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Abstract: The determining factors of the composition of the gut microbiome are one of the main
interests in current science. In this work, we compared the effect of diet shift (DS) from heavily relying
on meatatarian diets to vegetarian diets and physical exercise (EX) on the composition of the gut
microbiome after 3 months. Although both DS and EX affected the composition of the gut microbiome,
the patterns of alteration were different. The α-diversity analyzed by InvSimpson, Shannon, Simpson,
and Evenness showed that both EX and DS affected the microbiome, causing it to become more
diverse, but EX affected the gut microbiome more significantly than DS. The β-diversity analyses
indicated that EX and DS modified the gut microbiome in two different directions. Co-occurrence
network analysis confirmed that both EX and DS modified the gut microbiome in different directions,
although EX modified the gut microbiome more significantly. Most notably, the abundance of Dialister
succinatiphilus was upregulated by EX, and the abundances of Bacteroides fragilis, Phascolarctobacterium
faecium, and Megasphaera elsdenii were downregulated by both EX and DS. Overall, EX modulated the
composition of the gut microbiome more significantly than DS, meaning that host factors are more
important in determining the gut microbiome than diets. This work also provides a new theoretical
basis for why physical exercise is more health-beneficial than vegetarian diets.

Keywords: diet shift; exercise; gut microbiome; host factors; the composition of gut microbiome

1. Introduction

Living organisms in nature exist as communities of various species, interacting closely
with each other. Microbial organisms are also present as heterogeneous populations.
Microbial organisms frequently appear as a dense mixture of various species to interact
with each other in nature. Considering the heterogeneous presence of microbial organisms,
it would be reasonable to ponder that the emergence of the first primitive multicellular
organism could be accompanied by the gut microbiome at its beginning. Therefore, the
fundamentals of host–gut microbiome interactions and their evolutionary consequences
would open a new horizon for understanding animals [1,2].

The gut microbiome has been coevolving with humans throughout its evolutionary
history [3–6]. Recent studies have shown that the gut microbiome plays significant determi-
nant roles in almost all phenotypes of animals, including diseases, as much as the genomes
of their hosts [5–9]. The stability and dynamics of the gut microbiome have not only local
but also systemic effects that determine the phenotypes and diseases of the host [10]. As
the genes of an animal are a result of eons of natural selection, the gut microbiome of an
organism is also the result of long natural selection to modulate the phenotypes of its host.
Recent works suggest that the gut microbiome is a surprising factor that determines the
phenotypes of mammals, similar to their own genes [5–9].
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Given the intimate and complex interactions between the gut microbiome and its
host during evolutionary history, host factors could dictate the composition of the gut
microbiome. However, despite a possible significant role of host factors in determining the
composition of the gut microbiome, the contemporary prevailing opinion considers diet as
the main determinant factor for the composition of the gut microbiome [5,6,11]. It has been
well documented that dietary shifts affect the composition of the gut microbiome [11–14].
The opinion that the composition of the gut microbiome is mainly determined by diet was
supported by research showing that the gut microbiomes of animals with similar dietary
niches tend to contain similar intestinal microbes [15,16]. Although the effect of diet on the
composition of the gut microbiome is clear, recent research has suggested that host factors
may also play a role in determining the composition of the gut microbiome [17–19]. These
results collectively propose that the composition of the gut microbiome is determined by
both diet and host factors. However, it is unclear which factor plays a more important role.

Contrary to expectations, a recent study showed that the number of dietary transitions
within an evolutionary lineage did not influence rates of microbiome divergence, but,
instead, the most dramatic changes in the gut microbiome were associated with the physi-
ological changes of the species during the evolutionary process [20]. This work strongly
suggests that host factors could impact the composition of the gut microbiome as much as
diet or even more. The effect of host factors on the composition of the gut microbiome was
further validated by a recent report that the change in host physiology during evolutionary
processes outweighs dietary change in structuring the gut microbiomes of primates [21].
Based on these two works suggesting that the change of host factors affects the composition
of the gut microbiome more than dietary change during the emergence of a species during
evolution, the significance of host factors in a human individual would be a very interesting
question. However, the significance of host factors affecting the gut microbiome has not
been investigated.

