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Abstract

A cascade of histone acetylation events with subsequent incorporation of a histone H2A var-

iant plays an essential part in transcription regulation in various model organisms. A key

player in this cascade is the chromatin remodelling complex SWR1, which replaces the

canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic tran-

scription units in the unicellular parasite Trypanosoma brucei has been shown to be highly

dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase

HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not

known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study,

we identified and characterised an SWR1-like remodeller complex in T. brucei that is

responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of poten-

tial SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211

amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily.

Systematic protein-protein interaction analysis revealed the existence of a novel complex

exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of

the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation

at transcription start sites and a subsequent decrease of steady-state mRNA levels. Further-

more, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin con-

densation. The potential function of several proteins associated with the SWR1-like

complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.

Author summary

Trypanosoma brucei is the causative agent of African trypanosomiasis (sleeping sickness)

in humans and nagana in cattle. Its unusual genomic organisation featuring large polycis-

tronic units requires a general mechanism of transcription initiation, because individual

gene promoters are mostly absent. Despite the fact that the histone variant H2A.Z has pre-

viously been identified as a key player of transcription regulation, the complex responsible

for correct H2A.Z incorporation at transcription start sites (TSS) remains elusive. In other
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eukaryotes, SWR1, a SNF2 ATPase-associated chromatin remodelling complex, is respon-

sible for correct incorporation of this histone variant. This study identified a SWR1-like

complex in T. brucei. Depletion of the SNF2 ATPase resulted in a reduction of H2A.Z

incorporation at the TSS and decreased steady-state mRNA levels accompanied by chro-

matin condensation. In addition to the SWR1-like complex, we also identified a trypano-

some-specific HAT2 complex that includes the histone acetyltransferases HAT2, a key

player in the H2A.Z incorporation process. This complex has a trypanosome-specific

composition that is different from the NuA4/TIP60 complex in Saccharomyces cerevisiae.

Introduction

Changes in chromatin structure can permit or restrict access to the DNA, thereby effectively

regulating gene expression, replication, DNA repair and other nuclear processes in the cell [1].

This dynamic accessibility requires several molecular processes to make continuous remodel-

ling possible and disturbance of these tightly-controlled mechanisms can cause severe damage.

Aberrant gene expression, genomic instability due to inaccurate DNA repair, arrested DNA

replication, and chromosomal translocation represent only a few examples caused by flawed

chromatin structure [2–5].

Posttranslational modifications (PTMs) of histones play an essential role in chromatin

accessibility. Histone acetylation, methylation and phosphorylation are linked to specific chro-

matin restructuring mechanisms [6–8]. These PTM-mediated processes can occur either by

directly altering the strength of interactions between individual nucleosomes or by providing

specific binding platforms for other protein complexes that alter chromatin structure [9, 10].

ATP-dependent chromatin remodelling enzymes belong to the switch 2/Sucrose non-fer-

mentable 2 (SWI2/SNF2 or simply SNF2) superfamily. This superfamily was originally divided

into four major subfamilies: 1) switch/sucrose non-fermentable (SWI/SNF), 2) chromodo-

main, helicase, DNA-binding (CHD), 3) inositol-requiring 80 (INO80) and 4) imitation switch

(ISWI), but recent phylogenetic analyses facilitated a precise division into more subgroups [11,

12]. Proteins of all subfamilies contain a characteristic ATPase domain that is split into a

DEAD-Box motif (DExx) and a helicase activity [11]. Complexes with these enzymes can vary

in their composition from two subunits, such as the human RSF (remodelling and spacing fac-

tor) complex, to multimeric complexes like the S. cerevisiae INO80 complex with almost a

dozen subunits [13, 14]. To enable interaction with PTMs, remodelling complexes often

include variable proteins that exclusively bind to specific modifications. Chromodomain-con-

taining proteins bind histone methylations, while bromodomains bind histone acetylations

[10, 15].

Remodelling processes can be categorized by different modes of action: nucleosome trans-

location, nucleosome eviction and nucleosome remodelling. For example, the RSC complex

can translocate an existing nucleosome several base pairs along the DNA to increase accessibil-

ity to DNA sequences [16]. Eviction of nucleosomes as well as nucleosome remodelling, in

which canonical histones are replaced by their corresponding histone variants, rely often on

an interplay of multiple proteins and protein complexes [17]. A well-studied example of such a

histone exchange is the incorporation of the histone variant H2A.Z.

This histone variant is highly conserved among eukaryotes and only a few species (e.g. Giar-
dia and Trichomonas) are known to lack an H2A.Z homologue [18, 19]. Nucleosomes contain-

ing H2A.Z play an important role in various cellular processes ranging from heterochromatin

regulation and DNA repair to transcription regulation [20–23]. Correct incorporation of H2A.
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Z into nucleosomes is mediated by the SWR1 (SWI2/SNF2 related 1) complex and requires

well-regulated interactions between PTMs and protein complexes [10, 24–26]. For example,

acetylation of histone H4 by the NuA4/TIP60 complex is essential for correct H2A.Z incorpo-

ration in S. cerevisiae. Acetylated H4 is bound by Bdf1 (bromodomain factor 1), which is part

of the SWR1 complex [10, 27, 28]. In S. cerevisiae and humans, H2A.Z is also acetylated by the

NuA4 (nucleosome acetyltransferase of H4)/TIP60 (HIV-1 TAT-interactive protein, 60kDa)

complex [10, 29–33]. The cascade of histone H4 acetylation by an acetyltransferase complex

followed by H2A.Z incorporation through SWR1 appears to be a highly conserved process in

eukaryotes [34]. However, while yeast cells have the two distinct NuA4/TIP60 and SWR1 com-

plexes for H4 acetylation and H2A.Z incorporation, the human p400/Tip60 and the Domino/

dTIP60 hybrid complex in Drosophila combine both functions [21, 35]. In addition to p400/

Tip60, humans possess a second acetyltransferase-independent complex, the SRCAP complex,

which is also capable of incorporating H2A.Z [36, 37].

The function of H2A.Z in transcription regulation is context dependent. For example, it

was shown that H2A.Z can block Notch and ΔNp63a target genes but promotes oestrogen

receptor alpha dependent transcription [32, 38, 39]. PTMs also appear to define the function

of H2A.Z-containing chromatin. Ubiquitination, SUMOylation as well as methylation and

acetylation have been described for H2A.Z, linking its roles to X chromosome inactivation,

DNA damage response, cell cycle progression and transcription regulation [32, 40–44]. Addi-

tionally, acetylation of H2A.Z was associated with active transcription in eukaryotes [32, 42,

45]. The removal of H2A.Z requires the INO80 complex, which contains the SNF2 ATPase,

which belongs to the same subfamily as SWR1 [12, 46, 47]. Both complexes (INO80 and

SWR1) share several protein components (reviewed in [48]). RuvB-like proteins, a YEATS

(Yaf9, ENL, AF9, Taf14, and Sas5) domain-containing protein, actin, as well as actin-related

proteins can be found in both complexes, with the latter two playing an important role in

nucleosome binding [49, 50]. Only a few unique and non-conserved features distinguish the

complexes from each other. For example, Znf-HIT1 (zinc-finger histidine triad1) domains-

containing proteins such as Vps71 (vacuolar protein sorting 71 homologue)/SWC6 (SWR1

complex protein 6), specific bromodomain factors or the BCNT (bucentaur) /Cfdp1 (Cranio-

facial developmental protein 1) factor appear to be exclusively present in SWR1-like com-

plexes. The yeast Ies2 (INO eighty subunit 2) /papa-1 (Pim-1-associated protein-1 (PAP-1)-

associated protein-1) factor (INO80B in humans) has only been described in INO80-like com-

plexes [51]. Despite a high degree of conservation between eukaryotic species, little is known

about H2A.Z and its associated remodelling complexes in parasitic protists.

A connection between H2A.Z and transcriptional regulation was drawn in Trypanosoma
brucei, the causative agent of African trypanosomiasis (sleeping sickness), very recently. It was

shown that H2A.Z accumulates exclusively in the transcription start sites (TSS) of polycis-

tronic transcription units (PTUs), a characteristic feature of genome organization in T. brucei
[52, 53]. Another recent publication showed that both MYST-histone acetyltransferases HAT1

(histone acetyltransferase 1) and HAT2 are responsible for H2A.Z deposition at TSSs, although

HAT1 appears to affect H2A.Z localization less than HAT2 [54]. Furthermore, it could be

shown that acetylation of H4 and H2A.Z is mediated by two different histone acetyltrans-

ferases. HAT2 acetylates H4, while HAT1 acetylates H2A.Z. Depletion of HAT2 results in relo-

cation of transcriptional initiation within the TSS [54]. Depletion of HAT1 affects RNA

polymerase II (RNAP II) recruitment, which consequently reduces transcriptional activity in

all PTUs [54]. However, neither a SWR1 nor INO80-like complex has been characterized in T.

brucei.
Using co-immunoprecipitation (co-IP) experiments coupled to quantitative proteomics, we

identified a multi-subunit protein complex with characteristics of a SWR1-like remodeller in
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T. brucei. We additionally found that the histone acetyltransferases HAT1 and HAT2, which

play a key role in H2A.Z-mediated transcription regulation, form two distinct complexes. Cell

fractionation experiments and ChIP-seq analysis demonstrated that H2A.Z levels are signifi-

cantly reduced at the TSSs after RNAi-mediated depletion of the SWR1-like subunit of this

complex. Furthermore, luciferase reporter assays showed a reduced transcription activity

within PTUs after RNAi, which was supported by Northern blot analysis showing a significant

reduction of RNA transcribed by RNA polymerases I and II. By electron microscopy imaging

we observed that depletion of the SWR1-like protein resulted in chromatin condensation simi-

lar to that observed after RNAP II or H2A.Z depletion. Our study therefore closes an impor-

tant gap in understanding the process of H2A.Z-dependent transcription regulation in T.

brucei by the identification and characterization of the corresponding chromatin remodelling

complex.

