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Two‑step discriminant analysis 
based multi‑view polarimetric 
SAR image classification with high 
confidence
Maryam Imani

Polarimetric synthetic aperture radar (PolSAR) image classification is a hot topic in remote sensing 
field. Although recently many deep learning methods such as convolutional based networks have 
provided great success in PolSAR image classification, but they need a high volume of labeled 
samples, which are not usually available in practice, or they cause a high computational burden for 
implementation. In this work, instead of spending cost for network training, the inherent nature 
of PolSAR image is used for generation of convolutional kernels for extraction of deep and robust 
features. Moreover, extraction of diverse scattering characteristics contained in the coherency matrix 
of PolSAR and fusion of their output classification results with a high confidence have high impact in 
providing a reliable classification map. The introduced method called discriminative features based 
high confidence classification (DFC) utilizes several approaches to deal with difficulties of PolSAR 
image classification. It uses a multi-view analysis to generate diverse classification maps with different 
information. It extracts deep polarimetric-spatial features, consistent and robust with respect to 
the original PolSAR data, by applying several pre-determined convolutional filters selected from the 
important regions of image. Convolutional kernels are fixed without requirement to be learned. The 
important regions are determined with selecting the key points of image. In addition, a two-step 
discriminant analysis method is proposed to reduce dimensionality and result in a feature space with 
minimum overlapping and maximum class separability. Eventually, a high confidence decision fusion is 
implemented to find the final classification map. Impact of multi-view analysis, selection of important 
regions as fixed convolutional kernels, two-step discriminant analysis and high confidence decision 
fusion are individually assessed on three real PolSAR images in different sizes of training sets. For 
example, the proposed method achieves 96.40% and 98.72% overall classification accuracy by using 
10 and 100 training samples per class, respectively in L-band Flevoland image acquired by AIRSAR. 
Generally, the experiments show high efficiency of DFC compared to several state-of-the-art methods 
especially for small sample size situations.

Polarimetric synthetic aperture radar (PolSAR) as a high resolution and multi-channel imaging equipment 
allows a wide range of remote sensing applications especially for target detection and land cover classification1,2. 
In some works, SAR data is used beside the optical multispectral image to provide an improvement in land 
cover classification3. Due to crosstalk among polarization channels, phase bias and channel imbalance, there are 
polarimetric distortions in a PolSAR system. The researchers in4 tried to estimate and minimize the mentioned 
distortions through polarimetric calibration of PolSAR images. There is rich scattering information in a PolSAR 
image. Many target decomposition methods have been introduced to extract the polarimetric and scattering 
characteristics of PolSAR data5,6. One of the main challenges of this subject is scattering ambiguity. For example, 
the cross-polarized scattering can be caused by both vegetation and rotated dihedrals in urban areas. To deal with 
this difficulty, the extended models have been introduced in7,8 for four-component decomposition of PolSAR 
images with considering the cross scattering of corner reflectors in oriented buildings.

Beside the polarimetric and scattering features, which can be extracted by various target decomposition 
methods, the textural features have important role for an accurate PolSAR image classification. Polarimetric 
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parameters beside the grey level co-occurrence matrix features are used for classification of river ice by applying 
a random forest classifier on dual PolSAR data acquired by Sentinel 1 in9.

Color features extracted from pseudo-color images obtained by color coding methods have been used beside 
the polarimetric and texture features for PolSAR image classification in10. The results have shown significant 
role of the color features in improvement of classification accuracy. High dimensional decomposition features 
are fused with texture features through the composite kernel and hybrid random field model (CK-HDRF) in11. 
Different PolSAR feature spaces such as polarimetric data scattering and target decomposition spaces are fused to 
achieve a distinctive feature set for PolSAR image classification in12. The suggested method in12, called modified 
tensor distance based multi-view spectral embedding (MTD-MSE) uses a tensor based multi-view embedding 
for feature fusion. Complementary characteristics of different views are exploited for extraction of an appropriate 
low dimensional feature set. An online deep forest model has been proposed in13 for considering different sources 
or feature spaces regarded as multi-view. The experiments have shown classification improvement due to multi-
view, multi-feature or multi-frequency PolSAR images, and also due to fusion of PolSAR data with optical images.