Considering such significant roles of the gut microbiome in humans from early evo-
lutionary history to the present, it would be much more favored in natural selection if
humans were able to determine their own gut microbiome. Therefore, the significance of
host factors in determining the human gut microbiome would be an important question to
answer with respect to human biology. In this work, we conducted a comparative study to
investigate which one is more relevant in determining the diversity of the gut microbiome
between host factors and diet shift.

2. Materials and Methods
2.1. Study Design

A 12-week, randomized, parallel, controlled clinical trial was carried out with diet
interventions at the Clinical Trial Center for Functional Foods (CTCF2) in the Chonbuk
National University Hospital, South Korea. We recruited 30~50-year-old volunteers de-
pending on a meat-containing diet at least twice per day to investigate the compositional
change in the gut microbiome after a diet shift to a vegetarian diet or a physiological shift
by exercise. Computer-generated random numbers were used to assign each subject to
either the experimental or control group. The 75 volunteers were divided into three groups:
one group shifting their diet from a meat diet to a vegetarian diet (the DS group), the second
group adopting a 30 min physical exercise regimen of a guided aerobic exercise in a fitness
center three times per week without changing their original diets (the EX group), and the
control subjects continuing their lifestyle (the Ctrl group). After 3 months, the volunteers
were interviewed to ask whether they strictly followed the experimental guidelines, and
fecal samples from 41 individuals who followed the guidelines were collected for further
analysis (DS group, n = 14; EX group, n = 13; Ctrl group n = 14) (see also Figure S1).

2.2. Fecal Sample Collection and DNA Preparation

Fecal samples were freshly collected 2 times from each participant at the beginning of
the study (week 0) and at the end of the intervention (week 12). Fecal samples were kept
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in individual sterile feces containers at 4 ◦C and processed within 4 h. Each sample was
mixed in an equal volume of sterile phosphate-buffered saline buffer and homogenized
using a stomacher machine before aliquoting. Aliquots of 1 mL were frozen immediately
at −80 ◦C for further processing. The fecal samples collected from four random sites from
each individual feces were mixed together before genomic DNA isolation. Genomic DNA
was extracted from ~1 g fecal aliquot sample using the Mobio PowerLyzer™ PowerSoil®

DNA Isolation Kit (Qiagen, Hilden, Germany). The DNA extraction procedure followed the
standard protocol supplied by the company, and the final elution of DNA was performed
with 100 µL Tris (MoBIO buffer C6). The quantity and quality of the purified genomic
DNA were evaluated by an absorbance spectrophotometric method using a BioSpec-nano
spectrophotometer (Shimadzu, Kyoto, Japan), and the purified DNAs were stored at
−20 ◦C until sequencing.

2.3. Microbial Genomic Sequencing and Data Analysis

Metagenome sequencing analyses of the gut microbiome DNA samples were pro-
cessed and sequenced by a commercial company, Chunlab, Inc. in South Korea. Ampli-
fication of genomic DNA was performed using barcoded primers targeting the V1 to V3
regions of the bacterial 16S rRNA gene (V1-9F: 5′-X-AC-GAGTTTGATCMTGGCTCAG-3′

and V3-541R: 5′-X-AC-WTTACCGCGGCTGCTGG-3′, where X is a unique barcode for each
sample, followed by a common linker, AC). The amplified DNA was then sequenced using
a 454 GS FLX Titanium Sequencing System (Roche, Bradford, CT, USA). Sequencing reads
of each sample were separated by unique barcodes. After sequencing, the sequences of
barcode, linker, and PCR primer at both sides were removed from the original sequencing
reads. Only reads containing 0–1 ambiguous base calls (Ns) and 300 or more base pairs
were selected for the final bioinformatic analyses from the resultant sequences. Non-specific
PCR amplicons that showed no match with the 16S rRNA gene database upon BLASTN
search (expectation value of >10−5) were also discarded.

The sequence reads (see also Table S1) generated from metagenome sequencing were
identified using the EzTaxon-e database (http://eztaxon-e.ezbiocloud.net/ Accessed on
10 July 2021) [22–24]. Mothur, an open-source bioinformatics pipeline, was used to an-
alyze sequences to assign operational taxonomic units (OTUs) and generate taxonomy
classification [25]. A cutoff value of 97% similarity of the 16S rRNA gene sequences was
defined as the same species. The raw data were deposited in the repository at figshare
(https://doi.org/10.6084/m9.figshare.16620349.v1).