Results

Identification of a novel SNF2 ATPase complex

To identify candidate SNF2-like proteins in T. brucei, we carried out a homology-based search

in the TriTrypDB and identified 15 candidates that putatively belong to the SNF2 superfamily.

In particular, we were interested in candidates with an insertion in the DEXH/Q motif

between the DEAD-Box and helicase C motif, which has been shown to be characteristic for

SNF2 proteins of the SWR-1-like subfamily [12] (S1A Fig). One putative candidate,

Tb927.11.10730, matched this criterion. To test whether this candidate is a component of a

SWR1-like remodeller complex, we wanted to carry out immunoprecipitations using a tagged

version of the protein. Neither N- nor C-terminal tagging of Tb927.11.10730 proved possible,

however. As an alternative strategy, we carried out co-immunoprecipitations (co-IPs) using

the DNA helicase RuvB, which is an important and conserved part of both the INO80 and

SWR1 complexes [51, 55]. Similar to other model organisms, two versions of the RuvB DNA

helicase can be found in T. brucei, Tb927.4.1270 and Tb927.4.2000. In the following we will

refer to these putative helicases as RuvB1 and RuvB2, respectively. Mass spectrometry (MS)

analysis of the RuvB2 co-IP successfully identified the SNF2 candidate Tb927.11.10730

together with 14 additional proteins (Table 1 and S1B Fig) that were significantly enriched

(p<0.01) and had high nuclear enrichment scores (NES) [56]. These proteins included known

conserved components of the SWR1 remodeller such as YEATS domain-containing proteins

and actin-like proteins.

To confirm these proteins as components of the complex and to identify factors that might

have been missed in the RuvB2 co-IP, another round of co-IPs was performed. The proteins

tagged for this reciprocal approach were Tb927.10.11690, a protein containing a YEATS

domain (referred to as Trypanosoma brucei SWR1 complex protein 1 (hereafter TbSWRC1),

Tb927.11.5830, which contained an YL1 domain (hereafter TbSWRC2) and the Trypanosoma-

specific hypothetical protein Tb927.7.4040 (hereafter TbSWRC4). TbSWRC1 and TbSWRC2

were promising candidates, as parts of the three-dimensional structure of TbSWRC1 and

TbSWRC2 could be modelled with high confidence based on Yaf-9 (yeast AF9) and Vps72/

SWC2, respectively, employing the Phyre2 homology modelling web tool [57]. In yeast, the

YEATS domain of Yaf-9 is essential for histone binding and enables the accurate assembly of

the SWR1 complex on the chromatin fibre [58, 59]. The conserved YL1 domain of Vps72 (vac-

uolar protein sorting 72 homologue)/ SWC2 (SWR1 complex protein 2) acts as a molecular

lock to prevent H2A.Z eviction in the SWR1 complex and mediates, together with Arp5 proper

nucleosome repositioning by the INO80 complex [55, 60]. The two proteins play a key role in

both SWR1 and INO80 function and are conserved in SWR1 and INO80 complexes in several
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species [51]. TbSWRC4 was chosen as a third candidate as it appears to be exclusively found in

Trypanosoma brucei, Trypanosoma cruzi and Blechomonas ayalai, thus representing a phyloge-

netically restricted complex member. Neither a BLAST search with the NCBI database, the

EMBL InterPro database nor a homology modelling led to reliable information about a possi-

ble homologue of TbSWRC4 in other organisms. This second set of co-IPs enriched 13 pro-

teins (Table 2) as well as histones H2A, H2B, H3, H4 and the histone variant H2A.Z, which

strongly suggested a role in nucleosome assembly.

In addition to the proteins that were identified in the initial RuvB2 co-IP, the reciprocal co-

IPs could identify the conserved hypothetical protein Tb927.9.8510 (referred to as TbSWRC3

in the following). Five proteins originally found in the RuvB2 co-IP were not enriched in the

other three co-IPs, indicating they are more closely associated with RuvB2. Furthermore,

Phyre2 modelling suggested that Tb927.6.2570, a potential SUMO-interacting motif-contain-

ing protein (referred to as TbARP2 in the following) is probably a third actin-like protein [57].

TbSWRC3 was modelled as a potential SET (Su(var)3-9, enhancer-of-zeste and trithorax)-

methyltransferase by Phyre2 [57]. A putative catalytic site specific to SET-methyltransferases

could be annotated including three potential binding sites for the co-factor S-adenosylmethio-

nine. The 13 proteins that were identified in at least three of the four co-IP experiments assem-

ble the trypanosome SWR1-like complex (Table 2). The complex composition differs slightly

Table 1. Summary of the RuvB2 co-IP. 15 proteins with a positive or unknown nuclear enrichment score were identified by MS in the RuvB2-HA co-IP. The nuclear

enrichment score (NES; (52)) indicates the probability of a nuclear localisation based on cell fractionation combined with quantitative MS analysis. The “Annotation” col-

umn indicates the curated annotation that was found for the corresponding accession number on the TriTyp database. In the “p-value” column a probabilistic confidence

measure (P-value) is assigned to each identified protein. The fold enrichment compared to the WT control is stated for every identified protein. The column "TrypTag

localisation” indicates the cellular localisation of N- and C-terminally tagged proteins.

Accession number Annotation fold enrichment p-value NES TrypTag localisation

Tb927.4.2000

(RuvB2)

ruvB-like DNA helicase, putative 8.10 1.50E-08 0.52 nucleoplasm, cytoplasm,

Tb927.11.10730

(TbSWR1)

SWI/SNF-related helicase, putative 7.62 7.08E-08 5.04 nucleoplasm, cytoplasm

Tb927.4.980 Actin 6.65 1.92E-05 5.71 cytoplasm

Tb927.11.5830

(TbSWRC2)

YL1 nuclear protein 6.63 5.94E-07 N/A nucleoplasm, cytoplasm

Tb927.7.4040

(TbSWRC4)

hypothetical protein 6.62 1.56E-07 5.52 nucleoplasm, cytoplasm

Tb927.4.1270

(TbRuvB1)

ruvB-like DNA helicase, putative 6.52 3.21E-05 0.69 nucleoplasm, cytoplasm,

Tb927.10.11690

(TbSWRC1)

YEATS family, putative 6.24 1.70E-05 4.89 nucleoplasm, cytoplasm

Tb927.10.2000

(TbARP3)

Actin like Protein 6.11 1.11E-05 5.31 cytoplasm, flagellar cytoplasm,

nuclear lumen

Tb927.6.2570

(TbARP2)

putative SUMO-interacting motif containing protein 5.80 6.16E-06 7.26 nucleoplasm, cytoplasm

Tb927.8.600

(TbSWRC5)

Bucentaur or craniofacial development, putative 5.44 5.06E-07 2.52 nucleoplasm,

cytoplasm, mitochondrion

Tb927.3.3020

(ARP1)

Actin like Protein 4.80 5.41E-04 3.43 cytoplasm, nucleoplasm

Tb927.11.6290

(TbSWRC6)

HIT zinc finger, putative 4.70 1.02E-08 4.38 nucleoplasm, cytoplasm

Tb927.11.16370 SHQ1 protein, putative 4.05 2.68E-07 N/A cytoplasm, flagellar cytoplasm,

nucleoplasm, nuclear lumen

Tb927.9.5320 nucleolar RNA binding protein 3.63 6.18E-07 2.33 nucleolus, nucleoplasm

Tb927.10.170 pseudouridine synthase, Cbf5p 1.90 9.47E-09 2.51 nucleolus

https://doi.org/10.1371/journal.ppat.1010514.t001
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from the Saccharomyces cerevisiae SWR1 complex (Fig 1). Nevertheless, sharing of certain

components such as a BCNT- and a Znf-HIT1-domain containing protein clearly hint towards

the complex being a SWR1-like remodeller. Domains that are typical for an INO80 complex

like the PAPA-1-domain or an HMG-Box are absent (Fig 2) [51]. However, further characteri-

sation of the molecular functions of this novel complex and especially of the SNF2 ATPase

were necessary to support a SWR1-like complex.

Depletion of TbSWR1 leads to a reduction of chromatin-associated H2A.Z

Ultimately, as the INO80 complex represents the functional counterpart of the SWR1 complex

and vice versa, RNAi-mediated depletion of the SNF2 subunit can reveal whether chromatin

Table 2. Characterisation of the novel SWR1 complex components. 13 proteins with a positive or unknown NES were identified by MS analysis in at least three of the

four co-IP experiments. The initial co-IP was performed with RuvB2 (Tb927.4.2000, the reciprocal co-IPs with the proteins Tb927.10.11690, Tb927.11.5830 and

Tb927.7.4040 were performed to confirm the RuvB2 co-IP data). The “Annotation” column indicates the curated annotation that was found for the corresponding acces-

sion number in the TriTryp database. The”identified domains” column displays the domains that were found by BLAST search using the NCBI database. The Phyre2

modelling column indicates proteins that were identified by homology modelling. Coverage (Cov.) indicates the coverage in percent between query and template. The con-

fidence (Conf.) represents the relative probability in percent (from 0 to 100) that the match between query and template is a true homology. The nuclear enrichment score

(NES; (52)) indicates the probability of a nuclear localisation based on cell fractionation combined with quantitative MS analysis. The column "TrypTag localisation” indi-

cates the cellular localisation of N- and C-terminally tagged proteins. The last column shows in which of the four co-IPs the protein could be identified.

co-

IPs

Gene ID Annotation Identified domains Phyre2 modelling NES TrypTaglocalisation Ident. in co-

IP No.