In addition to improvement of appropriate features in a PolSAR data classification, it is a serious affair to 
suitably deal with the main challenges of PolSAR data classification. Speckle noise and limited available train-
ing samples are among the main challenges of PolSAR image classification. Including spatial information and 
utilizing super-pixel and object based methods have been proposed to deal with the first difficulty14–16. The use 
of semi-supervised approaches and active learning are among the suggested methods to deal with the second 
difficulty17–19. An online active extreme learning machine (OA-ELM) has been proposed in17, which its aim is to 
improve training efficiency, classification accuracy and also the generalization ability. Support vector machine 
(SVM) can be an appropriate classifier when limited training samples are available20. The pairwise proximity 
function SVM is proposed in21 for time series analysis of dual polarization SAR for crop classification.

Much recently published works have used deep learning for PolSAR image classification22–25. Deep convolu-
tional neural networks (CNNs) have been suggested for PolSAR image classification in26. An improved version 
of CNN has been proposed in27, which utilizes the complex information of PolSAR and also the abilities of 
3D-CNN for simultaneous extraction of polarimetric and spatial features. Complex valued 3D-CNN called as 
CV-3D-CNN has shown superior classification results compared to previous CNN based methods. Efficiency 
of CNN is tested on multi-resolution dual-Pol images for land cover classification in28. A new structure of CNN 
is proposed for PolSAR image classification in29. The low frequency components of PolSAR are used for noise 
reduction. In addition, the fuzzy clustering maps of the scattering characteristics of PolSAR are concatenated to 
the texture features to result in a rich spatial-physical feature cube of the PolSAR image.

A PolSAR image classification method is proposed in this work, which utilizes several approaches to deal 
with difficulties of PolSAR data classification. The proposed method, called discriminative features based high 
confidence classification (DFC), considers diagonal, real and imaginary parts of the coherency matrix as three 
views of PolSAR data containing different information. DFC includes diverse scattering features for PolSAR 
data classification by applying a multi-view analysis. Each view is individually analyzed. Two pre-determined 
convolutional layers are used for polarimetric-spatial feature extraction in each view. In contrast to convolu-
tional filters in CNNs, which contain hyper-parameters and need training samples to learn, the pre-determined 
convolutional filters, selected among the important regions of the original image, are used in DFC. So, the use of 
them not only is simple and fast but also results in consistent feature maps accordance with the PolSAR image. 
The previous work30 suggested the use of fixed convolutional kernels. But it selects kernels randomly from the 
entire scene. In this work, the convolutional kernels are selected among the important regions of the image, 
which lead to extraction of valuable features. To remove redundant features and utilize features with maximum 
differences with respect to each other and also to maximize class discrimination, a two-step discriminant analysis 
method is proposed for feature reduction. The reduced feature maps of each view are used for generation of a 
classification map in that view. Finally the classification maps are fused reliably by involving the neighborhood 
information. The result of this decision fusion is an accurate classification map. Some contributions of this work 
are represented in the following:

1.	 Three views with multiple scattering characteristics are used for PolSAR image analysis to achieve diverse 
classification maps.

2.	 The convolutional kernels are selected among the important regions of the PolSAR image. Applying these 
convolutional kernels can extract important spatial features consistent with contents of the assessed scene 
without spending high computational burden or using any training set.

3.	 A reduced feature space with minimum redundancy and maximum class-separability is provided.
4.	 Associated with each classification map generated from each view of the PolSAR image, a confidence map 

is computed, which leads to an accurate decision fusion.

The proposed method is introduced in Sect. 2. The experimental results are discussed in Sect. 3 and finally 
Sect. 4 concludes the paper.

Proposed classification method
The proposed method called discriminative features based high confidence classification (DFC) uses four con-
trivances to increase the classification accuracy of the PolSAR data: 1. multi-view (MW) analysis, 2. selection 
of important regions (IRs) for spatial filtering, 3. two-step discriminant analysis (DA) and 4. high confidence 
(HC) decision fusion.