2.4. Data Normalization and Differential Abundance Analysis

The DESeq2 package was used to identify the bacteria with the most significant
changes in differential abundance at the species level in each sample. The raw read count
data were processed based on the median of ratio normalization method using the DESeq2
package within the R program. The counts were divided by sample-specific size factors
determined by the median ratio of species counts relative to geometric mean per species.
All normalized counts were exported as an Excel table and used for further analysis.
Differential abundance was identified by Wald test in the DESeq2 package by using three
pairs of group comparison: (1) EX to Ctrl, (2) DS to Ctrl, (3) EX to DS. The filter criterion
was an adjusted p value < 0.05.

2.5. α-Diversity and Abundance Evaluation of Microbiome

We used the phyloseq (1.28.0) [26] and metagenomeSeq (1.16.0) [27] packages to
identify the central taxa present in each group. The metadata, OTUs, and taxonomic classi-
fication tables were imported into the phyloseq package and the data were processed as
instructed [28,29]. The phyloseq class object was converted to metagenomeseq objects and
normalized by cumulative-sum-scaling (CSS), which was specially built for metagenome
data in the bioConductor package metagenomeSeq (1.16.0) [27]. Normalized data were
converted to phyloseq class objects in R for further analysis and visualization.

http://eztaxon-e.ezbiocloud.net/
https://doi.org/10.6084/m9.figshare.16620349.v1
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Normalized OTU data were used for abundance calculation, and each taxonomic level
was glommed for plotting. For clear visualization of abundance data, taxa were collected
into “other” if they had relative abundances below 5%, except at the phylum and class
levels (Table S2).

2.6. β-Diversity and Abundance Evaluation of Microbiome

β-diversity metrics were computed and visualized using log-transformed, normalized
OTU data in the phyloseq package using Bray–Curtis dissimilarity. The unweighted
UniFrac metric was used for β-diversity and PCoA was calculated and visualized by
the vegan package [30], while NMDS was plotted in the phyloseq package in R. The
significances of β-diversity metrics were tested by analysis of dissimilarity (ADONIS) with
999 permutations by the vegan package [30].

2.7. Construction of Heatmap and Phylogenetic Tree

A heatmap and cluster analysis were generated using the relative abundances of
genera from all OTU values or core abundant OTU values in the Heatplus (2.30.0) package
from bioconductor and the vegan package in R. Average linkage hierarchical clustering
and Bray–Curtis distance metrics were used for cluster analysis and heatmap generation,
respectively [31]. Unsupervised prevalence filtering was performed with a 5% threshold in
total samples to collect the most abundant taxa for heatmap generation.

Phylogenetic trees for each sampling site were constructed from row sequences with-
out any filtering to show direct visualization of sample richness with relation to taxonomic
classification. Taxa that could not be classified down to the species level were reclassified
based on the NCBI accession number using the taxonomizr (0.5.3) package in R [32]. Then,
16S rRNA sequences from each sampling site were aligned in ClustalW [33] with a default
parameter, and the resulting alignments were used to construct maximum-likelihood phy-
logenetic trees in MEGAX [34] with 500 bootstrap replicates. All phylogenetic trees were
visualized in iTOL [35].

2.8. Co-Occurrence Network Construction

Co-abundance networks were created by the ReBoot20 algorithm [36], known as a
permutation–renormalization–bootstrap network construction strategy, to study how diet
shift and exercise affect microbial co-occurrence relationships. Non-normalized abundance
data were uploaded to CoNet [37], a Java Cytoscape plug-in. Tree networks were inde-
pendently constructed by splitting the OTU abundance matrix into Ctrl, EX, DS groups.
The microbial networks and links or edges were obtained from OTU occurrence data. The
multiple ensemble correlation method in CoNet was used to identify significant copresence
across the samples, while OTUs that occurred in less than three samples were discarded
(“row_minocc” = 3). Five similarity measures, including Spearman and Pearson correlation
coefficients, the Mutual Information Score, and the Bray–Curtis and Kullback–Leibler
Dissimilarity, were calculated by CoNet for the creation of an ensemble network and the
p value was merged by Brown’s method. The p value was corrected by the Benjamini–
Hochberg correction method (adjusted p value < 0.05). If at least two of the five metrics
suggested significant co-abundance between two OTUs, the relationship was kept in the
final network to be represented as an edge. The final co-occurrence network model was
displayed by the igraph package in R by using the implementation of the Louvain algo-
rithm to identify communities within each network so that the modularity score of each
OTU was maximized within a given network [38].