No 1. Tb927.4.2000

(RuvB2)

ruvB-like DNA helicase,

putative

TIP-49 domain ruvb-like protein 1/2 (Cov. 94%

Conf. 100%)

0.52 nucleoplasm,

cytoplasm,

cytoplasm

1–4

No. 2 Tb927.10.11690

(TbSWRC1)

YEATS family, putative YEATS-domain Yaf-9 (Cov. 25% Conf. 98%) 4.89 nucleoplasm,

cytoplasm

1–4

No. 3 Tb927.11.5830

(TbSWRC2)

YL1 nuclear protein, putative YL1 SWC2 (Cov. 24% Conf. 98%) N/A nucleoplasm,

cytoplasm

1, 3, 4

No. 4 Tb927.7.4040

(TbSWRC4)

hypothetical protein - DAMP1 (Cov. 8% Conf. 98%) 5.52 nucleoplasm,

cytoplasm

1–4

Tb927.3.3020

(TbARP1)

Actin like Protein, putative Actin ARP5/8 (Cov.98% Conf. 100%) 3.43 cytoplasm,

nucleoplasm

1–4

Tb927.4.1270

(RuvB1)

ruvB-like DNA helicase,

putative

TIP-49 domain ruvb-like protein 1/2 (Cov. 99%

Conf.100%)

0.69 nucleoplasm,

cytoplasm,

cytoplasm

1–4

Tb927.4.980 Actin Actin - 5.71 cytoplasm 1–4

Tb927.6.2570

(TbARP2)

SUMO-interacting motif-

containing protein

- ARP8/9 (Cov. 79% Conf. 98%) 7.26 nucleoplasm,

cytoplasm

1–4

Tb927.8.600

(TbSWRC5)

Bucentaur or craniofacial

development, put.

BCNT-domain

-

2.52 nucleoplasm,

cytoplasm,

mitochondrion

1–4

Tb927.9.8510

(TbSWRC3)

hypothetical protein, conserved - Histone methyltransf.. SET7/9

Cov. 33% Conf. 96%)

N/A cytoplasm,

nucleolus,

flagellar, cytoplasm,

nuclear lumen,

endocytic

2, 3, 4

Tb927.10.2000

(TbARP3)

Actin like protein, putative Actin ARP5/8 (Cov.78% Conf. 100%) 5.31 cytoplasm,

flagellar cytoplasm,

nuclear lumen

1–4

Tb927.11.10730

(TbSWR1)

SWI/SNF-related helicase,

putative

DEXQ-Box SRCAP;

Helic. C

INO80/CHD1/SWR1/

RAD54

(Cov. 60% Conf. 100%)

5.04 nucleoplasm,

cytoplasm

1–4

Tb927.11.6290

(TbSWRC6)

HIT zinc finger, putative Zf-HIT1 SWC6 (Cov. 27% Conf. 99%) 4.38 nucleoplasm,

cytoplasm

1–4

https://doi.org/10.1371/journal.ppat.1010514.t002
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association of H2A.Z will increase, indicating an INO80-like function, or if H2A.Z incorpo-

ration will decrease, implying an SWR1 functionality. We thus depleted the SNF2 ATPase

(Tb927.11.10730) by tetracycline-inducible RNAi (Fig 2). The depletion resulted in a severe

growth phenotype with an almost complete growth arrest 24h post-induction (Fig 2A). FACS

analysis of propidium iodide-stained cells showed almost unchanged viability of the popula-

tion 24h after induction, and approximately 70% living cells after 48h, however (Fig 2B). Cell

fractionation experiments were performed to determine whether the amount of nucleosome-

associated H2A.Z decreased in comparison to core histones following depletion of the SNF2

ATPase (Fig 2C and 2D). Proteins in the insoluble chromatin fraction were analysed by West-

ern blot with antibodies specific for histone H3 and the variant H2A.Z. While levels of H2A.Z

and a Ty1-tagged version of H2A.Z were significantly reduced over time, H3 levels appeared

not to be affected, indicating that this SNF2 ATPase is indeed associated with efficient incorpo-

ration of H2A.Z into chromatin (Fig 2C and 2D). A second clone (TbSWR1 c4) produced a

similar albeit less severe phenotype (S1C Fig). Cell cycle analysis of TbSWR1-depleted cells

showed a reduction of G1 and to a lesser extent G2 cells during the time course and a contin-

ued accumulation of anucleate parasites (S1D Fig). As both the YEATS domain and the YL1

domain in the SWR1 complex play a key role in H2A.Z incorporation [49], we also investi-

gated how the loss of TbSWRC1 and TbSWRC2 affected chromatin-associated H2A.Z levels.

Though SNF2 ATPase depletion resulted in stronger effects, the reduction of chromatin-asso-

ciated H2A.Z was also observable upon depletion of the YEATS domain-containing protein

TbSWRC1 and YL1 domain protein TbSWRC2 (S1D Fig and S1E Fig), emphasizing the

Fig 1. The Trypanosoma brucei SNF2 ATPase complex exhibits characteristics of a SWR1 complex. A comparison

of the modular composition of the newly-identified SNF2 complex with the SWR1 and INO80 complexes of S.
cerevisiae. INO80 complex S. cerevisiae: The Nhp-10 module forms a platform for nucleosome interaction. The Arp8

module is the nucleosome binding module, while the Arp5 module, which contains the YL1-domain protein Ies6 is

responsible for the nucleosome remodelling step [14]. Ies2 with the PAPA-1-domain plays a structural role within the

complex [14, 112]. INO80 specific domains are highlighted in bolt. SWR1 complex S. cerevisiae: Proteins listed under

key features are essential for H2AZ incorporation [68]. The C-module of the SWR1 complex, which contains the

Bromo-, YEATS- and SANT/DAMP1-domain mediates nucleosome affinity, while the N-module with the YL1- and

Zinc finger ZNHIT1-domain is involved in the histone variant exchange reaction [49, 68]. SWR1 specific domains are

highlighted in bolt letters [51, 68]. SWI2/SNF2 complex T. brucei: The identification of a BCNT- as well as a ZNHIT1

domain (highlighted in bold letters) hint toward the complex being a SWR1-like complex [51, 68]. Structure of the

SWI2/SNF2 complex and its modules is only putative. The potential interaction interface of the species-specific

proteins TbSWRC3 and TbARPx is unknown.

https://doi.org/10.1371/journal.ppat.1010514.g001
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contribution of the additional complex members in H2A.Z incorporation. As fractionation

experiments showed a significant reduction of chromatin-associated H2A.Z, we were confi-

dent that this novel SNF2 ATPase is indeed a SWR1 homologue in trypanosomes. To analyse

the effect of TbSWR1 depletion more precisely, a ChIP-seq assay using a cell line with a

Ty1-tagged H2A.Z allele was performed. Previous studies showed that Ty1-tagged H2A.Z is

efficiently incorporated into nucleosomes at TSSs and our fractionation experiments showed

that Ty1-H2A.Z is chromatin-associated (Figs 2 and S1C Fig). To avoid strong secondary

effects, we chose TbSWR1 c4, which had a milder phenotype, and an early time point after

RNAi induction (S1C Fig). In line with our fractionation experiment, we could demonstrate a

reduction of Ty1-H2A.Z at TSSs after 48 h post induction of TbSWR1 depletion (Fig 3) clearly

establishing the SWR1-like functionality.

Depletion of HAT2-associated Bdf3 reduces chromatin-associated H2A.Z

SWR1 regulation and H2A.Z acetylation by the NuA4 complex has been extensively described

in yeast [10, 29, 30, 61]. Recent studies in T. brucei linked acetylation of H4 and H2A.Z. with

the two histone acetyltransferases HAT2 and HAT1 (S1G Fig). Since H2A.Z incorporation

into nucleosomes was linked to HAT2 activity [54] we decided to investigate the complex com-

position of HAT2. Co-IP experiments with HA-tagged HAT2 identified a complex that con-

sists of Bdf3, HAT2 and several other proteins including factors with an ENT (EMSYN-

terminal)-domain and an FHA (fork head-associated)-domain (S1A Table and S1J Fig). Bdf3

Fig 2. Loss of TbSWR1 leads to cell death and a reduction of chromatin-associated H2A.Z. (A) Growth of parasites

was monitored for 96 hours after RNAi-mediated depletion of TbSWR1 (Tb927.11.10730) using tetraycline (tet). The

parental 2T1 cell line was used as a control (n = 3). (B) Quantification of live/dead staining with propidium iodide of

TbSWR1-depleted cells at the indicated timepoints post-induction. Analysis was done by flow cytometry (n = 3). (C)

Western blot analysis of the insoluble nuclear fraction with antibodies specific for histone H3 and the histone variant

H2A.Z. Lysates from an equal number of cells (2x106 per lane) were analysed for each timepoint. (D) Quantification of

chromatin-associated H3 (dark blue), Ty1-H2A.Z (turquoise) and H2AZ (grey) (N = 3 for all depicted experiments;
��� = p-value<0.001; �� = p-value 0.001–0.01; � = p-value 0.01–0.05).

https://doi.org/10.1371/journal.ppat.1010514.g002
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was particularly interesting because these factors play a key role in linking H4 acetylation to

SWR1 activity and it has been associated with H2A.Z in trypanosomes already. ChIP-seq

experiments with Bdf3 revealed a co-localization with histone H4K10 acetylation and H2A.Z

in TSSs of T. brucei [52]. We performed a reciprocal Bdf3 co-IP and could confirm the HAT2

complex composition in trypanosomes with 10 out of 11 proteins reproducibly enriched (S1A

Table and S1J Fig). Furthermore, RNAi-mediated depletion of Bdf3 caused a severe growth

defect similar to the phenotype observed after TbSWR1 depletion. Importantly, the amount of

chromatin-associated H2A.Z significantly decreased after Bdf3 depletion (Fig 4), suggesting

that it is also involved in H2A.Z deposition.

