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Elucidating the genomic architecture of Asian
EGFR-mutant lung adenocarcinoma through multi-
region exome sequencing
Rahul Nahar1, Weiwei Zhai2,3, Tong Zhang2, Angela Takano4, Alexis J. Khng1, Yin Yeng Lee1, Xingliang Liu1,

Chong Hee Lim5, Tina P.T. Koh5, Zaw Win Aung6, Tony Kiat Hon Lim4, Lavanya Veeravalli7, Ju Yuan8,
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EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are

characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs).

Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that

despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex

genomic landscape with frequent and early whole-genome doubling, aneuploidy, and

high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of

CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-

amplitude amplifications and deletions that potentially beget drug resistant clones. We

highlight the association between genomic architecture and clinical phenotypes, such as co-

occurring truncal drivers and primary TKI resistance. Through comparative analysis with

published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity

observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver,

genomic instability, and low background mutation rates.
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A lthough comprehensive genomic sequencing studies have
identified recurrent somatic alterations in LUAD1–8,
majority has been based on single-tissue samples and lack

the resolution to evaluate clonal architecture. Further, certain
clinical phenotypes, such as never-smoker Asian EGFR-mutant
LUAD are under-represented in these cohorts1–8. Activating
mutations in the epidermal growth factor receptor (EGFR) are the
most common therapeutically tractable driver mutation in lung
adenocarcinomas (LUAD) with distinct ethnic differences,
occurring at higher frequencies in Asians (40–60%) compared to
Caucasians (7–10%)9–12. Due to the preponderance of never
smokers, EGFR-mutant LUADs are often associated with low-
mutation burdens. On the contrary, the copy number landscape
has been shown to harbor considerable genomic complexity13–15,
although the extent to which these observations are confounded
by intra-tumor heterogeneity (ITH) is unclear.

While it is feasible to computationally resolve clonal compo-
sition in single-tissue samples16–18, these methods lack sensitivity
and specificity especially in tumors with high ITH, where
regionally dominant clones may exist. More recently, multi-
region sequencing studies on smoker dominated Caucasian non-
small cell lung cancers (NSCLC) have revealed high-mutation
burden and low ITH19–21—primarily attributed to inordinately
long trunks (representing mutations shared by all regions of a
tumor) as a result of accruing multiple passenger and driver
alterations from chronic tobacco exposure. On the other hand,
late diversification was contributed by branch/private driver
alterations (mutations present in few but not all regions of tumor/
present in single region of tumor) and increased APOBEC
activity, representing evolutionary processes that are potentially
amenable to therapeutic targeting16,19.

The extent of ITH, and the factors that drive cancer evolution,
is of clinical interest as it has been inextricably linked to treatment
failure22,23. In EGFR-mutant LUAD, selection pressures imposed
by targeted therapies can either result in expansion of pre-existing
rare TKI resistant subclones (e.g., cells harboring EGFR T790M
or MET amplifications) or be acquired stochastically24–26. The
rapid emergence of resistance to EGFR TKIs27,28 seems counter
intuitive in the context of low-mutation burden, and the impact
of intra-tumor heterogeneity on the extent of tumor shrinkage
and eventual emergence of drug resistance is not well established.

Here we present the first comprehensive description of the
genomic architecture of EGFR-mutant LUAD through multi-
region exome sequencing and SNP arrays on 16 tumors. Despite
low-mutation burdens in these predominantly never-smoker
oncogene-driven LUADs, we demonstrate an under-appreciated
level of genomic complexity, both in terms of copy number
landscape, as well as relatively high-proportional ITH due to early
diversification in these tumors. Through integrative genomics, we
show that early EGFR and TP53 mutations are often followed by
genome doubling events, with ongoing genomic instability typi-
fied by a variegated copy number landscape and late high-
amplitude amplifications and deletions. We further highlight how
multiple co-occurring drivers may portend poor clinical out-
comes, including primary EGFR TKI resistance. By comparing
the clonal architecture of our EGFR-mutant LUAD with that of
previously published smoking-related LUAD, we provide insights
into determinants of ITH and suggest that the evolutionary tra-
jectories of LUADs are shaped by cumulative effects of back-
ground mutation rates, strength and timing of driver mutations
and ongoing genomic instability.

Results
Spatio-temporal relationship of mutations relative to EGFR.
We subjected 16 surgically resected stage I–II treatment naive

EGFR-mutation positive Asian LUAD cases (15 never smokers)
to multi-sector whole-exome sequencing. A total of 79 sectors
with 3–11 regions from each tumor were sequenced (mean depth
114X; Supplementary Fig. 1; Supplementary Table 1). Somatic
single-nucleotide variants (SNVs) and indels were identified and
subjected to target deep sequencing (mean depth of 3860X). In
all, 1450 SNVs and 71 indels were confirmed, affecting exons of
1318 genes (Supplementary Data 1), from which phylogenetic
trees and mutation heatmaps were generated (Fig. 1a, b; Sup-
plementary Fig. 2).