The coherency matrix of each pixel of PolSAR image contains diagonal, real and imaginary parts, which each 
of these parts has obviously different characteristics and diverse features. So, each part is considered as a view 
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of PolSAR data that is individually analyzed. To extract deeper and more robust features, several fixed and pre-
determined kernels are convolved to each view of the PolSAR data. The convolutional kernels are selected from 
the most important regions of the PolSAR image. Difference of Gaussian function31 is used to determine the 
important regions. The extracted feature maps have high dimensionality which may contain redundant infor-
mation. To extract the least overlapping and the most discriminative features, a two-step discriminant analysis 
based feature reduction method is proposed. The extracted features of each view generate a classification map 
by utilizing SVM as a classifier. Associated with each classification map, a confidence map is also generated, 
which is used for decision fusion for providing the final classification map. The proposed DFC method has the 
following advantages:

(1)	 DFC is efficient using limited training samples because it uses the fixed and pre-determined convolutional 
kernels without requirement to be learned. In addition, a two-step discriminant analysis method for dimen-
sionality reduction is applied to the polarimetric-spatial cube, which is nanparametric with low sensitivity 
to the training set size.

(2)	 Applying pre-determined convolutional filters, selected from the most important regions of the PolSAR 
image, not only degrades the speckle noise but also extracts robust spatial features consistent with the 
PolSAR image.

(3)	 DFC utilizes the discriminative, informative and rich polarimetric-spatial features. Due to multi-view analy-
sis, the used features are diverse; due to applying fixed convolutional kernels selected from the important 
regions of the image, deep and informative spatial features compatible with the original data are extracted; 
and due to the proposed discriminant analysis, the discriminative features with the most differences and 
minimum redundancy are extracted.

(4)	 The classification map of DFC is highly reliable because it utilizes the confidence maps generated from the 
neighborhood information of diverse views for decision fusion.

Multi‑view (MW) polarimetric‑spatial features.  To extract more diverse and richer polarimetric-spa-
tial features, a multi-view classification approach is used in this work. Each pixel of a PolSAR image is generally 
expressed in the form of a symmetric coherency matrix T as follows:

where diagonal elements are real numbers and off-diagonal elements are complex ones. So, there are three 
different types of views in a coherency matrix: view1 = {T11,T22,T33} , which is composed of diagonal ele-
ments, view2 = {Re(T12),Re(T13),Re(T23)} , which is composed of real parts of non-diagonal elements and 
view3 = {Im(T12), Im(T13), Im(T23)} , which is composed of imaginary parts of non-diagonal elements where 
Re(·)/Im(·) indicates the real/imaginary part of (·) . The obvious differences among these three views can be 
effective in increasing the classification accuracy. The classification process is done individually on each view. 
Finally, the classification results are fused according to the proposed decision fusion rule to result in the final 
classification map.

The use of spatial information is very important in PolSAR image classification. So, some contextual features 
are extracted from each view and concatenated to it to form a polarimetric-spatial cube for that view. Because 
of simple, fast and efficient implementation of morphological filters in extraction of structural and contextual 
features32, the morphological profile (MP) of each view is generated and stacked on it. Therefore, the PolSAR 
data can be expressed as three views, vi = {Poli ,MPi}; i = 1, 2, 3 where Poli is the polarimetric features of i th 
view and MPi denotes its associated MP.

Selection of important regions (IRs) as convolutional filters.  To extract deeper polarimetric-spatial 
features containing more robust and informative characteristics, K spatial filters with the size of W ×W are 
convolved with each view, i.e., vi; i = 1, 2, 3 . In contrast to CNN based methods, which need training samples 
to learn the convolutional filters, the pre-determined convolutional kernels without requirement to learning are 
used here. To preserve the structure of image and extract features in accordance with the original PolSAR data, 
the pre-determined convolutional filters are selected from the PolSAR data. A W ×W window around each 
filter’s center is considered as a convolutional filter. Instead of random selection of K filters’ centers, K pixels of 
the PolSAR image, which are the key points of data and are in center of the important regions (IRs) are selected. 
Each view contains nv = 3+ nm features where 3 is the number of polarimetric channels and nm is the size of 
MP in that view. In i th view, only the original polarimetric part containing 3 features, i.e., Poli = {Pi1, Pi2, Pi3} , 
is used to find the key points. To extract IRs centered in key points, each channel of Poli is smoothed with dif-
ferent scale factors as follows:

where Iij is difference of Gaussian of Pij , G
(

x, y, σ
)

= 1
2πσ 2 e

−
(x2+y2)