Loss of TbSWR1 leads to reduced RNA levels

The contribution of H2A.Z to transcription regulation has been extensively described in vari-

ous organisms and a recent study from the Siegel laboratory showed that H2A.Z acetylation by

HAT1 is required for RNAP II transcription regulation in T. brucei [54, 62] and that loss of

H2A.Z acetylation affects the transcription of PTUs [54]. To determine the effect of SWR1

complex components on transcription of PTUs, we inserted a luciferase reporter construct

into the tubulin array of several RNAi cell lines. Luciferase reporter assays have been used

before in T. brucei to study transcriptional activity [63]. A significant decrease of luciferase

activity following TbSWR1 depletion could already be observed after 24 h. Luciferase activity

decreased to approximately 60% and 30% after 36 h and 48 h induction of RNAi, respectively

(Fig 5A). Cell death did not contribute substantially to decrease of luciferase signals because

approximately 90% and more than 60% of the parasites were still alive after 36 and 48 hours

(Fig 5B), respectively, suggesting that that the loss of luciferase activity is directly caused by the

depletion of TbSWR1. Depletion of H2A.Z itself showed comparable results but with faster

kinetics (Fig 6). Although 96% of the cells were alive 24 h post-induction, a reduction of the

luciferase to approximately 50% compared to un-induced parasites could be observed. For

comparison and as a positive control, the loss of luciferase activity was also investigated in

RNAP II-depleted cells. A loss of activity of 85% after 24 h of RNAi induction could be

observed while approximately 85% of the cells were still alive (Fig 5D and 5E). In line with the

two acetyltransferases HAT1 and HAT2 being linked to transcription and H2A.Z regulation, a

similar reduction of mRNA levels was observed. HAT1 depletion caused a reduction to 56%

Fig 3. Loss of TbSWR1 (Tb927.11.10730) leads to a reduced H2A.Z deposition at TSS. (A) ChIP-Seq analysis of

distribution of Ty1-tagged H2A.Z before (black) and after (green) RNAi-mediated depletion of TbSWR1 (48h post

induction) revealed a reduction of chromatin associated Ty1-H2A.Z. Depicted is a representative region of

chromosome 5. Data (n = 2) were normalised to the total number of reads and plotted as counts per million reads

(CPM). (B) Average Ty1-H2A.Z signal across non-divergent TSSs. Peaks derived from two non-tetracycline induced

reference samples depicted in blue and black. Peaks derived from two samples after 48 h of RNAi-mediated depletion

of TbSWR1 depicted in green and dark-green.

https://doi.org/10.1371/journal.ppat.1010514.g003
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and 71% in two independent clones 48 h post induction (S1H Fig). We could also detect a loss

of luciferase activity to approximately 70% and 80% in HAT2-depleted cells compared to unin-

duced cells (S1I Fig). In both experiments, we observed only a mild growth defect and a pro-

portion of dead cells below 10% indicating that the loss of activity is not caused by dead cells

(S1H Fig and 1I Fig).

Since these luciferase experiments provide only indirect information about polymerase

activity, we next assessed steady-state mRNA levels directly in two independent TbSWR1 and

one RNAP II RNAi cell lines (Fig 7). Total RNA was extracted from TbSWR1- and RNAPII-

depleted cells for Northern blot analysis. A clear reduction of total mRNA and ribosomal RNA

could be detected 48 hours after TbSWR1 depletion. Analysis of RNA derived from RNAP II-

depleted cells showed similar results but as observed before with faster kinetics. These North-

ern blot analyses confirmed the initial observations demonstrating that mRNA and rRNA lev-

els decreased approximal 2-fold 48 h after RNAi induction, with a stronger effect for TbSWR1

c6 compared to TbSWR1 c4 (Fig 7), in agreement with the reduction of H2A.Z in chromatin

(Fig 2). Our data indicate that TbSWR1 has a conserved role in transcription regulation which

is typical for all SWR1-like proteins described so far.

Fig 4. Loss of Bdf3 leads to cell death and a reduction of chromatin-associated H2A.Z. (A) Growth of parasites was

monitored for 96 hours after RNAi-mediated depletion of Bdf3 using tetracycline (tet) induction. The parental 2T1 cell

line was used as a control (n = 3). (B) Quantification of live/dead staining with propidium iodide of Bdf3-depleted

cells. Analysis was done by flow cytometry (n = 3). (C) Western blot analysis of the insoluble nuclear fraction with

antibodies specific for histone H3 and the histone variant H2A.Z. Lysates from an equal number of cells (2x106 per

lane) were analysed for each timepoint. (D) Quantification of chromatin-associated H3 (dark blue), Ty1-H2A.Z

(turquoise) and H2AZ (grey); (N = 3 for all depicted experiments; ��� = p-value<0.001; �� = p-value 0.001–0.01; � = p-

value 0.01–0.05).

https://doi.org/10.1371/journal.ppat.1010514.g004
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Fig 5. Depletion of TbSWR1 caused a decrease of reporter luciferase activity within a PTU. A luciferase reporter

construct was integrated into the tubulin array in both RNAi cell lines. The TbSWR1 RNAi clone 6 was used for

transfection (Figs 3 and S1C Fig). Samples for the luciferase assay were normalised to cell numbers. (A) Luciferase

activity was monitored for 48 h after induction of RNAi in two independent clones. Values of non-induced cells were

set to 1. (B+E) Live/dead staining of each RNAi cell line was performed in triplicates at the same time points. (C+F)

Growth of parasites was monitored for 96 hours after RNAi-mediated depletion of TbSWR1 and RBP2 using

tetracycline (tet) induction. The parental 2T1 cell line was used as a control (n = 3). (D) As a positive control, luciferase

activity of the same reporter construct was measured in an RNAP II RNAi cell line. (N = 3 for all depicted experiments;
��� = p-value<0.001; �� = p-value 0.001–0.01; � = p-value 0.01–0.05).

https://doi.org/10.1371/journal.ppat.1010514.g005

Fig 6. Depletion of the histone variant H2A.Z leads to a decreased luciferase activity within a PTU. A luciferase

reporter construct was integrated into the tubulin array of a H2A.Z (Tb927.7.6360) RNAi cell line. Samples for the

luciferase assay were normalised to cell numbers. (A) Luciferase activity was monitored for 48 h after induction of

RNAi in two independent clones. Values of non-induced cells were set to 1; (N = 3); (B) Live/dead staining of each

RNAi cell line was performed in triplicates at the same time points. (C) Growth of parasites was monitored for 96

hours (N = 3) after RNAi-mediated depletion of H2A.Z using tetracycline (tet) induction. Growth of the parental 2T1

cell line was measured for 96h as a control. (N = 3 for all depicted experiments; ��� = p-value<0.001; �� = p-value

0.001–0.01; � = p-value 0.01–0.05).

https://doi.org/10.1371/journal.ppat.1010514.g006
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Depletion of TbSWR1 affects chromatin structure

In other organisms, cessation of transcriptional activity causes massive changes in chromatin

structure and nuclear architecture [64, 65]. Electron microscopy images of TbSWR1-depleted

cells showed that after 24 h of RNAi-mediated depletion of TbSWR1 an increased

Fig 7. Loss of TbSWR1 leads to a reduction of mRNA and rRNA. (A) Representative Northern blot of two

TbSWR1-depleted cell lines. RNAP II-depleted cells were used as a control. The samples were normalised to cell

numbers. Upper and middle panel were hybridised with a probe specific for the spliced leader RNA (mini exon, red)

the two lower panels with probes specific for ribosomal RNA (rRNA, green) (B) Quantification of results from three

replicates showing total mRNA levels in red and 5.8S rRNA in green. Values of un-induced RNAP II RNAi cell lines

were set to 100%.

https://doi.org/10.1371/journal.ppat.1010514.g007
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condensation of chromatin in the nucleus in comparison to non-induced cells could be

observed (Figs 8 and S1L Fig). Such a condensation could be seen in several albeit not all cells.

A knockdown of the RNAP II and H2A.Z led to a comparable phenotype but with different

kinetics. While RNAP II-depleted cells showed a condensation 16 h post induction, H2A.Z

depleted cells exhibited chromatin condensation after 24 h of RNAi induction (Figs 8 and S1L

Fig). Overall, the temporal behaviour of chromatin condensation seems similar in TbSWR1-

and H2A.Z-depleted cells, supporting the function of TbSWR1 as a histone remodelling com-

plex important for H2A.Z deposition.

In summary, purification, molecular characterization and RNAi-mediated depletion of critical

components of a novel SWR1 chromatin remodeller complex could shed some light on the so far

insufficiently investigated mechanism of transcriptional regulation in African trypanosomes.

Discussion

Incorporation of H2A.Z by a SWR1 remodelling complex is a conserved mechanism of tran-

scriptional regulation in many eukaryotic cells [10, 22, 23, 32, 66]. The goal of our study was to

Fig 8. Loss of TbSWR1 and RNAP II leads to chromatin condensation. Representative electron microscopy images

of the nucleus of TbSWR1-, H2A.Z- and RNAP II depleted and non-depleted parasites as indicated. Depletion of the

proteins resulted in large black patches of condensed chromatin. Scale bar, 200 nm for TbSWR1 RNAi and H2A.Z

RNAi images, 500 nm for RNAP II (RBP2) RNAi images. Images of TbSWR1 RNAi cells were obtained using a TEM

(transmission electron microscope), images of RNAP II RNAi cells with a STEM (scanning transmission electron

microscope).

https://doi.org/10.1371/journal.ppat.1010514.g008
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screen for an SWR1-like complex in the unicellular parasite T. brucei with a combination of

quantitative mass spectrometry and co-IP experiments. The trypanosome SWR1 complex so

identified contains an SNF2-ATPase, which has characteristics of other members of the SWR1

subfamily [12]. In the process of this work, we also described the trypanosome HAT2 complex

bearing a unique complex composition. While very recent work from Staneva et al. already

indicated the presence of an SWR1-like and an HAT2 complex [67], we here functionally char-

acterize the two complexes and show that both are associated with H2A.Z incorporation in T.

brucei. Additionally, we demonstrated that the loss of the SNF2 ATPase TbSWR1 resulted in

decreased incorporation of H2A.Z, a loss of RNAP I- and RNAP II-dependent transcripts, and

a condensation of chromatin.