EGFR mutations were confirmed to be truncal events
(mutations present in all sectors of a tumor) in every case
regardless of the mutation type (L858R, exon 19 deletion or exon
20 insertion), underscoring its role as an early tumor initiating
driver event (Fig. 1a, Supplementary Data 2). Besides EGFR, TP53
was the most recurrently mutated gene with mutations in 9 out of
16 tumors, of which eight were truncal events (Fig. 1a, c;
Supplementary Data 1, 2). Only 17 other LUAD-specific driver
genes (those found to be recurrently mutated in LUAD; Methods
section) were found mutated, of which 7 (<50%) featured as
truncal events in 4/16 tumors (Fig. 1c). Further, just two of these
17 driver genes (LRP1B and CTNNB1) were recurrently mutated
across two patients (Fig. 1a, c, Supplementary Data 1, 2).
Interestingly, both CTNNB1 mutations (S37C and K335I,
Supplementary Data 1) are known to be oncogenic and deregulate
beta-catenin activity29,30 possibly contributing to EGFR-mediated
tumorigenesis31. In addition, we find infrequent mutations that
have recently been shown to have functional roles. For example,
the private mutation affecting D323 residue of AKT1 (found in
A001, Fig. 1a, Supplementary Data 2) has been shown to be
activating/oncogenic32 contributing to erlotinib resistance in
EGFR-mutant PC-9 cells33. Loss-of-function of MED12 has been
implicated in resistance to EGFR TKIs34 suggesting that the
truncal MED12 frameshift deletions in A006 and the private
MED12 mis-sense mutation (predicted to be damaging; Supple-
mentary Data 1, 2) in A021 might be candidates for resistance
inducing mutations. However, we did not find any common
resistance mutations like the T790M in EGFR, in any sector, likely
due to their rare occurrence in treatment naive samples that are
beyond the detection limits of our sequencing parameters24.

Multi-region sequencing reveals high ITH in EGFR-mutant
LUAD. Using the percentage of branch/private mutations—a
common measurement of ITH19,20,35 (we term this proportional
ITH or pITH), we found a median of 62.3% heterogeneity (range:
32.26–82.2%) in our largely never-smoker Asian EGFR-mutant
LUADs, contrary to previous findings of low ITH in LUAD
(~30% branch mutations; Fig. 1a, b, Supplementary Fig. 2, Sup-
plementary Data 2)19,20. To eliminate any biases arising from
different analysis pipelines, we re-analysed the data from the two
earlier reports using our pipelines (Supplementary Fig. 3, Sup-
plementary Table 2) and confirmed the differences in pITH even
after controlling for the number of sectors per tumor (Supple-
mentary Fig. 4). Consistent with the higher pITH, we found an
average increase of 37% in mutation burden upon sequencing
three random sectors in EGFR mutation positive Asian LUAD
compared to only 17% increase in smoker dominated Caucasian
LUAD (Supplementary Fig. 5), underscoring the higher relative
burden of branch/private mutations in the former.

APOBEC activity is infrequently observed in EGFR-mutant
LUAD. We next examined the mutational signatures associated
with early and late genetic events in Asian EGFR-mutant LUAD.
Among the three mutation signatures identified in our patients
(Supplementary Fig. 6) the age-associated molecular clock like
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signature-136,37 dominated the mutational landscape of these 16
EGFR-mutant patients including the light ex-smoker A103
(Fig. 1d). The distribution of signatures between early (trunk) and
late events (branch/private) was heterogeneous across patients
(Fig. 1e) and collectively we did not find significant change for

any signature between the early and late events (signature-1: P =
0.43; signature-2: P = 0.62; signature-4: P = 0.08, paired t-test).
However, 4 of 16 patients (A102, A103, A114, and A121)
demonstrated relatively higher contribution of APOBEC activity
(signature-2) in late subclonal events (Fig. 1e). Of note, marked

A114
(L858R)

S35S23
S59

S43

EGFR

SMC1A

32, 51

A028
(L858R)

S06

S18 S21

FBXW7
EGFR
TP53

ATF7IP

41, 62

A022
(Ex 20 Ins)

S05S11
S14S02

S08

EGFR

PTPN11

35, 62

A027
(Ex 19 del)

S03

S21

S25

S13 S17

EGFR

15, 32

A014
(L858R)

S59
S52

S44
S30

S47

S39

S35

S25

S55

S08S21

RBM10
CLIP1
PTEN
EGFR
TP53

PPP6C

ATIC

DCTN1
AKAP9

50, 143

A017
(L858R)

S10

S20
S11

S16

LRP1B (-S20)
EGFR
TP53

ACO1
SELP (-S20)

MUC17
GRIN2A

ARID1B
EWSR1

EXT1

47, 113

A021
(L858R)

S14
S20

S02

S17

S23

TLR4
EGFR
TP53

MED12

CACNA1D

NCOA1

34, 86

a A071
(Ex 19 del)

S17
S25

S29
S05

S21

ZNF521

EGFR

NIN

31, 108
Truncal, total
mutations:

A006
(Ex 19 del)

S01

S05

S04

S06
S09

S08

EGFR 
MED12

LMO1

17, 57

A001
(L858R)

S01

S02

S03

S04

EGFR
TP53

ARHGEF12 
(-S02)

AKT1

27, 100

A112
(Ex 20 Ins)

S48

S40

S32 S15

S20

S28

EGFR
CTNNB1
ATM

LRP1B

TSHZ2

19, 52

A103*
(L858R)

S25
S13

S19
S31

EGFR
TP53

PTPRD

C3orf70

DDX3X
IKBKB

35, 123

A121
(Ex 19 del)

S01

S03

S05

EGFR
TP53 (-S05)

SMARCA4RPL5
WAS

23, 56

A062
(L858R)

U2AF1

S31
S23

S11
S19

S27

EGFR
TP53

ITPKB
LRRK2

ALPK2

FLG

CHN1

TPR 
(-S27)

56, 144

A065
(L858R)

S26

S30

S18
S22

S09

SETD2

PAK3

EGFR
TP53

CTNNB1

SETBP1
ATRX

SLC34A2

52, 154
Truncal, total
mutations:

EGFR
TP53
PTEN
CLIP1

RBM10
TLR4

CTNNB1
ATM

LRP1B
FBXW7
SMAD4
ATF7IP

RPL5
U2AF1
PAK3

PTPRD
SETBP1

SMARCA4
SETD2

Non−trunk

Trunk

Mutation burden

Non-synonymous
Indel
Stopgain
Splicing

Alterations

Signature 4

Signature 2

Signature 1

Mutation signature

1

0

0

60

120

A001 A006 A014 A017 A021 A022 A027 A028 A062 A065 A071 A102 A103 A112 A114 A121

A001 A006 A014 A017 A021 A022 A027 A028 A062 A065 A071 A102 A103 A112 A114 A121

b

c

d

e

A102
(L858R)

34, 191

SIN3A

S29
S04

S33

S37

EGFR

SMAD4
(-S04)

NCOR1
PTPRK

 FGFR1
RARA

TLR4 (-S04)

P
ro

po
rt

io
n

of
 m

ut
at

io
ns

# 
m

ut
at

io
ns

Fig. 1 Landscape of clonal and subclonal mutations in Asian EGFR-mutant tumors. a Phylogenetic trees generated for the 16 Asian EGFR-mutant LUADs.
Trunks, branches and tips are depicted in blue, green, and red, respectively, while non-silent mutations carrying LUAD specific drivers are in red and other
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Oncoprint heatmap for mutations in LUAD drivers depicting the presence (see color legend) or absence (gray box) and type of non-silent mutation. d
Proportions of the three mutation signatures identified for each sector. Signature numbers are according to the COSMIC nomenclature. e Pie charts
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Fig. 2 Genomic instability and variegated copy number landscape of EGFR-mutant tumors. a Bar plot representing the fraction of genome altered by copy
number alterations relative to ploidy of the sector, which is termed as the genomic instability index (GII). b Bar showing genome doubling status. Blue
indicates significant evidence for genome doubling (Supplementary Data 3, Methods section) and gray indicates no genome doubling. c Heatmap depicting
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are as depicted in d. TP53 wild-type samples are depicted in gray
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spatial heterogeneity was observed in one patient (A102)—a TP53
wild-type non-smoker, where two out of four sectors showed
considerably increased contribution of APOBEC signature and
disproportionately higher sector-specific mutational burden
(Fig. 1b, d, e). These observations support the role of increased
activity of APOBEC family of enzymes as a putative mechanism
driving subclonal diversification16,19,20, although only in a min-
ority of EGFR-mutant cases.

EGFR-mutant LUAD display a variegated copy number land-
scape. We successfully profiled somatic copy number alterations
(SCNA) for 61 of the 79 tumor sectors across 15 patients (Fig. 2,
Supplementary Fig. 7). Using a genome instability index (GII,
defined as fraction of the genome altered by SCNAs, copy change
≥1 relative to ploidy; see Methods section), we found that
majority of tumors showed moderate to high-genomic instability
(median of 48.1% per tumor sector, Fig. 2a), as well as frequent
whole-genome doubling (WGD) events (12 of 15 tumors, except
A006, A027, and A112; Fig. 2b, Supplementary Data 3). Inter-
estingly, we find WGD to be a truncal event (Fig. 2b, Supple-
mentary Data 3) wherever present, suggesting them to occur early
in tumorigenesis, consistent with its implications as a common
route leading to genomic and chromosomal instability (CIN),
fueling intra-tumor heterogeneity6,38,39. Using the eleven tumors
with SCNA data in at least three sectors, we observed 40.5% of
cytobands and 41.35% of genes to be affected by late branch or
private copy number alterations (Supplementary Fig. 8; Supple-
mentary Data 4, 5; Methods section). While we saw little variance

in GII scores across sectors (Fig. 2a), majority of the SCNAs
contributing were low-copy gains and losses (copy change = 1
relative to ploidy; Supplementary Figs 7, 9). In contrast, while a
median of only 7.2% of genome was affected by high-copy gains
and losses (copy change ≥2 relative to ploidy; defined as adGII or
amplification and deletion based genomic instability index; Sup-
plementary Fig. 9), we observed a significantly higher variance in
adGII scores across sectors of a tumor compared to GII scores (P
= 5 × 10−4, Welch’s t-test; Supplementary Fig. 10) suggesting
continuous evolution of copy number landscape with late
increase in amplitude of the alterations. Focusing on genes where
amplifications have been reported as putative resistance
mechanisms to EGFR TKIs25,40, we find low-copy gains for MET,
ERBB2, and HGF genes in 12/15 patients (Supplementary
Fig. 11). While some were truncal events, five patients displayed
≥5 copies in either of these three genes in at least one sector
confirming that these amplifications do pre-exist subclonally in
some tumors (Supplementary Fig. 11, Supplementary Data 4),
and may contribute to a drug tolerant state.