2σ2  , σ2 = kσ1 , k is a constant factor, and σ1 and 
σ2 are two nearby scales. Iij is the difference of smoothed images. Those pixels of Iij that have the largest values 
are the key points indicating obvious features and located in centers of IRs. However, selection of IRs should be 
done with considering all channels of each view. To this end, each Iij is binarized as Jij where bright regions of Iij 
are labeled as 1 in Jij and others are labeled as 0. Then, Jij; j = 1, 2, 3 regions are fused through the OR logic 
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function to form the index image as Ei = OR
j=1,2,3

{

Jij
}

 where OR is the OR logic operator. Ei , as an index image of 
vi , is used to fuse Iij; j = 1, 2, 3 . The fused image in i th view containing the IRs is computed by:

where max/min is the maximum/minimum operator. The convolutional filters in view i are selected from the IR 
image, i.e., IRi . The pixels of IRi image are sorted in a descending order according to their gray levels. K largest 
pixels are selected as K key points and considered as centers of K pre-determined convolutional kernels.

Two layers of convolutional filters are applied to each view, vi = {Poli ,MPi}; i = 1, 2, 3 . To this end, in the first 
layer, the principal component analysis (PCA) transform33 is applied to vi to find the first principal component 
(PC1) of vi , indicated by PC1i. K filters are applied to PC1i to find K feature maps. In the second layer, the PCA 
transform is applied to the generated feature cube containing K channels to construct the PC1i in second layer. 
Then, K convolutional filters are applied to the PC1i to extract K deeper feature maps. The K feature maps gen-
erated from the first layer are stacked on the K feature maps generated from the second layer. Then, 2K feature 
maps are concatenated to the initial polarimetric-spatial cube vi = {Poli ,MPi} to form a feature cube containing 
2K + nv features. For simplicity in notations, the filtered views, after applying the convolutional kernels, are yet 
indicated with vi.

The use of pre-determined convolutional filters have three main advantages: 1. noise reduction, 2. extraction 
of spatial features accordance with the original PolSAR image, and 3. no requirement to training.

Two‑step discriminant analysis (DA).  According to previous section, nb = 2K + nv  polarimetric-
spatial features are extracted from each view of the PolSAR data. Due to high dimensionality of the generated 
polarimetric-spatial cube and also the limited number of training samples, dimensionality reduction is appro-
priate to do. Feature reduction should be done such a way that not only increases the class discrimination but 
also avoids overlapping features. In other words, the aim is to generate a reduced polarimetric-spatial cube with 
minimum redundant information and maximum class separability. To this end, a discriminant analysis is pro-
posed for PolSAR image feature reduction. The proposed method increases the difference between the generated 
polarimetric-spatial features in the first step (first projection) and maximizes the class discrimination in the 
second step (second projection) through maximizing the between-class scatters and minimizing the within-class 
scatters in a nanparametric form.

Let X = {xi : xi ∈ R
nb }

Nt
i=1 be Nt training samples belonging to c classes. Class i contains nti training samples 

where Nt =
∑c

i=1 nti . The aim is to extract m features from nb polarimetric-spatial feature vector corresponding 
to each pixel x . With considering the same number of training samples in each class, i.e., nti = nt; i = 1, 2, . . . , c , 
corresponding to j th training sample, the training samples matrix of c classes is formed as follows:

where xikj 
(

i = 1, 2, . . . , nb; k = 1, 2, . . . , c; j = 1, 2, . . . , nt
)

 is j th training sample of class k in i th channel. Cor-
responding to each channel (each row), the vector hij is defined by34:

where hij contains a representative sample from each class. To extract polarimetric-spatial features with the big-
gest differences with respect to each other, the between-channel scatter matrix is calculated by:

where hj = 1
nb

∑nb
i=1 hij . With maximizing tr(Sc) , the projection matrix W is constructed from the eigenvalues 

of Sc sorted in a descending order34. By applying W on the polarimetric-spatial feature space, a new feature space 
with more differences between polarimetric-spatial channels is generated. According to above transformation, 
the sample matrix X j 

(

j = 1, 2, . . . , nt
)

 is transformed to the matrix Rj as follows:

To maximize the differences between different classes, a representative vector is defined corresponding to 
each class as follows:
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Then, the between-class scatter matrix ( Sb) and within-class scatter matrix (Sw) are calculated by:

where R = 1
c×nt

∑nt
j=1

∑c
k=1 Rkj . To deal with the singularity of matrix Sw , it is regularized as 

Sw = 0.5Sw + 0.5diag(Sw) . Then, the Fisher criterion, maxtr
(

Sw
−1

Sb

)

 , is used to obtain the projection matrix for 
dimensionality reduction. To extract m features, m eigenvectors of Sw−1

Sb associated with m largest eigenvalues 
of Sw−1

Sb compose the projection matrix. The proposed feature reduction method has some main advantages: 
1-it extracts polarimetric-spatial features with maximum differences with respect to each other, i.e., with mini-
mum redundant information, 2- it maximizes the class discrimination, 3- it can extract any arbitrary number 
of features and 4- it has good efficiency in small sample size situations thanks to nanparametric form of scatter 
matrices and the regularization technique.

Decision fusion with high confidence (HC).  According to the proposed discriminant analysis method 
in previous section, m features are extracted from each view of the PolSAR data. The m extracted features of 
view i (vi) are given to a SVM classifier to obtain i th (i = 1, 2, 3) classification map. To increase reliability of 
classification, a confidence map is constructed from each classification map. To this end, a window with length 
of L = 2a+ 1 where a is an integer a ≥ 1 is considered around each pixel of the classification map. For a central 
pixel xc , the confidence g(xc) is defined as g(xc) = ρ(xc)/

(

L2 − 1
)

 where ρ(xc) is the number of neighboring 
pixels that have the same label as xc and L2 − 1 is the number of neighbors. Associated with each classification 
map, a confidence map is generated. For each pixel of image located in position 

(

x, y
)

 , the final label is deter-
mined by:

where

where 
(

class_map
)

i
 is i th classification map, (conf _map)i is the i th confidence map and l

(

x, y
)

 the label of pixel 
in position 

(

x, y
)

.

Experiments
Three real PolSAR datasets are used for evaluation of classification methods: Flevoland, SanFrancisco and Oberp-
faffenhofen. The Flevoland and SanFrancisco datasets are L-band PolSAR images acquired by AIRSAR contain-
ing15 and 4 classes, respectively. Their sizes are also 750 × 1024 and 900 × 1024 pixels, respectively. The Oberp-
faffenhofen PolSAR image acquired by electronically steered array radar (ESAR) L-band over Oberpfaffenhofen 
in Germany has 1297 × 935 pixels and four classes. A laptop with 2.8 GHz processor, Inter Core i7 CPU, and 
16 GB RAM is used for doing experiments. All programs are run by MATLAB 2018b.

Parameter settings.  To provide the initial polarimetric-spatial features in each view, a MP with size of 35 
is generated and stacked on the polarimetric features to provide vi = {Poli ,MPi}; i = 1, 2, 3 . Each MP consists 
of 17 channels generated by applying closing operators by reconstruction, 17 associated opening channels and 
the first principal component of that view. The parameters of the proposed DFC method are set as follows. For 
the difference of Gaussian function, we set σ1 = 3 , k = 1.5 (σ2 = kσ1) and the size of the Gaussian filter equal 
to 3× 3 in all datasets. For extraction of deep features using pre-determined convolutional filters, two layers 
of convolutional filters with K = 8 filters in each layer are used. The size of convolutional filters (W ×W) is 
considered as a free parameter which is determined for each dataset through doing experiments. The number of 
features (m) extracted by using the proposed discriminant analysis and the size of neighboring windows (L× L) 
for generation of confidence maps are also considered as free parameters, which are set for each dataset through 
doing experiments.

Figure 1 shows the average classification accuracy versus the free parameters ( W , m and L ) for Flevoland and 
SanFrancisco datasets. The results are obtained by using 10 training sampler per class. The following conclusions 
can be found from this figure:

1.	 Involving spatial information, by applying convolutional kernels selected from the important regions of 
PolSAR image, improves the classification accuracy. With increasing the size of convolutional filter ( W ), the 
classification accuracy is improved to a point. But, after that, with increasing the size of filter, it is possible that 
pixels from the heterogeneous regions or class boundaries are included, which may degrade the classification 
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result. The Flevoland dataset has less sensitivity to the W variations with respect to the SanFrancisco data. 
For Flevoland dataset, W = 5 and for SanFrancisco dataset, W = 33 is selected.