Composition of the TbSWR1 and HAT2 complexes

Co-IP experiments with 4 different subunits combined with quantitative proteomics provided

a clear picture and was supplemented with a thorough in silico analysis of the identified pro-

teins, with particular reference to homology with the SWR1 complex from S. cerevisiae. We

identified homologues for most of the essential SWR1 complex components (reviewed in

[68]), such as an SNF2 family helicase (TbSWR1), actin-related proteins (TbARP1-3), a

YEATS domain containing protein (TbSWRC1), and a YL1-domain containing protein

(TbSWRC2). The BCNT-domain and the Znf-HIT1-domain that are characteristic for a

SWR1 complex [51] could be identified in TbSWRC5 and TbSWRC6 (Fig 2) as well. We also

found that the composition of the SWR1 complex in trypanosomes has some distinct differ-

ences. The presence of a DNA methyltransferase 1-associated protein 1 (DAMP1)-domain

[51] could not be verified in the TbSWR1 complex so far. A fragment of a DAMP-1-domain

was annotated in TbSWRC4 by Phyre2 homology modelling but only with an insufficient con-

fidence. To our surprise, a bromodomain protein—typically part of SWR complexes in other

species—was missing from our co-IP data. In S. cerevisiae, Bdf1 is able to bind acetylated his-

tone H4 [69] and is part of the SWR1 complex. While it is possible that the absence of a bro-

modomain factor is due to different interaction affinities and it was lost during purification,

our data suggest that the core TbSWR1 complex may not contain such a bromodomain pro-

tein. TbSWRC1, which has a YEATS domain and was shown to effectively bind to acetylated

histone H3 [59], may bind acetylated histone H4 instead. Besides the absence of a Bdf homo-

logue in the complex, the identification of a third actin-related protein (S1B Fig) and a poten-

tial SET domain-containing protein (named TbSWRC3; S1B Fig) was unexpected. SET

methyltransferases play important roles in transcription regulation (reviewed in [70]), suggest-

ing that TbSWRC3 represents an important part of the transcriptional regulatory machinery

in T. brucei. Depending on the substrate of TbSWRC3, the additional Arp protein might be

necessary to create a larger nucleosome interaction interface or add a specific functionality.

The SWR1 complex and H2A.Z have been shown to be involved in many cellular processes

including DNA repair [71–73]. As part of the NuA4 complex in S. cerevisiae, Arp4 plays an

important role in DNA damage repair by recognizing γH2A [74]. Besides a putative role in

correct TbSWRC3 positioning, the additional Arp protein in the TbSWR1 complex might be a

γH2A recognition module. Given that H2A.Z was shown to be actively incorporated at DNA

double strand-breaks [71], the TbSWR1 complex might be directly recruited to sites of DNA

damage. As T. brucei lacks non-homologous end joining (NHEJ), H2A.Z might be required to

mark areas around DSBs as nucleosome free regions to expose the DNA for the repair process

by homologous recombination or micro-homology end joining [75].

In course of investigations that focused on Tb927.9.2910, a protein annotated as a NuA4

subunit, we were able to identify a potential protein complex assembled around HAT1 and
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HAT3. Co-IP experiments with Tb927.9.2910 identified three proteins that could be linked to

the NuA4 complex after Phyre2 modelling: Tb927.1.650 (an Eaf3/MORF4 homologue),

Tb927.7.5310 (a Yaf9/GAS41 homologue) and Tb927.10.14190 (a homologue of Epl1). A

reciprocal co-IP with the Eaf3/MORF4 homologue could also precipitate HAT1 (but not

HAT3) and the three proteins homologous to NuA4 subunits (S1B Table). These data indicate

the presence of at least one HAT complex with similarities to a NuA4 complex in T. brucei
(S1K Fig).

In contrast, the T. bruceiHAT2 complex composition appears to be significantly different

compared to the NuA4/TIP60 complex in S. cerevisiae [76]. We could show that Bdf3, a factor

that has been shown to locate at the TSSs [77] is involved in H2A.Z incorporation as a part of

the HAT2 complex (Figs 4 and S1J Fig), but the function of the other novel complex compo-

nents remain elusive. We identified two hypothetical proteins without conserved domains and

three proteins, which either possess an ENT domain, an FHA domain, or a BTB domain (S1A

Table). BTB domains and the ENT domain are associated with chromatin structure regulation

[78–80]. None of trypanosome factors appear to have homologues in the NuA4/TIP60 com-

plex [76]. FHA domains are known for recognition of phosphorylate threonine. Phospho-thre-

onine can be found on a broad range of proteins, including kinases, transcription factors and

RNA-binding proteins [81, 82]. The presence of an FHA-domain could hint towards phos-

phorylation events that are important for H2A.Z incorporation. Based on our data, we cannot

assess the nature of a potential molecular interaction between HAT2 and the TbSWR1 com-

plex. Interestingly, proximity labelling assays with TbSWRC2 showed that both complexes are

in close proximity to each other. Given that the FHA and EMSY domain could be linked with

DNA damage repair and chromatin remodelling, it will be interesting to analyse the HAT2

complex structure and the function of its different subunits to learn more about its role in

H2A.Z incorporation and other nuclear processes.

Transcription regulation by the TbSWR1 complex

H2A.Z is involved in transcription regulation in many organisms including T. brucei [22, 32,

54]. Northern blot analysis confirmed a loss of RNAPI- and RNAPII-dependent transcripts

after the downregulation of TbSWR1 (Fig 7), presumably due to the decrease in H2A.Z incor-

poration. Consequently, HAT1 loses its substrate and therefore cannot initiate transcription

[54]. The observed downregulation of total mRNA and rRNA is not seen for the spliced leader

mRNA, which appears to be mainly unaffected by TbSWR1 depletion (Fig 7). This is in agree-

ment with a promotor-dependent and mechanistically different transcription of the spliced

leader compared to that of PTUs [83]. The loss of rRNA was surprising, but since a similar loss

was observed after RNAP II downregulation (Fig 7), it is likely due to secondary effects. Many

genes of RNAP I subunits are encoded in PTUs, which are transcribed by RNAP II. A lack of

RNAP II activity might therefore result in a reduced amount of RNAP I transcripts, which

finally leads to a reduced amount of rRNA.

Changes in chromatin structure after loss of H2A.Z and RNAP II

The chromatin condensation we observed (Fig 8) might be a direct consequence of the loss of

RNAP II activity. It has been described previously that condensation of chromatin can be

induced in mouse and human cells by treatment with alpha-amanitin, an RNAP II and RNAP

III inhibitor [64, 65, 84]. Alpha-amanitin treatment also blocks RNAP II and III transcription

in trypanosomes [85]. Surprisingly, it also affected genes that were under the regulation of an

exogenous T3 promoter indicating that open chromatin structure is dependent on transcrip-

tion activity [85]. Given that a knockdown of TbSWR1, RNAP II and H2A.Z led to a reduction
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of luciferase activity and mRNA abundance (Figs 5, 6 and 7), it is likely that the chromatin

condensates we observed is a consequence of the RNAP II transcription shutdown.

The identification and subsequent characterization of a SWR1-like complex in T. brucei
closes the gap in transcription regulation between HAT2 and HAT1, because we identified the

remodeller responsible for H2A.Z incorporation.

Interestingly, a protein complex such as INO80, which mediates the removal of histone var-

iants still remains elusive in T brucei. Despite the fact that RuvB1 and RuvB2 are shared sub-

units of the INO80 and the SWR1 complex in other organisms [68], there is no hint of an

INO80 complex in our co-IP data. Given the high degree of conservation of the two SNF2

ATPase complexes between different species, a RuvB co-IP should have identified at least a

second SNF2-like protein. In the absence of an INO80 complex and with trypanosome-specific

subunits the TbSWR1 complex could have a dual function, also facilitating H2A.Z removal.

Alternatively, locus-specific removal of H2A.Z might not be necessary considering the consti-

tutive transcription initiation in T. brucei.
In addition to TbSWR1 only one additional chromatin remodelling complex, the ISWI

complex, has so far been identified in T. brucei [86]. As we have shown here, epigenetic com-

plexes in trypanosomes may have evolved differently compared to yeast and humans. It is thus

crucial to identify other chromatin-remodelling complexes to understand fundamental biolog-

ical processes in trypanosomes such as DNA repair and recombination, chromatin dynamics

during developmental differentiation or monoallelic transcription of surface proteins.

Methods

Trypanosoma brucei culture

Monomorphic Trypanosoma brucei Lister 427 bloodstream form (BSF) MiTat 1.2 (clone 221a)

strain, and a derivative ‘2T1’ strain [87] that contains a puromycin-tagged ribosomal spacer

for directed integration of the RNAi construct and expresses a Tet repressor protein, were cul-

tivated in HMI-9 medium [88] with 10% heat-inactivated fetal calf serum (FCS; 56˚C for 1 h)

at 37˚C and 5% CO2. Strains were cultured with their attendant drug selection with the follow-

ing concentrations used: 2.5 μg/ml G418 (neomycin), 5 μg/ml hygromycin, 0.1 μg/ml puromy-

cin, 5 μg/ml blasticidin, 2.5 μg/ml phleomycin. RNAi was induced with 1 μg/ml tetracycline.

Reduction of mRNA was monitored by RNA/FISH (S1M Fig). Growth rates were monitored

for 96 h and cell densities were determined every 24 h using a Coulter Counter Z2 particle

counter (Beckman Coulter). Procyclic forms (PCF; strain 427) were cultured in modified

SDM-79 with 10% heat-inactivated FCS (Sigma) at 27˚C. BSF and PCF parasites were trans-

fected as previously described [89], with independent clones obtained by limiting dilution.