We next estimated the timing of recurrent truncal mutations
relative to WGD and copy number alterations using a published
algorithm16. The inferred cancer cell fractions and mutant allele
copy numbers suggest that EGFR and TP53 mutations occurred
prior to WGD and local SCNA (Supplementary Data 6),
underscoring the founding role of these two drivers during
tumorigenesis. Notably, in the nine tumors harboring mutations
in TP53, all had undergone WGD (compared to 3 out of 6 in
TP53 wild type (wt)) (Fig. 2b, Supplementary Data 3) and were
further associated with significantly higher genomic instability (P

P = 0.0113
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Fig. 3 EGFR is a dominant driver with few co-drivers. Dot plots comparing mutation burden on a trunk and b branches between the Asian EGFR-mutant and
smoker dominated Caucasian cohorts19, 20. c Dot plot comparing number of branch/private mutated drivers (extended driver list) between the EGFR-
mutant and smoker dominated Caucasian cohorts19, 20. Welch’s t-test was used to compare the two groups. d Dot plot showing that EGFR-mutant LUADs
have significantly fewer truncal drivers (extended driver list; Welch’s t-test) compared to smoker Caucasian LUADs. Three random sectors were picked 20
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score” measuring driver self-sufficiency for each of 78 LUAD driver genes calculated across published 412 tumors3, 4 is plotted against the fraction of
patients carrying the mutated driver
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= 0.0131, Welch’s t-test; Supplementary Fig. 12, Fig. 2a). Overall,
our data reveal how EGFR-mutant LUAD can harbor a complex
copy number landscape that can be influenced by TP53 mutation
status—and undergoes continuous evolution over time with early
low-copy gains and losses followed by late high-amplitude
changes.

Early SCNA converge on disruption of cell cycle control. We
next examined the recurrent copy number changes, focusing on
the cytobands with recurrent SCNAs and driver cytobands
identified in previous large scale studies4,6–8,41. We found gains in
multiple cytobands from chromosome 1, 5p, and 7p containing
important driver genes like TERT, EGFR, anti-apoptotic MCL1
and TP53 inactivator MDM4 as the most recurring truncal events
in more than half of the tumors evaluated for SCNA ITH (Fig. 2c;
Supplementary Fig. 7; Supplementary Data 4, 5). Truncal deletion
events were observed in regions, such as 13q14.2, 9p21.3 and
10q23.31 containing known tumor suppressors like RB1,
CDKN2A, and PTEN (Fig. 2d). Among these, 9p21.3 containing
CDKN2A/2B carried truncal losses relative to ploidy across six
tumors and was the only known driver region with truncal

homozygous deletions in two tumors (Fig. 2d; Supplementary
Fig. 13a; Supplementary Data 4, 5). Interestingly, all TP53 wild-
type tumors had truncal losses affecting the 13q14.2 region
containing RB1 (Fig. 2d) and four of these tumors had loss of
heterozygosity (LOH) containing just single copy of this gene
(Supplementary Fig. 13b). In addition to recurrent somatic
mutations in TP53, we further observed recurrent truncal LOH in
7/11 tumors including those without any mutations (Supple-
mentary Fig. 13c). In EGFR-mutant tumors with TP53 mutations,
6/9 tumors were found to have LOH and loss in copy number in
RB1 region (3 tumors with potentially truncal LOH; Supple-
mentary Fig. 13b). Overall these findings implicate disruption of
the RB1/CDKN2A/TP53 control axis of the cell cycle G1/S and
apoptosis checkpoints as an early tumor initiating event in EGFR-
mutant LUADs.

Determinants of high ITH in EGFR mutant LUAD. Although
lower pITH in the smoker enriched Caucasian cohort (Supple-
mentary Fig. 4) can be explained by the higher number of
smoking induced truncal mutations during the life history of a
tumor (Fig. 3a), the comparable absolute mutation burden on the
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Fig. 4 TP53mutations, genomic instability, high-driver burden lead to poor outcome. a Lower panel is a heatmap representing number of copies for selected
genes involved in EGFR TKI resistance or associated with prognosis. Upper panel represents features of a tumor which are associated with patient outcome
like TP53 mutation status, genomic instability index, presence of whole-genome doubling, above and below median number of drivers (LUAD specific or
extended driver list) and the relapse status. All these features tend to coincide in many tumors. b Total mutation burdens and c driver burdens (extended
driver list) are compared between TP53 mutant (mt) and wild-type (wt) tumors. Three random sectors were picked iteratively (n= 20) and averages across
iterations are represented in b and c. The first p-value is taking all 16 patients into consideration and the second p-value is after eliminating the outlier A102
in the analysis. P-values are calculated using Welch’s t-test. d Survival plots using TCGA LUAD EGFR-mutant cases (those with non-silent mutations in
tyrosine kinase domain, n= 26)4 after stratifying above or below median number of LUAD drivers (median= 3). P-value from χ2-test is indicated

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02584-z

6 NATURE COMMUNICATIONS |  (2018) 9:216 |DOI: 10.1038/s41467-017-02584-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


branches between smoker Caucasian and our non-smoker
cohorts (Fig. 3b) was unexpected. Given that smoking related
tumors can harbor up to 10 times the mutation burden of non-
smoking counterparts2,3, the comparable level of genetic diversity
(number of branch mutations) attained by EGFR-mutant LUAD
was quite striking. In exploring potential reasons for the unex-
pectedly high-branch mutations in EGFR-mutant LUAD, we did
not find enrichment for subclonal drivers (Fig. 3c) nor consistent
increase in APOBEC-associated mutagenesis, the latter found in
only a subset of tumors (Fig. 1d, e).

Based on the fewer truncal drivers observed in EGFR-mutant
LUAD compared to smoker dominated Caucasian LUAD
(Fig. 3d), we surmised that EGFR mutations may require fewer
co-drivers for clonal expansion. To test whether EGFR tends to be
dominant (i.e., ‘self-sufficient’) and has less co-drivers across
tumors compared to other LUAD drivers, we developed a “driver
dominance score”, which measures the number of co-occurring
drivers for each defined driver gene per tumor. Drivers with
higher dominance score will tend to have less co-drivers across
cases (Methods section). Applying this procedure across 412
published LUADs3,4, EGFR ranked second, underscoring its role
as a dominant (genetically self-sufficient) LUAD driver (Fig. 3e).
We next explored the relevance of this score to clear cell renal cell
carcinoma (ccRCC), a tumor that similarly has a recurrent
truncal alteration (VHL), comparable mutation burdens, and
early diversification (high pITH 67.95%)35. In agreement with our
hypothesis, VHL too ranked as the most dominant driver in
ccRCC (Supplementary Fig. 14), when we applied the same
“driver dominance”metric to exome-wide mutation data from the
TCGA ccRCC cohort42.