2.9. Quantification and Statistical Analysis

All statistical analyses are reported as the mean ± SD, and the differences in relative
abundance of bacterial populations among feces were analyzed using the Mann–Whitney
sum rank tests in R software. Significance was declared at p < 0.05. All graphs were
prepared with R software.
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2.10. Ethics Approval and Consent of Participants

The study subjects were recruited from the Clinical Trial Center for Functional Foods
(CTCF2) in the Chonbuk National University Hospital. Written consent was obtained from
all participants. The study was conducted according to the Declaration of Helsinki [39].
The research protocol was approved by the Institutional Review Board (IRB) of Chonbuk
National University Hospital, Republic of Korea (CHU_KOREAN_FOOD_2-2_2010).

3. Results
3.1. Exercise Modified the Composition of the Gut Microbiome More Significantly than Diet Shift

To investigate the role of host factors and diets in the composition of the gut mi-
crobiome, we first recruited 30~50-year-old volunteers depending on a meat-containing
diet. The 75 volunteers were divided into three groups: one group shifting their diet
from a meat diet to a vegetarian diet (the DS group), the second group adopting a 30 min
physical exercise in the form of a guided aerobic exercise in a fitness center three times per
week without changing their original diets (the EX group), and the control continuing their
lifestyle (the Ctrl group). The fecal samples from each group were collected for metagenome
analysis by the 16S rRNA sequencing method (DS group, n = 14; EX group, n = 13; Ctrl
group n = 14). Sequencing of the V3-V4 sites of the 16Sr rRNA genes of each GI content
and feces in each group generated 1137 OTUs by matching with the EzTaxon-e database
(http://eztaxon-e.ezbiocloud.net/ Accessed on 10 July 2021) after removal of low-quality
sequences or chimeras.

The taxonomically classified OTUs at the phylum level visualized grossly that the
gut microbiome was modified by both exercise and diet shift. A maximum-likelihood
phylogenetic tree comprising all of the taxa showed that DS increased the abundance of
Actinobacteria and decreased the abundance of Bacteroidetes, while EX increased the abun-
dance of Firmicutes and decreased Actinobacteria (Figure 1A,B; see also Figures S2 and S3
and Table S3).

The statistical analysis of the mean species diversity by using α-diversity measure-
ments validated that both EX and DS affected the gut microbiome. The α-diversity mea-
surements by the InvSimpson, Shannon, Simpson, and Evenness methods indicated that
both EX and DS affected the microbiome, causing it to become more diverse, except for
the Evenness index for DS (Figure 1C). Interestingly, all of the α-diversity indices showed
that EX affected the gut microbiome more significantly than DS (Figure 1C), meaning that
host factors affected the gut microbiome more significantly than diet in determining the
composition of the gut microbiome.

3.2. Exercise and Diet Shift Modified the Gut Microbiome in Two Different Directions

Since both EX and DS affected the composition of the gut microbiome by increasing
its diversity, as shown in Figure 1C, an important question would be the direction of
modification by exercise and diet shift. The gross visualization of all of the normalized
OTUs at the species level is shown as a heatmap based on the Bray–Curtis distance matrix
in Figure 2A. As shown in Figure 2A, the compositions of both gut microbiomes of EX and
DS were not only different from each other but also from the control, meaning that EX and
DS modified the gut microbiome in two different directions. The hierarchical clustering
analysis showed that the gut microbiome of DS was more closely related to the control
than EX, although the gut microbiomes of both groups changed. This result is in good
agreement with the finding that EX modified the composition of the gut microbiome more
significantly than the diet shift, as shown in Figure 1.