MNase-ChIP sequencing

The MNase-ChIP experiments were performed with 2T1 cells and the 2T1 TbSWR1 RNAi cell

line with a single Ty1-tagged H2A.Z allele. Functionality of the Ty1-tagged H2A.Z has been

described in [54]. In brief, 2 × 108 cells were harvested, crosslinked in 1% formaldehyde, and

subsequent lysed using 200 μM digitonin (final concentration). Chromatin was fragmented by

incubating the cells with 4 U μl−1 MNase (Sigma-Aldrich) for 10 min at 25˚C. For a detailed

ChIP protocol see ref. [90]. Immunoprecipitation was performed using Dynabeads M-280

sheep anti-mouse coupled to 10 μg monoclonal, purified anti-Ty1 (BB2) mouse antibody [91],

overnight (~16 h) at 4˚C in the presence of 0.05% (final concentration) sodium dodecyl sulfate

(SDS). Immunoprecipitated material was washed with RIPA-Buffer (50 mM HEPES-KOH

(pH 7.5), 500 mM LiCl, 1 mM EDTA, 1% (vol/vol) IGEPAL CA-630, 0.7% (wt/vol) Na-Deoxy-

cholate. LiCl and Na-Deoxycholate dissolved separately in, mix and add remaining
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components. Store at 4˚C.) and eluted with 200μl elution buffer (50 mM Tris-HCl (pH 8.0), 10

mM EDTA, 1% (wt/vol) SDS) at 65˚C for 30 min. Cross-links were reversed at 65˚C for ~16 h

in the presence of 300 mM NaCl (final concentration). 4 μl of 10 mg/ml RNaseA were added

to the ChIP sample and incubated at 37˚C for 2 h. 4 μl of 10 mg/ml proteinase K were added to

the ChIP sample and incubated at 55 C for 2 h in a heat block. The tubes were centrifuged at

10,000 x g for 10 min at RT. DNA was purified with the Macherey & Nagel NucleoSpin Gel

and PCR Clean-up kit (the NTB buffer was used instead of the NTI buffer due to the high SDS

concentration within the samples). Sample purification was performed according to the manu-

facturer’s instructions. The ChIP sample was eluted with 16 μl and the input sample with 26 μl

of NE buffer. The DNA library preparation was performed using NuGEN´s Ovation Ultralow

System V2 (M01379 v5). Libraries were prepared with a starting amount 7ng of DNA and

were amplified in 8 PCR cycles. Libraries were profiled with a 2100 Bioanalyzer (Agilent tech-

nologies) and quantified using the Qubit dsDNA HS Assay Kit, in a Qubit 2.0 Fluorometer

(Life technologies) set to high sensitivity. All 14 samples were pooled in equimolar ratio and

sequenced on a NextSeq500 High output Kit, PE for 2x 42 cycles plus 8 cycles for the index

read. The ChIPseq metadata is available at https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA744383

Bioinformatics analysis

Reads processing and mapping. Library quality was assessed with FastQC version 0.11.8

before being aligned against the T. Brucei genome assembly TriTrypDB-48_TbruceiLis-

ter427_2018_Genome.fasta and the TriTrypDB-48_TbruceiLister427_2018.gff annotation file

[92, 93]. Such alignment was performed with bowtie2 aligner [94] version 2.3.4 (options:—

very-sensitive—phred33—fr—maxins 1000—minins 0—end-to-end). Multimapping reads

were filtered out and the resulting unique reads were sorted and indexed using SAMtools [95].

Peaks mapping to annotated features in the.GFF file were quantified with MACS2 [96] version

2.1.2 (options:—g 35000000—bw 150—min-length 150—format BAMPE—keep-dup—auto)

with an FDR cutoff of 5%. Chromosome coverage tracks were generated with deepTools [97]

version 3.1 (bamCoverage, options:—binSize 10—normalizeUsing CPM) and plotted using

Gviz [98] in an R framework [99]. Finally, signal at TSS was quantified (computeMatrix refer-

ence-point, options:—referencePoint TSS -b 25000 -a 25000—skipZeros) and plotted (plot-

Profile, options:—perGroup) using deepTools and a custom.BED file containing transcript

annotations at the peaks.

Differential binding analysis

Further filtering and an exploratory analysis was performed in an R framework including

ggplot2 [100]. Overall experimental quality was assessed via IP strength [101]. Differential

binding comparisons were performed with DiffBind package [102] and differential peaks were

selected with a 5% FDR. Finally, differential peaks were functionally annotated with ChIPsee-

ker package [103] were a -3000/ + 3000 region around the TSS was considered as promoter.

Extraction of chromatin-associated proteins

The amount of incorporated H2A.Z was determined by Western blot analysis after fraction-

ation of the cells. H3 was used as a control. We followed the extraction protocol described by

Kraus et al. [54]. Analysis of chromatin-associated proteins was performed in 2T1 cells with a

tagged Ty1-H2A.Z allele. Cells were harvested by centrifugation (4˚C, 1500 × g for 10 min)

and washed in 1 ml of trypanosome dilution buffer (TDB; 5 mM KCl, 80 mM NaCl, 1 mM

MgSO4, 20 mM Na2HPO4, 2 mM NaH2PO4, 20 mM glucose, pH 7.4) followed by an additional
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centrifugation (4˚C, 1500 × g for 10 min). The cell pellet was solubilized in CSK-buffer (100

mM NaCl, 0.1% Triton X-100, 300 mM Sucrose, 1 mM MgCl2, 1 mM EGTA, 10 mM PIPES

(pH 6.8; with NaOH) supplemented to contain 1x concentration of Roche cOmplete Protease
Inhibitor Cocktail EDTA-free) and incubated for 10 min on 4˚C. To separate the soluble from

the insoluble fraction, the suspension was centrifuged (4˚C, 2550 × g for 5 min). The superna-

tant was removed and the pellet was resuspended with CSK-buffer and centrifuged (4˚C, 2550

x g for 5 min). The pellet with the chromatin fraction was resuspended in Laemmli buffer sup-

plemented with 2.5% β-mercaptoethanol and protease inhibitor cocktail. Proteins were dena-

tured at 90˚C for 10 min. For detection of H2A.Z and H3 a polyclonal affinity-purified H2A.Z

rabbit antibody (kindly provided by Nicolai Siegel [54]) and a polyclonal H3 rabbit antiserum

were used [91], respectively.

Co-immunoprecipitation

Prior to the immunoprecipitation (IP), 30 μl of Protein G Sepharose Fast Flow beads (GE

Healthcare) were washed with 1 ml phosphate-buffered saline (PBS) (4˚C, 1000 x g for 1 min)

and twice in PBS/1% bovine serum albumin (BSA). Unspecific binding sites were blocked by

incubation with PBS/1% BSA for 1 h at 4˚C on an orbital mixer. The beads were pelleted by

centrifugation (4˚C, 500 x g for 1 min), supernatant removed, and the antibody diluted in PBS

added. Beads and antibody were incubated overnight at 4˚C. Unbound antibody was removed

by washing 3x in 1 ml PBS/0.1% BSA. Before adding the lysate for immunoprecipitation, the

beads were washed with 1 ml IP-Buffer buffer (150 mM NaCl, 0.5% IGEPAL CA-630, 20 mM

Tris–HCl, pH 8.0, 10 mM MgCl2, 1 mM dithiothreitol (DTT), protease inhibitor cocktail

(Roche cOmplete)) and subsequent centrifugation (at 4˚C, 1000 x g for 1 min). Per IP, 1x108

cells were harvested and washed with ice-cold TDB (BSF), or with PBS (PCF), and incubated

with 1 ml IP buffer for 20 min on ice. Cells were lysed by sonication (5 cycles, each 30 s on and

30 s off) using a Biorupter (Diagenode). A centrifugation step (at 4˚C; 20.000 x g for 15 min)

followed to separate the soluble from the insoluble fraction. The soluble fraction was then

added to the Protein G sepharose beads coupled to either HA 12CA5 mouse monoclonal IgG

(Sigma Aldrich) or anti-Ty1 (BB2) mouse monoclonal IgG [91] and incubated at 4˚C for 3 h.

Beads were washed two times with 1 ml IP buffer for 10 min at 4˚C. Proteins were eluted by

incubating the beads in 50 μl sample buffer (1xNuPAGE LDS Sample buffer with 100 mM

DTT) at 70˚C for 10 min. Eluates were then analysed by mass spectrometry (MS).

Label-free quantitative mass spectrometry analysis

Samples were run on a Novex Bis-Tris 4–12% gradient gel (Thermo) with ‘3-(N-morpholino)

propanesulfonic acid’ (MOPS) buffer (Thermo) for 10 min at 180 V. The gel was stained with

Coomassie blue G250 dye (Biozym) prior to cutting each gel lane into pieces, the gel lanes

were minced and destained in 50% EtOH/water. The gel pieces were dehydrated with pure

acetone, reduced with 10 mM DTT (Sigma Aldrich) and alkylated with 55 mM iodoacetamide

(Sigma Aldrich) in the dark. The dried gel pieces were rehydrated with 1 μg trypsin for an in-

gel digestion overnight at 37˚C. On the following day the digested peptides were desalted and

stored on StageTips [104] for further analysis. Using a C18 reverse phase column that was pre-

viously packed in-house with Reprosil C18 (Dr. Maisch GmbH) the peptides were separated

along a 105 min gradient using an EasyLC 1000 UHPLC system. The column was enclosed

into a column oven (Sonation) and peptides were sprayed into a Q Exactive Plus mass spec-

trometer (Thermo), which was operating in a data-dependent top 10 acquisition mode. Spray

voltage was set to approximately 2.4 kilovolt (kV). The acquired raw files were processed with

MaxQuant (version 1.5.8.2) [105] using the Trypanosoma brucei protein database downloaded
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from TriTrypDB and activated LFQ quantitation. Contaminants, reverse hits and protein

groups that were only identified by site and protein groups with less than two peptides (one of

them unique) were removed prior to bioinformatics analysis. For enrichment, the median of

the log2 LFQ intensity values of the replicates was calculated and the p-value was determined

by a Welch t-test between the IP and the control sample. The volcano plot was plotted using

the R environment. The MS proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the data identifier PXD026796. The MS

data are summarized in S2 Table.

Western blot analysis and antibodies

Protein extracts of 3x106 to 8x106 cells were separated on 15% sodium dodecyl sulphate-polyacryl-

amide gel electrophoresis (SDS-PAGE) gels and transferred onto polyvinylidene difluoride

(PVDF) membranes. Membranes were blocked in 5% milk powder in PBS at 4˚C overnight. Pri-

mary antibodies were applied in PBS/1% milk/0.1% Tween-20 solution for 1 h at RT. After three

washes with PBS/0.1% Tween 20, IRDye 800CW- and 680LT-coupled secondary antibodies

(LI-COR Biosciences) were used to detect the corresponding primary antibodies. Secondary anti-

bodies were incubated in PBS/1% milk/0.1% Tween20/0.02% SDS solution for 1 h at RT. After

the incubation, blots were washed with PBS/0.1% Tween 20. Blots were analysed using a LI-COR

Odyssey Imager (LI-COR Biosciences). Images were quantified with the Image Studio Lite Soft-

ware. Background subtraction was performed by defining areas for normalization above and

below the measured area. The polyclonal anti-TbH3 rabbit antibody was described in [106]. The

monoclonal mouse BB2 anti-Ty1 antibody was derived from a hybridoma cell line and described

in [91]. The monoclonal mouse anti-HA 12CA5 antibody was obtained from Sigma Aldrich.