These data raise the possibility that early dominant tumor-
initiating events can contribute at least in part, to shaping the
distinct genomic architecture of tumors. Taken together, our
findings from multi-region sequencing of EGFR-mutant LUAD
suggest that a dominant truncal driver, in the context of low-
mutation rates and high-genomic instability, likely results in early
clonal selection with subsequent high-intra-tumor heterogeneity.

Impact of genomic architecture on clinical trajectories. Out of
the five patients who relapsed during the course of this study after
surgery (Supplementary Table 1), four carried truncal mutations
in TP53 (A021, A028—both Stage IA; A014—Stage IB; A065—
Stage IIA), consistent with its previously reported association
with poor outcomes10,43,44. The remaining patient who relapsed
(A114) had stage IIB disease and prognostically unfavorable
clinical features, including lymphovascular invasion, involvement
of hilar and intrapulmonary lymph nodes, and was the largest
tumor in our series at 6.0 cm (Supplementary Table 1). In addi-
tion to the previously described association with WGD and GII
(Fig. 2a, b, Supplementary Fig. 12, Fig. 4a, top panel), we found
that TP53, EGFR double-mutant LUAD also harbored higher
mutation and driver burdens, both on the trunk and branches
(Fig. 4a, top panel, Fig. 4b, c, Supplementary Fig. 15), where out
of 9 tumors with ≥3 LUAD specific driver mutations, 8 were
TP53-mutant. Majority of these drivers were truncal (70.5%, 31/
44) although some patients had disproportionately more branch/
private mutations, such as patient A121 who harbored a branch
TP53 mutation, and A065 who carried four different LUAD
driver mutations in four different sectors (Fig. 1a, c, Supple-
mentary Data 7).

Interestingly, patient A014, who in addition to a TP53
mutation, carried the highest number of truncal LUAD drivers
(five drivers, Fig. 1a, c) and displayed the worst clinical outcome
in our series, relapsing in just 4 months. Upon subsequent
treatment with gefitinib after relapse, only minor tumor shrinkage

was elicited in this patient, with ensuing disease progression and
demise within 5 months, consistent with primary TKI resistance.
A patient-derived cell line (named 471L cells) from the initial
resected primary tumor, was confirmed to harbor the same
truncal alterations through targeted re-sequencing (Supplemen-
tary Data 8) and similarly exhibited gefitinib resistance (IC50 9.79
µM, as compared to the TKI-sensitive PC-9 cell line, IC50 0.001
µM, Supplementary Fig. 16). Thus, through the clinical course of
the patient and patient-derived cell line, we provide functional
evidence for the potential role of multiple truncal co-drivers in
primary resistance. To validate the impact of number of driver
mutations and mutation burdens on outcome, we next examined
EGFR-mutant patients from the published TCGA cohort4.
Stratifying patients with respect to number of either driver or
all mutations, demonstrated shorter overall survival for cases with
higher number of drivers (Fig. 4d; P = 0.0139, χ2-test) or higher
overall mutation burdens (Supplementary Fig. 17; P = 0.0493, χ2-
test). Taken together, our data suggest that in EGFR-mutant
LUAD, an early TP53 mutation may impact clinical outcomes
through facilitating genomic instability and the acquisition of
additional co-occurring driver events.

On the opposite end of the clinical spectrum, of the seven
patients with TP53 wt tumors, five harbored only the activating
EGFR mutation as the single-truncal driver. One of these patients,
A006 charted an indolent clinical course, having been radi-
ologically diagnosed with ground glass opacities for 5 years prior
to surgery. Here, the genomic landscape was distinctly “silent”,
with the lowest GII score, no WGD, low-mutation burden and no
LUAD co-drivers (Figs. 1a–c, 2a, b, 4a, Supplementary Data 2, 3).

Despite the limited cohort size, these findings illustrate how a
spectrum of clinical trajectories might be dictated by the course of
genomic events and traits, including TP53 mutations, presence of
multiple truncal drivers, aneuploidy, and associated genomic
instability.

Discussion
Through multi-region sequencing, we have, for the first time,
characterized the clonal and subclonal genomic landscape of
Asian EGFR mutation positive LUAD. Despite the low somatic
mutation burden, EGFR-mutant LUADs exhibit a heterogeneous
genomic landscape characterized by (i) high proportion of late
branch and private mutations and (ii) large proportion of genome
altered through a combination of early genome doubling events
and low-copy gains and losses, followed by late sector-specific
copy number changes. Our findings illustrate how timing of
genomic events and mutation rates can influence the natural
history and diverse clinical trajectories of EGFR-mutant LUAD.
Founding mutations in EGFR and frequent early TP53 mutations
coupled with other truncal alterations deregulating the cell cycle
and evading cell death, facilitate tolerance of pervasive WGD and
CIN. Despite a relatively high fraction of branch mutations in
these treatment naïve tumors, we generally observed a low pre-
valence of subclonal drivers or putative resistance mutations (e.g.,
D323N in AKT1), consistent with a neutral evolution model45.