2.	 With increasing the number of extracted features, the discriminant ability of data is improved and thus, 
the classification accuracy is increased. But, from a point to next, with increasing the number of extracted 
features, redundant features are included that may decrease the classification accuracy. m = 7 and m = 17 
provide the best results for Flevoland and SanFrancisco datasets, respectively.

3.	 With increasing the size of neighborhood window (L) , with involving more spatial information, the clas-
sification accuracy is increased. But, with more increasing of L , because of involving pixels belonging to the 
different classes with respect to the central pixel, the classification result is degraded. The best parameter of 
L for Flevoland/SanFrancisco data is obtained as L = 63/L = 105.

The free parameters in the Oberpfaffenhofen image are set as the same as the Flevoland dataset.

Assessment of different cases.  The proposed DFC method is composed of four main parts: multi-view 
(MW) analysis, important regions (IRs) selection for convolutional filtering, discriminant analysis (DA) and 
high confidence (HC) decision fusion. To assess impact of each part, efficiency of the proposed DFC method is 
compared with the following methods:

•	 DFC-NMW (DFC without MW): total features composed of diagonal parts, real parts and imaginary parts 
of non-diagonal elements of the coherency matrix are used together in a single view.

•	 DFC-NDA (DFC without DA): no discriminant analysis is done in the DFC method.
•	 DFC-NIR (DFC without IR): instead of selection of important regions, random regions are selected and used 

as convolutional kernels for spatial filtering.
•	 DFC-NHC (DFC without HC): instead of using confidence map for decision fusion, the majority voting rule 

is used for decision fusion.

The classification results for Flevoland dataset achieved by using 100 training samples per class are reported 
in Table 1. Average accuracy (AA), overall accuracy (OA), kappa coefficient (K) and running time (seconds) are 
represented. As seen, the lowest classification accuracy is obtained by DFC-NDA, which means that the proposed 
discriminant analysis has significant impact on the classification result. After DFC-NDA, DFC-NHC results in 
the lowest classification accuracy, which shows the significant role of the proposed decision fusion. After DA and 
HC, MW and IR rank third and fourth, respectively, from the significant role point of view. With comparison 
the running time of different methods, it can be seen that DA is very effective to decrease the running time.

To show the statistical significant of differences in the classification results, the McNemars test results are 
represented in Table 2. According to this table, preference of DFC with respect to other methods is statistically 
significant with a large difference.

Figure 2 shows the important regions (IRs) and confidence maps (CMs) for three views of Flevoland dataset. 
The Pauli RGB and the achieved classification maps are also shown in Fig. 3.

The classification results for SanFrancisco dataset by using 750 training samples per class are represented in 
Table 3 and the McNemars test results are reported in Table 4. According to this table, the important roles for 
improvement of classification accuracy are under taken by DA, MW, HC and IR, respectively. The McNemars 
test results show the significant preference of DFC with respect to the competitors from the statistical point of 
view. Figures 4 and 5 show IRs and CMs and the classification maps, respectively.

The classification and McNemars test results for Oberpfaffenhofen dataset are reported in Tables 5 and 6, 
respectively. According to the obtained results, with eliminating the discriminant analysis step for dimensionality 
reduction, performance of classification is significantly decreased in DFC-NDA. After DA, effects of eliminating 
the multi-view analysis in DFC-NMW and high confidence decision fusion in DFC-NHC are significant. IRs 
and CMs and the classification maps for the Oberpfaffenhofen image are shown in Figs. 6 and 7, respectively.

The overall accuracy obtained by using 10 and 100 training samples per class for Flevoland (Fle.) dataset, 10 
and 750 training samples per class for SanFrancisco (San.) dataset, and for 10 and 100 training samples per class 
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Figure 1.   Average classification accuracy versus the free parameters ( W , m and L ) of DFC.
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Table 1.   Classification results for Flevoland dataset achieved by using 100 training samples per class.