Cell cycle analysis

5x106 BSF cells were centrifuged (at 4˚C, 1.500 x g for 10 min) and washed once with 5 ml ice-

cold TDB. After subsequent centrifugation (at 4˚C, 1.500 x g for 10 min) the cells were resus-

pended in 1 ml ice cold PBS/2 mM EDTA and fixed by dropwise adding 2.5 ml ice cold 100%

ethanol or methanol. Cells were fixed at 4˚C for 1 h. After centrifugation (at RT, 1.500 x g for

10 min) cells were washed with 1 ml PBS/EDTA, centrifuged (at RT, 1.500 x g for 10 min) and

resuspended in 1 ml PBS/EDTA. To the suspension 1 μl RNase (10 μg/μl) and 10 μl propidiu-

miodide (1 μg/μl) were added and incubated for 30 min at 37˚C. Samples were stored at 4˚C in

the dark until analysis with a BD FACSCalibur using the FL-2 detector channel.

Live/dead staining

1x106 BSF cells were centrifuged (at 4˚C, 1.500 x g for 10 min) and washed twice with 1 ml ice-

cold TDB (stored on ice). After each washing step, the cells were centrifuged (at 4˚C, 1.500 x g

for 10 min). The cells were resuspended in 400 μl TDB and incubated with 1 μl propidium

iodide (1 mg/ml with a final concentration of 2.5 μg/ml) for 10 min on ice, in the dark. After

the staining, the cells were analysed with a BD FACSCalibur.

Luciferase assay

Luciferase assays were performed using the dual luciferase assay system (Promega). 1x106 cells

were centrifuged (1500 x g for 10 min at 4˚C) and washed with ice-cold PBS. After centrifuga-

tion (at 4˚C, 1.500 x g for 10 min) the supernatant was discarded and the cells were resus-

pended in 155 μl passive lysis buffer. The 155 μl were immediately transferred into a

transparent flat bottom 96-well plate. 55 μl of stop&glow solution were added in the dark and
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the lid was covered to prevent light incidence. The plate was incubated for 2 minutes at RT.

The samples were analysed with an Infinite 200M plate reader (TECAN). Each well was mea-

sured for a duration of 1s.

Northern blot analysis

Northern blots were done as previously described [107]. mRNA was prepared with the RNeasy

kit (Qiagen). 18S rRNA and 5.8S rRNA were detected with antisense oligos coupled to IRDye

800, namely 5’-CCTTCGCTGTAGTTCGTCTTGGTGCGGTCTAAGAATTTC-3’ and 5’-

ACTTTGCTGCGTTCTTCAACGAAATAGGAAGCCAAGTC-3’, respectively. Total mRNA

and SL RNA were detected by an oligo antisense to the mini-exon sequence (5’-CAATATAG

TACAGAAACTGTTCTAATAATAGCGTT-3’), coupled to IRDye 700. Blot images were

obtained with the Odyssey Infrared Imaging System (LI-COR Biosciences) and quantified

with the Image Studio Lite Software. Background subtraction was performed by defining areas

for normalization above and below the measured area (for 5.8S rRNA) or manually by defining

a square in between the lanes (total mRNA).

EM sample preparation and imaging

The EM sample preparation protocol can be found in [108] and was adapted from [109–111].

3x107 BSF (bloodstream form) cells were centrifuged (750 g, 3 min, RT). All but 2 ml medium

were removed and 2 ml heat-inactivated fetal calf serum was added as a cryoprotectant. Cells

were centrifuged (750 g, 3 min, RT) and the pellet was transferred to a polymerase chain reac-

tion (PCR) tube and further compacted (10 s, minifuge). A drop of the final pellet (around

1.5 μl) was transferred to the freezing container (specimen carriers type A, 100 μm, covered

with specimen carriers type B, 0 μm, Leica Microsystems). High pressure freezing was done in

an EM HPM100 (Leica Microsystems) at a freezing speed >20 000 Ks−1 and a pressure >2100

bar. The samples were stored in liquid nitrogen until freeze substitution in an EM AFS2 freeze

substitution system (Leica Microsystems).

For embedding in Epon, samples were incubated in 0.1% (w/v) tannic acid and 0.5% (v/v) glu-

taraldehyde in anhydrous acetone at −90˚C for 96 h (with one change in solution after 24 h), washed

four times for 1 h with anhydrous acetone at −90˚C and fixed in 2% OsO4 (w/v) in anhydrous ace-

tone at −90˚C for 28 h. Then the temperature was gradually raised to −20˚C within 14 h, kept at

−20˚C for 16 h and gradually raised to 4˚C within 4 h. Afterwards samples were immediately

washed with anhydrous acetone at 4˚C four times at 0.5 h intervals, followed by gradually increasing

the temperature to 20˚C within 1 h. Subsequently, samples were transferred for embedding into

increasing concentrations of Epon (50% Epon in acetone for 3 h at room temperature, 90% Epon in

acetone overnight at 4˚C, followed by two times 100% Epon at room temperature for 2 h, all solu-

tions were freshly prepared). Epon infiltrated samples were polymerized for 72 h at 60˚C.

For staining and contrasting, Epon-embedded sections were incubated in 2% aqueous ura-

nyl acetate for 10 min followed by incubation in Reynolds lead citrate for 5 min. LR White-

embedded sections were incubated in 2% aqueous uranyl acetate for 5 min followed by incuba-

tion in Reynolds lead citrate for 1.5 min. A 200 kV JEM-2100 (JEOL) transmission electron

microscope or a 30 kV JEOL JSM-7500F Scanning Electron Microscope equipped with a Tem-

Cam F416 4k x 4k camera (Tietz Video and Imaging Processing Systems) was used for

imaging.

Supporting information

S1 Table. A Table. Identification of a new complex associated with HAT2. 10 proteins were

identified via mass spectrometry in two Co-IP experiments. The initial Co-IP was performed
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with Tb927.11.11530, the reciprocal Co-IP with the protein Tb927.11.10070 was performed to

confirm the Tb927.4.2000 co-IP data. Only Tb927.3.4140 could be identified in the initial but

not in the reciprocal Co-IP experiment. The “Annotation” column indicates the curated anno-

tation that was found for the corresponding accession number in the TriTyp database. The”

identified domains” column displays the domains that were found by BLAST search using the

NCBI database. The Phyre2 modelling column indicates proteins that were identified by

homology modelling. Coverage (Cov.) indicates the coverage in percent between query and

template. The confidence (Conf.) represents the relative probability in percent (from 0 to 100)

that the match between query and template is a true homology. The nuclear enrichment score

(NES) indicates a nuclear localization if positive. The last column shows in which of the two

Co-IPs the protein could be identified. B Table. Identification of a new complex associated

with HAT1. 11 proteins were identified via mass spectrometry in two co-IP experiments. The

initial Co-IP was performed with Tb927.9.2910, the reciprocal Co-IP with the protein

Tb927.1.650 was performed to confirm the Tb927.9.2910 co-IP data. Tb927.6.1240,

Tb927.10.8310 and Tb927.10.9930 could only be identified in the initial but not in the recipro-

cal co-IP experiments. The “Annotation” column indicates the curated annotation that was

found for the corresponding accession number in the TriTyp database. Proteins labelled in

green exhibit a homologue in the S. cerevisiae NuA4 complex. The nuclear enrichment score

(NES) indicates a nuclear localization if positive. The “ident. in co-IP” column shows in which

of the two Co-IPs the protein could be identified. The”identified domains” column displays

the domains that were found by BLAST search using the NCBI / Interpro database. The

Phyre2 modelling column indicates proteins that were identified by homology modelling.

Coverage (Cov.) indicates the coverage in percent between query and template. The confi-

dence (Conf.) represents the relative probability in percent (from 0 to 100) that the match

between query and template is a true homology. The “Yeast NuA4 subunit”column states the

NuA4 complex subunit with its corresponding domain (“domain(s)” column) to which the

identified trypanosome protein is homologous to. C Table. Primer list. Primer sequences that

were used for cloning of RNAi and knock out constructs and PCR amplification for in situ tag-

ging.

(DOCX)

S2 Table. Summary of all mass spectrometry data. Excel file with original mass spectrometry

data of TbRuvB IP (sheet 1), Tb4040 IP (sheet 2), TbYEATS IP (sheet 3), TbYL1 IP (sheet 4),

TbEaf6 IP (sheet 5), TbEaf3 IP (sheet 6), TbHAT2 IP (sheet 7), and TbBdf3 IP (sheet 8).

(XLSX)

S1 Fig. A Fig Trypanosoma brucei possesses a SNF2 protein with characteristics of the

SWR1 subfamily. A database search for SNF2 ATPases in T. brucei identified 15 proteins that

putatively belong to the SNF2 superfamily. Only the protein Tb927.11.10730 has the character-

istic structure of a protein of the SWR1 subfamily. For comparison, the structure of the SWR1

protein from S. cerevisiae is depicted (S.c. SWR1). In addition to the DEXQ DEAD-Box motif,

a key feature of the SWR1 members of the SNF2 superfamily is an insertion (red box) between

the DEAD-box and the helicase C domain. B Fig Summary of volcano plots overview of 4

co-IPs. Volcano blot of co-purified proteins after (A) WT control vs. HA-TbSWRC1

(Tb927.10.11690), (B) WT control vs. HA-TbSWRC2 (Tb927.11.5830), (C) WT control vs.