A nonmetric multidimensional scaling (NMDS) ordination plot further validated that
the gut microbiome compositions of the three groups were quite different from each other
(Figure 2B). In accordance with the hierarchical clustering analysis result (Figure 2A), the
NMDS ordination plot showed that the gut microbiome of DS was more closely related to
the control than EX. Principal coordinate analysis (PCoA) based on the unweighted UniFrac
metric also generated similar results (Figure 2C,D). The PCoA plot of Figure 2C shows

http://eztaxon-e.ezbiocloud.net/


Microorganisms 2021, 9, 2520 6 of 17

that the gut microbiomes of the three groups were different from each other, although the
gut microbiome of DS was more closely related to the control than EX (ADONIS p value
0.013). Measurement of the distance of the centroid on the PCoA plot further validated
that the composition of the gut microbiome was modified more significantly by EX than
DS (Figure 2D).
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Figure 1. Changes in the composition of the gut microbiome at the phylum level after diet shift or exercise. (A) The relative
compositional changes in the gut microbiome at the phylum level. (B) Maximum-likelihood phylogenetic tree comprising
all of the taxa of the gut microbiome in the Ctrl, EX, and DS groups. The rings of the circular dendrogram represent the
phylum level, and the corresponding family is depicted in the inner layer. (C) α-diversity indexes of the gut microbiome in
the Ctrl, EX, and DS groups. α-Diversity values are indicated as the median ± standard deviation. * p value < 0.05 was
considered as significant. Ctrl, EX, and DS represent the control, exercise, and diet shift groups, respectively.
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Figure 2. β-diversity comparison of the gut microbiome of the Ctrl, EX, and DS groups. (A) Heatmap of the microbial
composition for the Ctrl, EX, and DS groups based on the Bray–Curtis distance matrix calculated from normalized OTU
values at the species level. (B) Nonmetric multidimensional scaling (NMDS) plots showing the difference in the gut
microbiome in the Ctrl, EX, and DS groups based on Bray–Curtis distances by using OTUs. (C) Principal coordinate analysis
(PCoA) based on the unweighted UniFrac metric of the gut microbiome in the Ctrl, EX, and DS groups. (D) Distance
of centroid for the Ctrl, EX, and DS groups. The Ctrl, EX, and DS represent the control, exercise, and diet shift groups,
respectively.

3.3. Co-Occurrence Network Analysis Showed That Exercise Gave Stronger Selective Pressure to
the Gut Microbiome than Diet Shift

To explore the direction and degree of the change in the intestinal microbes constituting
gut microbiomes, a bacterial community network analysis was performed for each group
(Figure 3). All five p values for each method (Spearman and Pearson correlation coefficients,
the Mutual Information Score, and the Bray–Curtis and Kullback–Leibler Dissimilarity)
were calculated and corrected separately. If at least two of the five metrics’ adjusted p value
suggested significant (p.adj < 0.05) co-abundance between two OTUs relationship, then
co-abundance was considered a strong connection. Only strong connections between OTUs
appearing in more than three samples were investigated. The number of nodes and edges
increased by both EX and DS (Figure 3). The indices of the community networks (Table S4)
between each group were quite similar, except indices related to the grouping of the OTUs
constituting the gut microbiome, such as nodes, edges, and modules.
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Figure 3. Co-occurrence network analysis by the ReBoot algorithm for the Ctrl, EX, and DS groups.
Color-coded network graphs represent the co-occurrence and mutual exclusion interactions among
OTUs. White numbers within nodes correspond to numbering in the legend. Transparent shapes
represent network communities determined by the Louvain modularity algorithm. Black numbering
corresponds to the numbering given to distinguish communities within each network. The Ctrl, EX,
and DS represent the control, exercise, and diet shift groups, respectively.

The total numbers of OTUs present in the gut microbiome of each experimental group
were n = 793, n = 705, and n = 847 in Ctrl, EX, and DS, respectively. Although the total
numbers of OTUs in each group were similar, the numbers of OTUs connected with other
OTUs by a relationship (nodes) were increased in both the gut microbiomes of EX and
DS. Because nodes were connected more with each other in DS and EX, the modules in
DS and EX were decreased: 28 in control, 8 in EX, and 20 in DS (Figure 3; see also Figure
S4). This result suggests that similar kinds of intestinal microbes were increased and
unrelated kinds were diminished at the same time in EX and DS, which means that there
were selective pressures in both EX and DS to lead the composition of the gut microbiome
in a certain direction.