Name of class DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

Stembeans 99.56 99.74 83.27 99.46 99.39

Peas 98.83 99.32 96.21 98.01 98.32

Forest 99.92 99.17 99.31 99.77 98.31

Lucerne 94.68 99.21 91.04 94.61 98.13

Wheat 99.15 97.33 77.70 99.13 97.91

Beet 98.69 95.56 63.05 98.85 96.34

Potatoes 96.55 94.45 95.63 95.12 94.14

Bare soil 100.00 100.00 100.00 100.00 100.00

Grass 99.22 97.08 80.67 99.25 96.70

Rapeseed 98.16 95.34 99.65 97.17 90.72

Barely 99.80 99.58 97.69 100.00 99.23

Wheat 2 99.01 97.68 33.64 97.17 93.02

Wheat 3 99.32 98.39 52.33 99.13 96.40

Water 99.98 99.41 99.38 99.99 97.90

Buildings 99.79 100.00 95.59 100.00 100.00

AA 98.84 98.15 84.34 98.51 97.10

OA 98.72 97.77 81.40 98.31 96.52

K 98.61 97.57 79.75 98.15 96.20

Time 152.45 69.51 429.06 150.75 89.16

Table 2.   McNemars test results for Flevoland dataset achieved by using 100 training samples per class.

DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

DFC 0 26.26 161.98 19.48 52.04

DFC-NMW − 26.26 0 150.56 − 14.28 28.04

DFC-NDA − 161.98 − 150.56 0 − 158.30 − 139.35

DFC-NIR − 19.48 14.28 158.30 0 41.48

DFC-NHC − 52.04 − 28.04 139.35 − 41.48 0

Figure 2.   Important regions (IRs) and confidence maps (CMs) for three views of Flevoland dataset.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5984  | https://doi.org/10.1038/s41598-022-09871-w

www.nature.com/scientificreports/

for Oberpfaffenhofen (Oberp.) dataset are represented in Table 7 for a brief comparison. As we can see, by using 
limited training samples (the case of 10 samples), the proposed method results in high classification accuracy, 
which shows superior performance of DFC for dealing with small sample size situations.

Comparison with other methods.  Efficiency of the proposed DFC method is compared with several 
recently published PolSAR image classification methods. The results are reported in Table 8. The numbers in the 
table show overall classification accuracy. The numbers in the parentheses are the number of total training sam-
ples used in each method indicated by Nt . For the proposed DFC method, the classification results are obtained 
by using 100 training samples per class for Flevoland dataset, Nt = 100× 15 = 1500 . Also, for SanFrancisco 
dataset, the results of DFC with 750 training samples per class Nt = 750× 4 = 3000 are represented. For the 
method in10, result for the best combination of texture and color features (TCF) is reported.

According to Table 8, DFC provides the highest classification accuracy with the lowest number of training 
samples in Flevoland dataset. In SanFrancisco, DFC outperforms TCF, CNN and OA-ELM. CV-3D-CNN and 
CK-HDRF with using more training samples result in better classification results compared to others. However, 
DFC has less sensitivity to the number of training samples because of some reasons: 1. it uses the pre-determined 
convolutional filters for extraction of deep polarimetric-spatial features, which do not need any training samples 

Figure 3.   Pauli RGB and the achieved classification maps for Flevoland dataset.

Table 3.   Classification results for SanFrancisco dataset achieved by using 750 training samples per class.

Name of class DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

Mountain 99.30 98.75 98.06 98.89 99.10

Grass 89.59 89.49 92.08 89.27 88.51

Sea 98.44 97.72 97.97 97.90 98.02

Building 89.33 86.73 78.81 89.06 86.98

AA 94.16 93.17 91.73 93.78 93.15

OA 93.48 92.10 89.30 93.10 92.19

K 90.32 88.34 84.40 89.77 88.48

Time 528.62 322.85 1090.56 555.49 332.63

Table 4.   McNemars test results for SanFrancisco dataset achieved by using 750 training samples per class.

DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

DFC 0 69.43 163.12 22.84 75.26

DFC-NMW − 69.43 0 103.46 − 45.11 − 4.99

DFC-NDA − 163.12 − 103.46 0 − 140.88 − 117.56

DFC-NIR − 22.84 45.11 140.88 0 44.30

DFC-NHC − 75.26 4.99 117.56 − 44.30 0
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Figure 4.   Important regions (IRs) and confidence maps (CMs) for three views of SanFrancisco dataset.

Figure 5.   Pauli RGB and the achieved classification maps for SanFrancisco dataset.