TbSWRC4-HA (Tb927.7.4040) and (D) WT control vs. HA-RuvB2 (Tb927.4.2000), co-IPs

obtained by MS analysis of four biological replicates. Green dots represent purified proteins

with a p-value of> 0.01 or with a fold-enrichment of = /> 1. Blue dots represent purified pro-

teins with a p-value = /< 0.01 or with a fold-enrichment of> 1. Orange dots represent the

proteins with a p-value = /< 0.01 or with a fold-enrichment of> 1 that could be identified in

PLOS PATHOGENS SWR1 remodeller complex in T. brucei

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010514 June 8, 2022 21 / 29

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010514.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010514.s003
https://doi.org/10.1371/journal.ppat.1010514


at least three of the four co-IPs. The annotations “measured” indicates that a sufficient number

of unique peptides of the protein could be detected in the control samples to identify the corre-

sponding protein. The annotation “some imputed” or “imputed” indicate that a theoretical

value had to be imputed for some unique peptides that were used to identify the protein. C Fig

Depletion of TbSWR1 reduces the amount of chromatin associated H2A.Z. (A) Growth of

parasites was monitored for 96 hours after RNAi-mediated depletion of TbSWR1

(Tb927.11.10730) using tetraycline (tet). The parental 2T1 cell line was used as a control

(n = 3). (B) Quantification of live/dead staining with propidium iodide of TbSWR1-depleted

cells at the indicated timepoints post-induction. Analysis was done by flow cytometry (n = 3).

(C) Western blot analysis of the insoluble nuclear fraction with antibodies specific for histone

H3 and the histone variant H2A.Z. Lysates from an equal number of cells (2x106 per lane)

were analysed for each timepoint. (D) Quantification of chromatin-associated H3 (dark blue),

Ty1-H2A.Z (turquoise) and H2AZ (grey) (N = 3 for all depicted experiments; ��� = p-value

<0.001; �� = p-value 0.001–0.01; � = p-value 0.01–0.05). D Fig Depletion of TbSWR1 leads to

anucleate cell. (A) Exemplary cell cycle profile of bloodstream form cells without (grey line)

TbSWR1 (Tb927.11.10730) depletion and after 72 h of protein depletion (black line). The

Gates show the different populations of sub G1-, G1-, S- and G2-Phase cells. (B) Data of three

triplicates, sub G1 Phase cells (green), G1-Phase cells (green-blue), S-Phase cells (light blue)

and G2-Phase cells (dark blue). The data show a decrease of cells in G1 and G2 Phase in addi-

tion to the increase of sub G1-Phase cells (n = 3 for all depicted experiments; ��� = p-value

<0.001; �� = p-value 0.001–0.01; � = p-value 0.01–0.05). (C) Light microscopy images (N = 1)

of a BSF cell after 72h of TbSWR1 depletion. Scale bar 10μm. E Fig Depletion of TbSWRC1

(Tb927.10.11690) reduces the amount of chromatin associated H2A.Z. (A) Exemplary

Western Blot analysis of the nuclear fraction with antibodies against histone H3 and the his-

tone variant H2A.Z. An equal amount of cell equivalent was loaded for each timepoint. (B)

The development of chromatin associated H3 (dark blue), Ty1-H2A.Z (green-blue) and H2A.

Z (grey) in course of TbSWRC1 depletion is plotted (N = 3). (C) Growth of parasites was mon-

itored for 96 hours after RNAi-mediated depletion of TbSWRC1 using tetracycline (tet).

Growth of tet induced and non-induced parental 2T1 cells was measured for 96h and acts as a

reference (N = 3 for all depicted experiments; ��� = p-value <0.001; �� = p-value 0.001–0.01; �

= p-value 0.01–0.05). F Fig Depletion of TbSWRC2 (Tb927.11.5830) reduces the amount of

chromatin associated H2A.Z (A) Exemplary Western Blot analysis of the nuclear fraction

with antibodies against histone H3 and the histone variant H2A.Z. An equal amount of cell

equivalent was loaded for each timepoint. (B) The development of chromatin associated H3

(dark blue) and H2A.Z (turgoise) in course of TbSWRC2 depletion is plotted (N = 3). (C)

Growth of parasites was monitored for 96 hours after RNAi-mediated depletion of TbSWRC2

using tetracycline (tet). Growth of tet induced and non-induced parental 2T1 cells was mea-

sured for 96h and acts as a reference (N = 3 for all depicted experiments; ��� = p-value <0.001;
�� = p-value 0.001–0.01; � = p-value 0.01–0.05). G Fig H2A.Z acetylation pathway in S. cere-

visiae and T. brucei. Depiction of the H2A.Z acetylation pathway in S. cerevisiae (top panel)

and T. brucei (bottom panel). In S. cerevisiae the NuA4 complex acetylates histone H4 to facil-

itate SWR1 recruitment to the nucleosome. SWR1 exchanges H2A with H2A.Z (10, 29, 30,

58). Subsequent to the exchange the NuA4 complex acetylates H2A.Z which enhances tran-

scription (34, 41, 42). In T.brucei two distinct HAT-complexes are responsible for acetylation

of histone H4 and histone H2A.Z. While H4 is the substrate for the HAT2 complex, H2A.Z is

acetylated by the HAT1 complex. H Fig Depletion of the histone acetyltransferase HAT1

caused a decrease of reporter luciferase activity within a PTU. A single luciferase reporter

construct was integrated into the tubulin array of a HAT1 (Tb927.7.4560) RNAi cell line. Sam-

ples for the luciferase assay were normalised to cell numbers. (A) Luciferase activity was

PLOS PATHOGENS SWR1 remodeller complex in T. brucei

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010514 June 8, 2022 22 / 29

https://doi.org/10.1371/journal.ppat.1010514


monitored for 48 h after induction of RNAi in two independent clones. Values of non-induced

cells were set to 1. (B) Live/dead staining of each RNAi cell line was performed in triplicates at

the same time points. (C) Growth of parasites was monitored for 96 hours after RNAi-medi-

ated depletion of H2A.Z using tetracycline (tet) induction. Growth of the parental 2T1 cell line

was measured for 96h as a control. (N = 3 for all depicted experiments; ��� = p-value <0.001;
�� = p-value 0.001–0.01; � = p-value 0.01–0.05). 1I Fig Depletion of the histone acetyltrans-

ferase HAT1 caused a decrease of reporter luciferase activity within a PTU. A single lucifer-

ase reporter construct was integrated into the tubulin array of a HAT2 (Tb927.11.11530)

RNAi cell line. Samples for the luciferase assay were normalised to cell numbers. (A) Luciferase

activity was monitored for 48 h after induction of RNAi in two independent clones. Values of

non-induced cells were set to 1. (B) Live/dead staining of each RNAi cell line was performed in

triplicates at the same time points. (C) Growth of parasites was monitored for 96 hours after

RNAi-mediated depletion of H2A.Z using tetracycline (tet) induction. Growth of the parental

2T1 cell line was measured for 96h as a control. (N = 3 for all depicted experiments; ��� = p-

value <0.001; �� = p-value 0.001–0.01; � = p-value 0.01–0.05). J Fig Identification of a HAT2

complex. Volcano blot of co-purified proteins after (A) Ty1-Bdf3 (Tb927.11.10070) vs. WT

control (B) WT control vs. HA-HAT2 (Tb927.11.11530), co-IPs obtained by MS analysis of

four biological replicates. Green dots represent purified proteins with a p-value of> 0.01 or

with a fold-enrichment of = /> 1. Blue dots represent purified proteins with a p-value = /<

0.01 or with a fold-enrichment of> 1. The annotations “measured” indicates that a sufficient

number of unique peptides of the protein could be detected in the control samples to identify

the corresponding protein. The annotation “some imputed” or “imputed” indicate that a theo-

retical value had to be imputed for some unique peptides that were used to identify the protein.

K Fig Identification of a HAT1 complex. Volcano blot of co-purified proteins after (A) WT

control vs. Ty1-Bdf3 (Tb927.1.650) (B) WT control vs. HA-HAT2 (Tb927.9.2910), co-IPs

obtained by MS analysis of four biological replicates. Green dots represent purified proteins

with a p-value of> 0.01 or with a fold-enrichment of = /> 1. Blue dots represent purified pro-

teins with a p-value = /< 0.01 or with a fold-enrichment of> 1. The annotations “measured”

indicates that a sufficient number of unique peptides of the protein could be detected in the

control samples to identify the corresponding protein. The annotation “some imputed” or

“imputed” indicate that a theoretical value had to be imputed for some unique peptides that

were used to identify the protein. L Fig Chromatin condensation after TbSWR1, H2A.Z and

RNAP II (RPB1) depletion. Representative electron microscopy images of the nucleus of

TbSWR1 (A), H2A.Z (B) and RNAP II (RPB1; C) depleted cells. The upper panel depicts unin-

duced cell lines, the three panels below depicts TET induced cells (TbSWR1 and H2A.Z: 24 h

RNAi, RPB1: 16h RNAi). Depletion of the proteins resulted in large black patches of con-

densed chromatin. Scale bar, corresponds to 500 nm. Images obtained using a STEM (scan-

ning transmission electron microscope). M Fig Reduction in SWR1 mRNA molecules

following RNAi depletion. The number of SWR1 mRNA molecules per cell was measured by

single molecule FISH. in the absence of TET and after 24 hours RNAi induction. Several unre-

lated mRNAs served as controls, as indicated. Affymetrix probe sets were designed antisense

to the full ORF (BDF3), full ORF (ZFP1), 1100 most 5´nucleotides (Tb427.01.1730), full ORF

(CAF1) and the repetitive sequence of FUTSCH (1). At least 46 cells were counted for each

probe and timepoint. The data are presented as box-plots (waist is median; box is interquartile

range (IQR); whiskers are 1.5 IQR). The differences in mRNA numbers in the absence and

presence of SWR1 RNAi were evaluated by a students t-TEST (two samples, two-tailed; � for

<0.05 = significant; ��� for<0.005 = highly significant). There was a highly significant reduc-

tion in the number of SWR1 mRNA molecules upon RNAi induction. Note that two of the

four control mRNAs also showed a significant reduction in numbers: this is expected from the
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general reduction in transcription that is a consequence of SWR1 depletion.
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