3.4. The Abundance of Dialister Succinatiphilus Was Upregulated by Exercise, and the
Abundances of Bacteroides Fragilis, Phascolarctobacterium Faecium, and Megasphaera Elsdenii
Were Downregulated by Both Exercise and Diet Shift

Since all of the OTUs in this work were classified into nine phyla, we explored the
change in the relative abundance of the phyla by DESeq2 [40]. Unsupervised hierarchical
clustering of the nine phyla by using DESeq2 showed that EX upregulated the abundances
of Tenericutes and Verrucomicrobia and decreased the abundances of Proteobacteria and
Lentishaerae (Figure 4; see also Table S5). DS did not affect the composition of the gut
microbiome as much as EX and was only moderately affected, so the decrease in Proteobac-
teria was not meaningful (Figure 4; see also Table S5). The dramatic change in the gut
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microbiome by EX became more evident when comparing EX to DS. It was obvious that
EX upregulated the abundances of Tenericutes, Verrucomicrobia, and Acidobacteria, while
the abundance of Lentishaerae was decreased (Figure 4; see also Table S5).
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groups. (C) The normalized abundances of nine phyla identified by differential abundance analyses. Boxplots represent
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Although more serious disturbance of the gut microbiome by EX than DS could be dis-
tinguished at the family level (see also Figure S5 and Tables S6 and S7), the difference was
more evident at the species level (Figures 5–7). Most of the species were unknown species
in the figures. However, downregulation of the abundances of Bacteroides fragilis, Phasco-
larctobacterium faecium, and Megasphaera elsdenii and upregulation of Dialister succinatiphilus
were noticed by EX (Figure 5; Table S8). Interestingly, the abundances of Bacteroides fragilis,
Phascolarctobacterium faecium, and Megasphaera elsdenii were also downregulated by DS, as
in the case of EX (Figure 6; see also Table S9). All of the upregulated bacteria were not
taxonomically classified and were unknown bacteria in the DS group. The comparison of
EX to DS showed that downregulation of Veillonella dispar and upregulation of Dialister
succinatiphilus were the most noticeable (Figure 7; see also Tables S10 and S11.
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Figure 7. The key taxa changes between EX and DS by differential abundance analysis. (A) Log2-fold change in abundance
of most abundantly present species in the gut microbiome of the EX and DS groups analyzed by DESeq2 differential
abundance analysis. Each point represents a species comparison between two experimental groups. (B) Heatmap of
most abundantly present species in the EX and DS groups. (C) Normalized abundances of 18 significantly different
bacterial species of interest that were identified from differential abundance analyses. Boxplots represent normalized count
abundances of individual species in each group. p value < 0.05 was considered significant. The EX and DS represent the
control and exercise groups, respectively.
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4. Discussion
4.1. Host Factors Are More Important than Diet in Determining the Composition of the
Gut Microbiome

It has been well proven that both a vegetarian diet and exercise are beneficial to
human health. However, the degree of health-beneficial effects and direction by exercise
and vegetarian diet are different. Comparative studies have shown that exercise is much
more effective in weight loss, reducing the risk of chronic diseases, inducing relaxation
and stress relief, and leading to the gain of muscle and bone than a simple vegetarian
diet [41,42]. In accordance with comparative studies, this work showed that exercise
affected the gut microbiome much more significantly than a vegetarian diet, indicating
that host factors are more important than diet in determining the composition of the gut
microbiome.

Co-occurrence network analysis further validated the significance of host factors in
determining the gut microbiome. In contrast to the increase in microbial diversity by EX
(Figure 1C), modules in the co-occurrence network analysis were dramatically decreased
from 28 in the control to eight in EX (Figure 3; see also Figure S5). The decrease in modules
despite the increase in microbial diversity is because microbial species (OTUs or nodes)
were well-connected to each other to be grouped as modules. DS also led to a decrease
in modules from 28 to 20. This co-occurrence network analysis indicates that DS posed
selective pressure to the gut microbiome, although not as significantly as EX.