Table 5.   Classification results for Oberpfaffenhofen dataset achieved by using 100 training samples per class.

Name of class DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

Open areas 87.64 77.71 51.20 85.00 83.84

Wood land 78.99 72.98 66.52 79.84 75.54

Built-up areas 55.79 43.06 34.02 56.70 44.87

Road 33.85 32.94 68.99 35.77 30.11

AA 64.07 56.67 55.18 64.32 58.59

OA 72.54 64.27 53.93 71.76 67.69

K 57.00 46.05 37.10 56.51 49.74

Time 213.58 117.08 369.20 208.06 96.29
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or learning process, 2. it uses a nanparametric form of discriminant analysis with regularization technique for 
feature reduction. In addition, DFC has relatively simple and fast implementation. The running time of DFC 
by using Nt = 1500 is less than 3 min for Flevoland dataset, and by using Nt = 3000 is less than 9 min for San-
Francisco dataset.

Conclusion
A PolSAR image classification method was proposed in this paper that works with a relatively suitable speed and 
has high classification accuracy especially in small sample size situations. The proposed DFC method applies 
a multi-view analysis. It appropriately extracts consistent and robust polarimetric-spatial features by applying 
several pre-determined convolutional kernels. It uses a discriminant analysis through two individual projec-
tions. At first, it generates a feature space with minimum overlapping features, and then, it maximizes the class 
discrimination. Eventually, a high confidence decision fusion is done to provide the final classification map. DFC 
uses the fixed convolutional kernels for extraction of deep features and also utilizes a nanparametric method 
for dimensionality reduction. So, DFC has high efficiency in small sample size situations. The convolutional 
kernels are selected from the important regions of the PolSAR image. The result will be extraction of robust 
contextual features consistent with the PolSAR inherence. Due to multi-view analysis, DFC utilizes the diverse 
information of the PolSAR cube. With computing the confidence maps and utilizing them for decision fusion 
of multi-view classification maps, a high reliable land cover classified map is achieved. The experiments showed 
that the proposed two-step discriminant analysis feature reduction method has the most important role in clas-
sification improvement and in the running time reduction. The important roles of multi-view analysis, selection 

Table 6.   McNemars test results for Oberpfaffenhofen dataset achieved by using 100 training samples per class.

DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

DFC 0 235.58 357.70 32.56 196.55

DFC-NMW − 235.58 0 199.84 − 215.85 − 104.44

DFC-NDA − 357.70 − 199.84 0 − 350.21 − 268.09

DFC-NIR − 32.56 215.85 350.21 0 147.29

DFC-NHC − 196.55 104.44 268.09 − 147.29 0

Figure 6.   Important regions (IRs) and confidence maps (CMs) for three views of Oberpfaffenhofen dataset.
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of important regions and the high confidence based decision fusion were also obvious. By using just 10 train-
ing samples per class, DFC provides 96.40%, 90.07% and 71.12% overall classification accuracy in Flevoland, 
SanFrancisco and Oberpfaffenhofen PolSAR images, respectively. Finally, comparison with other PolSAR clas-
sification methods showed the superior performance of DFC in most cases.

Data availability
No new data is used in this paper. The datasets used for the experiments are benchmark datasets.

Figure 7.   Pauli RGB and the achieved classification maps for Oberpfaffenhofen dataset.

Table 7.   A brief comparison of overall classification accuracy for different cases of DFC method.

Data\method No of training samples per class DFC DFC-NMW DFC-NDA DFC-NIR DFC-NHC

Fle
10 96.40 92.47 69.36 92.81 91.07

100 98.72 97.77 81.40 98.31 96.52

San
10 90.07 85.04 64.00 82.37 86.21

750 93.48 92.10 89.30 93.10 92.19

Oberp
10 71.12 64.23 35.23 69.67 67.60

100 72.54 64.27 53.93 71.76 67.69

Table 8.   Comparison of DFC with other classification methods.

Data\method DFC TCF10 CNN26 OA-ELM17 CV-3D-CNN27 CK-HDRF11

Fle 98.72 (1500) 94 (1793) 92.46 (10,817) 93.42 (3000) 93.74 (15,730) 96.75 (1575)

San 93.48 (3000) 92.5 (2500) 90.23 (28,404) 90.44 (3000) 96.86 (9216) 96.56 (9216)
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