While the truncal activating mutations in EGFR provide high-
response rates to the targeted EGFR TKIs, these responses are
often short-lived27,28 unlike those to Imatinib in BCR-ABL1
fusion driven chronic myeloid leukemia (CML)46,47. Although
the determinants of durability of response in CML remain poorly
understood, current studies suggest that the burden of point
mutations and SCNAs is moderate in CML compared to solid
tumors48 which possibly contributes to the longer TKI responses
of CML compared to LUAD patients47. As a result of ongoing
genomic instability in EGFR-mutant LUAD, we observed late
sector specific copy number amplifications in previously reported
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genes mediating TKI resistance such as ERBB2, MET, and
HGF25,40, providing a potential substrate for developing a drug
tolerant state. In addition, the subclonal nature of high-amplitude
amplifications and deletions underscores the challenge in inter-
preting gene copy number thresholds e.g., MET and ERBB2, from
single biopsies in NSCLC49. Importantly, we implicate the role of
multiple co-truncal drivers in a patient exhibiting primary EGFR
TKI resistance, with validation in a corresponding patient-derived
cell line, and by supporting findings from public data sets. It is
thus plausible that co-existing truncal drivers may be associated
with a propensity for primary resistance, while minor clones with
additional drivers or resistance-mediating alterations can emerge
later after initial tumor response to EGFR TKIs. However, larger
sample sizes with more functional validations will be needed to
test this and to decouple the effects of different genomic features
like TP53 mutations, driver burdens and GII.

An unexpected observation was the high pITH in never-
smoker-enriched EGFR-mutant LUAD with comparable branch/
private mutation burden to smoker LUADs. Although our study
does not allow delineation of all the intermediate steps and
selective sweeps preceding the final clonal composition, it
nevertheless illustrates the contrasting life histories and a distinct
evolutionary trajectory of EGFR-mutant LUAD, compared to
smoking-related LUADs19,20. In the smoking scenario, a tumor-
initiating cell population acquires mutations at a high rate and
hence accumulates a large number of passenger and relatively
weak driver mutations, with low likelihood for early acquisition of
dominant drivers like EGFR (Fig. 5a). On the background of
high-mutation rates, it is possible that, consecutive drivers are
gained within a time frame that results in selective clonal sweeps
with eventual population expansion and long trunks as previously
observed (Fig. 5a). In contrast, in an oncogene-driven never-
smoker LUAD, a dominant driver e.g., EGFR mutation, in the
context of low-mutation rates—is sufficient to allow expansion of
early tumor cells with few co-drivers. As a result of low-mutation
rates, subsequent drivers occur late and are less likely to cause
complete sweeps, resulting in shorter trunks and early diversifi-
cation (Fig. 5b). Given the inter-patient differences in genomic
architecture in our current series, further studies are required to
unravel the additional determinants of clonal dynamics for each

patient, such as the cytokine milieu50, immune cell infiltration51

and differential metabolic phenotypes in the tumor micro-
environment52; as well as how these may relate to selective
pressures imposed by anticancer therapies.

In summary, we have elucidated the distinct clonal architecture
of EGFR mutation positive LUAD, providing insights as to how
these may relate to the diverse clinical trajectories observed.
While dominant truncal drivers, such as EGFR mutations are an
important prerequisite for efficacious targeted therapies, the
evolutionary trajectory for each tumor can be augmented by
additional genomic events in the natural life history, enhancing
clonal fitness with emergent drug resistance. Finally, we suggest
that co-occurring truncal drivers and extent of genomic instability
can have potential clinical value as biomarkers for risk stratifi-
cation. Comprehensive depiction of the genomic landscape of
EGFR-mutant LUAD may offer opportunities for development of
high-precision therapeutic strategies tailored to individual risk of
disease progression.

Methods
Patient cohort and sample processing. Among the patients diagnosed with
LUAD at the National Cancer Centre Singapore, which underwent surgical
resection of their tumors prior to receiving any form of therapy, 16 patients car-
rying EGFR mutations were selected for this study (relevant clinical information of
each patient is provided in Supplementary Table 1). Written informed consent was
obtained from all participating patients. The study was approved by the relevant
Institutional Review Board (Singhealth Centralised IRB, Singapore).

Resected tumors were sectioned horizontally and tumor tissue in each section
was cut into four quadrants (A–D; Supplementary Fig. 1), which if large enough
were processed further into smaller sectors. Pathologists’ evaluated sectors for
reasonably high-tumor content were snap frozen for DNA/RNA sequencing.
Neighboring horizontal sections were used for histological analyses. Adjacent
normal lung tissue or blood was used as a matched normal control. DNA and total
RNA extractions were performed from frozen tissues using Qiagen All prep
universal kit and the DNA was subjected to library preparations for sequencing as
described below.

Whole-exome sequencing. Quantity of 500 ng to 1 µg of genomic DNA was
sheared using Covaris to a size of 300–400 bp and subjected to library preparation
using NEBnext End repair, A-tailing and Ligation modules (New England Biolabs).
3–6 samples were pooled together and hybridized using the SeqCap EZ Human
Exome Library v3.0 (Nimblegen, Roche) kit. Captured regions were washed, pur-
ified, amplified, and subjected to 2 × 101 sequencing on the Hiseq 2000 to obtain a
mean coverage of 114X.
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Targeted amplicon deep sequencing. Primers were designed around the somatic
variants (SNVs and Indels) annotated to be in the exonic and splice regions, using
the Generead DNA-seq custom panel v2 (Qiagen). In addition, primers covering
the T790M locus in EGFR were also added to the panel. Amplicons were generated
according to manufacturer’s recommendation and libraries were prepared using
the NEBnext Ultra DNA-seq kit (New England Biolabs). Libraries were then
pooled and sequenced on Hiseq 2500 by 150 bp paired end reads to obtain a mean
depth of 3860X.