This work does not simply emphasize the significance of exercise but rather gives
an answer to a fundamental question on how the composition of the gut microbiome is
determined. Intestinal microbes obtain their nutrients from the diet of the host. Considering
that nutrients are the most important factors for the growth of microbial organisms, the
gut microbiome has to be more dependent on diet than host factors if it simply resides in
the gut. Surprisingly, this work showed that host factors played a more significant role
in determining the composition of the gut microbiome than the diet. The more profound
effect on the gut microbiome by exercise than diet shift suggests that the nurturing effect of
the gut microbiome by the host for its own purpose plays the main role in determining the
composition of the gut microbiome. Therefore, this work suggests that the host nurtures
the gut microbiome for its purpose rather than the gut microbiome to drive its host in a
certain direction.

4.2. Exercise Increased the Abundance of Beneficial Bacteria While Decreasing Harmful Bacteria

The abundances of Tenericutes and Verrucomicrobia were increased by both exercise
and a vegetarian diet (Figure 4). However, the phyla were much more dramatically
increased by EX and DS. Tenericutes are a group of bacteria without a cell wall and are
typically commensals of eukaryotic hosts. Verrucomicrobia are a group of bacteria with
compartmentalized cellular structures similar to eukaryotic cells and are frequently found
in human feces [43]. Although the abundances of both phyla increased in EX and DS, the
abundance of the two phyla was more dramatically increased by EX. Other than Tenericutes
and Verrucomicrobia, the abundances of Elusimicrobia and Acidobacteria were increased in
EX but not in DS. Overall, the tendency of modification of the gut microbiome in this work
was in good agreement with the fact that exercise affects human health more significantly
than a vegetarian diet, although both are beneficial [41,42].

Reductions in Bacteroides fragilis, Phascolarctobacterium faecium, and Megasphaera elsdenii
were commonly observed in EX and DS at the species level. The deleterious effect of B.
fragilis is well known. B. fragilis is an obligate anaerobe working as an etiological agent
of endogenous infections by using its carbohydrate capsule and secretive enzymes [44].
B. fragilis is also associated with diarrhea in humans and young farm animals [45,46] and
colorectal cancer [47]. Unlike B. fragilis, the deleterious role of P. faecium and M. elsdenii
has not been reported. Bacteria are members of the human gut microbiome [48]. P. faecium
has the ability to use succinate [49], while M. elsdenii has the ability to use lactate [50].
Interestingly, all of the bacteria whose abundances were upregulated by EX or DS were
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unidentified bacteria, except Dialister succinatiphilus in EX. D. succinatiphilus is a non-spore-
forming, Gram-negative bacterium [51]. Although the role of D. succinatiphilus in the
gut is largely unknown, a fecal transplant experiment on patients showed that increased
abundance of D. succinatiphilus correlates with the treatment of Tourette syndrome [52].
The clinical study suggests a beneficial role of D. succinatiphilus in humans.

4.3. The Significance of Host Factors in Determining the Gut Microbiome Is Well-Matched to
Evolutionary Evidence That the Composition of the Gut Microbiome Is Determined by the
Nurturing Effect of the Host

A recent study on mammalian evolution showed that the composition of the gut
microbiome is determined by the nurturing effect of the host [20]. Although all mammals
have diverged from a single ancestor, the gut microbiomes of mammals are very different
depending on their diets. The prevailing contemporary opinion is that the dietary tran-
sitions within an evolutionary lineage determined the diversities of the gut microbiome
of each mammal [53,54]. However, Nishida and Ochman showed that the compositions
of mammalian gut microbiomes were mainly determined by the physiological changes of
the species during the evolutionary process rather than diet shift [20]. In accordance with
evolutionary evidence, this work validated that the host nurtures the gut microbiome for
its purpose and that host factors very strongly control the gut microbiome.

5. Conclusions

Our comparative study showed that host factor modification by exercise affected the
gut microbiome more significantly than diet shift, which means that the composition of
the gut microbiome is mainly determined by host factors. This work solidifies the recent
evolutionary evidence that hosts nurture their own specific gut microbiome so that the
diversity of the gut microbiome is mainly determined by host factors rather than diet.
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.3390/microorganisms9122520/s1, Figure S1: Flow chart for the study subjects. Figure S2: Changes
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analysis.; Table S1: Valid reads of the 16S rRNA amplicon sequence.; Table S2: The α-diversity indices
for each sample.; Table S3: Comparison of taxonomy abundance at the phylum level. Table S4:
Co-occurrence network indices. Table S5: Comparison of the abundance of the phyla constituting
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