 11 and 12 is the average of 2000 time steps, after dis-

carding the initial 2000 time steps.

Obviously, hysteresis loops appear in the four panels of Figs 11 and 12, indicating that an

explosive synchronization has emerged in both the upper and lower layers. Whether the upper

and lower layers are homogeneous or heterogeneous, the super-linear correlation will induce

an explosive synchronization.

Next, we use two different natural frequency distributions and maintain the same network

topology as in Fig 12. Here two typical symmetric distributions, unimodal and bimodal

Gaussian distributions, are considered. Fig 13 plots the dependence of Ru(Rl) and λ for two

different natural frequency distributions. In Fig 13a and 13b, we replace the random uniform

distribution by a unimodal Gaussian distribution. The probability density function

gðoÞ ¼ 1ffiffiffiffi
2p
p

s
e
� ðo� o0Þ

2

2s2 satisfies the symmetry condition, in which ω0 = 0 and σ2 = 0.16, as

shown in the small inset of Fig 13a. The bimodal Gaussian distribution follows

f ðoÞ ¼ Aðo2 þ B2Þe
� ðo� o0Þ

2

2s2 , with A = 20.3108, B = 0.1667, ω0 = 0 and σ2 = 0.0566, as shown in

the small inset of Fig 13c. Fig 13 reproduces the same scene as Fig 12. For these two different

symmetrical frequency distributions, explosive synchronizations are also activated, indepen-

dent of network topology. In addition, two kinds of asymmetric frequency distributions,

power-law distribution and Rayleigh distribution are tested, which failed to trigger an explo-

sive synchronization. The corresponding synchronization and desynchronization diagrams

are not given in this paper. We conclude that only when the natural frequencies of the oscilla-

tors satisfy the symmetric distribution, the super-linear correlation can excite an explosive

synchronization.

Conclusion

In this paper, inspired by the idea of the electric dipoles and frequency weighting, the cou-

pling-frequency correlations are introduced into a symmetric two-layer network. The effects

Fig 12. The panels show the evolution of order parameters of the upper (a) and lower (b) layers with the increase of

intra-layer coupling strength for a bilayer network composed of a scale-free network in the upper layer and a random

network in the lower layer. The inter-layer coupling strength λ is set to 0.9. The natural frequency of each oscillator in

the upper layer is randomly selected in the interval [-1, 1], and the natural frequency of oscillators with the same label

in the lower layer changes synchronously.

https://doi.org/10.1371/journal.pone.0274807.g012
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of three typical correlations on synchronization transition of coupled oscillators are studied in

detail.

For the sub-linear correlation, the oscillators in the center of the frequency spectrum have

two superiorities in the synchronization transition. On the one hand, their natural frequencies

are closer to the steady state of the ensemble, which makes them locked first. On the other

hand, they obtain greater relative inter-layer coupling, in which the relative inter-layer cou-

pling refers to the ratio of absolute inter-layer coupling to the natural frequency. The two supe-

riorities contribute to the emergence of chimera-like states.

For the linear correlation, there is no difference in relative inter-layer coupling strength.

Naturally, the oscillators whose natural frequencies are closer to the steady state of the ensem-

ble tend to be synchronized first, resulting in chimera-like states.

For the super-linear correlation, the oscillators located at the center of the frequency spec-

trum have the location advantage, while the oscillators in the ends of frequency spectrum have

the superiority of larger relative inter-layer coupling strength. When the two superiorities are

well-matched in strength, an explosive synchronization occurs. Therefore, the network of fre-

quency dipoles can be considered as one of the effective models to describe the complex system

where chimera-like states and explosive synchronization are pervasive.

Supporting information

S1 Data. Minimal data set. This compressed file covers the data information of all pictures in

the manuscript.

(ZIP)

Fig 13. Synchronization and desynchronization transition diagrams of each layer at different natural frequency

distributions. The topology of the network is exactly the same as Fig 12. We replace the random uniform distribution

by two symmetric frequency distributions. The small inset in Fig 13a is a unimodal Gaussian distribution, in which the

parameters are set to ω0 = 0 and σ2 = 0.16. The small inset in Fig 13c is a bimodal Gaussian distribution, in which the

parameters are set to A = 20.3108, B = 0.1667, ω0 = 0 and σ2 = 0.0566.

https://doi.org/10.1371/journal.pone.0274807.g013
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