SNV and indel calling from exome-seq. Reads were mapped to the human
reference sequence GRCh37 (hg19) using the bwa-aln algorithm53 using default
parameters. Duplicate reads were marked using Picard tools after which realign-
ment around known indels and base quality recalibration was performed at an
individual sample level using GATK 2.7 version54.

Somatic mutation calling was performed using MuTect55 allowing up to 5 reads
supporting the variant allele in the normal sample up to a maximum of 0.05 allele
frequency. The passed variants were further filtered using the described criteria to
obtain a more confident set of somatic variants. A minimum of 6 reads supporting
variant allele in the tumor was mandatory. To improve accuracy in low-frequency
calls, variants with allele frequency (VAF) in tumor below 0.2 were treated as
somatic only if the tumor allele frequency was at least 10 times greater than normal
allele frequency for the variant allele.

To eliminate false positive variant calls due to polymerase chain reaction
(PCR)-chimeras formed in exome-seq protocols, germline variants were called
from the normal sample of all patients as described below and were filtered out
from the somatic variant list.

Somatic indels were called using Strelka56 and were further filtered for >4 reads
(MAPQ >20) supporting the indel with a minimum allele frequency of 0.1.

The final list of somatic SNVs and indels was then annotated by multiple
databases using the Annovar tool57.

Germline variant calling from exome-seq. Germline variants for each patient
were called from the normal sample using GATK Unified Genotyper after indel
realignment and recalibration of bam files54. Variants were then subjected to hard
filtering using GATK recommendations to obtain a more confident set of SNVs
and indels.

Variant calling from targeted deep-seq. Fastq files were mapped to the human
reference sequence GRCh37 (hg19) using bwa-mem algorithm with default para-
meters. The bam files were realigned and recalibrated using GATK. Since the
amplicon size is around 150–200 bp, the reads obtained were overlapping. For each
base at the overlapping region, if the pair bases were identical, quality score for
both bases were updated to original quality score ×1.2; else if the pair bases were
not identical, the base with the lower quality score was replaced by the base with
the higher quality score, and both quality scores were updated to original higher
quality scores ×0.8.

Somatic SNVs were then called using VarScan v2.3.758. Default parameters
were used except the minimum variant frequency was set to 0.01. Only those
variants also called in the exome-seq were considered. Variants with <10 reads
supporting the alternate allele were filtered out and variants with allele frequency
below 0.05 were mandated to have a minimum alternate read count of 15. Further,
mutation calls were required to have a VAF five times higher in the tumor
compared to the normal.

For somatic indels, read counts supporting the indel identified by exome-seq for
that patient were obtained from both the tumor and normal bam files using a
custom script. Reads properly paired and mapped with MAPQ >20 were counted.
Somatic indels with >90% read counts from one strand were removed from further
analyses. Further only those indels were treated as validated which had at least 10
reads supporting the alternate allele at a frequency five times greater in tumor than
in normal with a minimum VAF of 0.03 in the tumor.

A validation rate of 94% for indels and 85% for SNVs was achieved for the
exome-seq data. Only validated variants were considered for generation of
phylogenetic trees and any downstream analysis.

Phylogenetic analysis. Using the presence and absence of somatic mutations
across samples, we first calculated the genetic distances between samples using the
hamming distance. The neighbor joining algorithm from the APE package59 was
used to infer phylogenetic relationships between tumor sectors for each patient.

Comparison with published data. The published LUAD data sets19,20 were
retrieved from European Genome-phenome Archive (EGA). The corresponding
EGA data set-IDs are: EGAS00001000930 and EGAD00001000900. In order to
directly compare the pattern with our data set, we selected only those patients,
where the tumor was restricted to a single site and had pure adenocarcinoma
histology. The downloaded targeted deep sequencing data were processed using the
same pipeline as our Singapore cohort data. Since the fraction of trunk mutations
in the phylogenetic trees is a function of the number of sectors, we calibrated the
trunk ratio by performing random subsampling of sectors for each patient. The

average proportion of the trunk was compared across cases conditioning on the
same number of sectors.

Mutation signatures analysis. In order to uncover mutational processes active
within the EGFR mutant LUAD patients, we combined somatic mutations from
the Singapore cohort with two published large-scale data sets3,4. With the infor-
mation from the point mutation and the flanking 5′ and 3′ bases, the Emu pack-
age60 was used to infer the mutation signatures in the 79 tumor sectors.

Driver genes annotation. We defined LUAD driver genes (n = 78) through sig-
nificantly mutated genes in LUAD collected from seven publications1–4,61–63.
Mutations in these genes are shown to occur more than just by chance or due to
the size of gene. Other cancer driver genes include additional significantly mutated
genes in at least one cancer type from two pan cancer studies62,63 and remaining
genes in cancer gene census64 (n = 735). Non-silent mutations in these two lists of
driver genes were annotated on the trees. For comparison across data sets, either
LUAD genes or combined set of both groups of drivers (extended driver list) was
used as indicated in main text or figure legends.

Copy number analysis. Illumina omniexpress arrays were run using DNA from all
79 tumor sectors along with matched normal tissue using protocols suggested by
the manufacturer. Log ratio (LRR) and B allele frequency (BAF) for all SNPs on the
array were obtained from Genome Studio. These LRR and BAF values were used as
input for ASCAT65 v2.4.1 along with the gender information. GC correction,
followed by segmentation and purity/ploidy predictions along with obtaining
allele-specific integer copy numbers was performed using ASCAT65. Each solution
was manually checked and samples for which ASCAT could not provide a reliable
solution (e.g., purity = 1) were eliminated from further analysis. 61 out of 79 sam-
ples from 15 patients remained after these filtering. For 5 of these 61 samples
(namely A001-T-S03, A017-T-S10, A021-T-S02, A112-T-S28, and A112-T-S40),
ASCAT solution was manually picked using second or third most optimal purity/
ploidy solution since either the raw data suggested these sectors to be similar to
other sectors from same patient or variant allele frequencies suggested alternate
purity solution. While presence of multiple clones within a sector might lead to
such alternate solutions in some scenarios18,65, we chose to be conservative in
absence of a gold standard and removed any potentially artificial heterogeneity.
Copy number losses or gains were determined relative to the median integer ploidy
of the tumor which was obtained as the median integer copy number of the SNPs
used in ASCAT analysis.

Genomic Instability Index (GII) was calculated as the fraction of the total
genome which was altered by any copy number gains or losses with copy change
≥1 defined relative to median integer ploidy. adGII (amplification and deletion
based genomic instability index) scores were calculated as fraction of genome
affected by high-copy gains and losses (or amplification and deletions with copy
change ≥2 relative to ploidy). To obtain cytoband or gene level copy numbers,
chromosomal locations of cytobands and genes were overlapped with those of the
segments and the segment copy number was assigned to that cytoband or gene. In
case multiple segments overlapped with the cytoband/gene, a minimum of 25%
overlap was made mandatory and the segment with the highest overlap was used to
assign the copy number to the cytoband/gene. Known driver regions in LUAD
from previous large scale studies4,6–8,41 were curated and only those regions were
considered which were altered in same direction in at least two studies.

Genome doubling status. The genome doubling status for each tumor sample was
determined using a published algorithm38. In brief, a p-value was obtained using
10,000 simulations with observed probabilities of copy number events. For samples
with ploidy ≤3, a p-value threshold of 0.001 was used. To avoid underestimating
genome doubling in high-ploidy samples, a p-value threshold of 0.05 was used for
samples with ploidy = 4, and all samples were classified as genome doubled if the
ploidy exceeds 4.

Timing of mutations relative to copy number or genome doubling. The cancer
cell fraction (CCF) and mutant allele copy number for a given SNV was calculated
following the algorithm described previously16, where the corresponding integer
copy number and tumor purity were derived using SNP-array and ASCAT algo-
rithm. A given mutation was classified as “clonal” if the 95% confidence interval of
CCF overlapped 1, and “subclonal” otherwise. The timing of a given mutation
relative to copy number alteration was classified on its clonal status and the integer
rounded mutant allele copy number. Indels, regions with no copy number
alteration (major copy number =minor copy number = 1), regions with just single
copy were eliminated as these could not be evaluated for timing. Mutations were
called early only when (i) the mutation is clonal, and (ii) the rounded integer
mutant allele copy number ≥2.

Dominance of the driver genes. The dominance of a driver (driver self-suffi-
ciency) was calculated for all known LUAD drivers (n = 69) and ccRCC drivers (n
= 16) which were found mutated in ≥5 patients in the TCGA data. This was based
on the logic that, for each cancer patient, the number of driver mutations found in
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each case implies the self-sufficiency of the drivers. Mutations which possess high
capability to drive tumorigenesis would exist with few co-occurring driver muta-
tions since these will be the sufficient to initiate a tumor. Using the combined
public data sets3,4, we computed a measure for driver dominance of each gene as

Di ¼
PNi

j¼1 1=dj

Ni
;

where Di is the dominance score for gene i, Ni is the number of patients carrying
non-silent mutations in gene i while dj is the number of LUAD driver mutations in
patient j.

Therefore, the genetic dominance (i.e., self-sufficiency) (Di) we define is inversely
proportional to the number of co-occurring driver mutations across samples.

ccRCC drivers were picked from the TCGA publication as significantly mutated
genes42.

Cell culture. 471L cells were derived from second generation of xenograft from
A014 tumor (cells from first xenograft were transplanted into a second mouse).
The tumor was collected, digested with 1 mg/ml Collagenase IV (Gibco, Life
Technologies) and cultured on 100 mm plastic dish with culture conditions similar
to those described earlier for patient-derived cell lines24. Using targeted sequencing
we had confirmed that mutation found in the cell lines matched with the primary
patient tumor (Supplementary Data 8).

PC9-GefR cell line was generated by exposing PC9 cells (a gift from Dr. Sin
Tiong Ong, Duke-NUS University, Singapore) to stepwise increment doses of
Gefitinib (0.1–6.4 µM). Both isogenic cells were maintained in RPMI (Sigma-
Aldrich), supplemented with 10% FBS (Hyclone, Fisher Scientific), 100 units/ml of
Penicillin, 100 µg/ml of Streptomycin, and 0.25 µg/ml of Amphotericin B
(Antibiotic-Antimycotic Gibco, Thermo Fisher Scientific).

All cell lines were cultured in clean, well established cell culture labs with no
sort of mycoplasma or other contamination.

Dose response to Gefitinib. 471L, PC9 and PC9-GefR cells were seeded into 96-
well plates and were treated with varying concentration of drugs the next day
(0.0001–20 µM). CellTiter-Glo Reagent (Promega) was added directly to the cells
per manufacturer’s instructions after a 72 h treatment period. Luminescence was
measured to determine the amount of viable cells. Percentage cell viability was
calculated relative to 0.2% DMSO vehicle control. All cell viability assays were
performed in triplicates. Dose response curves were generated using GraphPad
Prism version 7.

Data availability. All the sequencing and SNP array data have been deposited at
the European Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/), which
is hosted by the EBI, under the accession code EGAS00001001736.
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