
RESEARCH ARTICLE

Integrating transcriptomic network

reconstruction and eQTL analyses reveals

mechanistic connections between genomic

architecture and Brassica rapa development

Robert L. BakerID
1*, Wen Fung LeongID

2, Marcus T. Brock3, Matthew J. RubinID
3, R. J.

Cody Markelz4, Stephen Welch2, Julin N. MaloofID
4, Cynthia Weinig3

1 Department of Biology, Miami University, Oxford, Ohio, United States of America, 2 Department of

Agronomy, Kansas State University, Manhattan, Kansas, United States of America, 3 Department of Botany,

University of Wyoming, Laramie, Wyoming, United States of America, 4 Department of Plant Biology,

University of California Davis, Davis, California, United States of America

* robert.baker@miamioh.edu

Abstract

Plant developmental dynamics can be heritable, genetically correlated with fitness and

yield, and undergo selection. Therefore, characterizing the mechanistic connections

between the genetic architecture governing plant development and the resulting ontogenetic

dynamics of plants in field settings is critically important for agricultural production and evo-

lutionary ecology. We use hierarchical Bayesian Function-Valued Trait (FVT) models to esti-

mate Brassica rapa growth curves throughout ontogeny, across two treatments, and in two

growing seasons. We find genetic variation for plasticity of growth rates and final sizes, but

not the inflection point (transition from accelerating to decelerating growth) of growth curves.

There are trade-offs between growth rate and duration, indicating that selection for maxi-

mum yields at early harvest dates may come at the expense of late harvest yields and vice

versa. We generate eigengene modules and determine which are co-expressed with FVT

traits using a Weighted Gene Co-expression Analysis. Independently, we seed a Mutual

Rank co-expression network model with FVT traits to identify specific genes and gene net-

works related to FVT. GO-analyses of eigengene modules indicate roles for actin/cytoskele-

tal genes, herbivore resistance/wounding responses, and cell division, while MR networks

demonstrate a close association between metabolic regulation and plant growth. We deter-

mine that combining FVT Quantitative Trait Loci (QTL) and MR genes/WGCNA eigengene

expression profiles better characterizes phenotypic variation than any single data type (i.e.

QTL, gene, or eigengene alone). Our network analysis allows us to employ a targeted eQTL

analysis, which we use to identify regulatory hotspots for FVT. We examine cis vs. trans

eQTL that mechanistically link FVT QTL with structural trait variation. Colocalization of FVT,

gene, and eigengene eQTL provide strong evidence for candidate genes influencing plant

height. The study is the first to explore eQTL for FVT, and specifically do so in agroecologi-

cally relevant field settings.
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Author summary

We estimate the developmental dynamics of plant growth using mathematical functions

to fit continuous functions to discrete plant height data collected throughout growth, and

we use the parameters defining these mathematical functions as data. We identify geno-

mic regions controlling plant growth and filter a novel transcriptomic data set using net-

work reconstruction models to identify the genes and eigengenes associated with plant

height. We combine these genomic and transcriptomic data to predict variation in plant

height, and we use quantitative genetics to mechanistically connect plant genetics, tran-

scriptomics, and development. Our approach demonstrates two powerful methods for the

type of data reduction (FVT modeling and gene expression network reconstruction for

targeted eQTL analyses) and data integration that will be necessary for driving forward

the field of genetics in the post-genomic era. To the best of our knowledge, we are the first

to apply these techniques to continuous models of plant development, and the first to do

so in agroecologically relevant field settings.

Introduction

Plant developmental dynamics are correlated with fitness and yield [1,2]. Therefore, character-

izing the mechanistic connections between the genetic architecture governing plant develop-

ment and the resulting ontogenetic dynamics of plants in field settings is critically important

to improving agricultural production and understanding evolutionary fitness. Forward genetic

approaches such as quantitative trait mapping are an attractive method of characterizing

genetic architecture because they do not require a priori information such as candidate loci

and can be used to describe additive effects as well as pleiotropic and epistatic loci [3–5]. Tran-

scriptomic co-expression analyses and expression QTL (eQTL) have also been used to identify

the underlying genetic architecture responsible for phenotypic variation [e.g. 6]. Recently,

combining information from genomic association studies and transcriptomic expression anal-

yses has been used to pinpoint candidate genes [7–10]. However, co-expression network analy-

ses can also provide insight into the mechanistic connections between QTL genotypes and

phenotypes. Here, we ask whether QTL, co-expression analyses, or a combination thereof best

predict phenotypic variation. In combination with a targeted eQTL analyses in agroecologi-

cally relevant field settings, we characterize the mechanistic connections between the genomic

architecture, transcriptomic expression networks, and phenotypic variation throughout plant

development.

Development rarely occurs in discrete steps, yet developmental data are typically collected

at multiple distinct but inter-dependent time points. Function-Valued Trait (FVT) modeling

is one method of estimating the underlying continuous nature of development and avoiding

complicated repeated measures statistics, which often compromise statistical power in down-

stream analyses [11,12]. One approach to FVT modeling involves fitting mathematical func-

tions to discrete data to estimate continuous curves that represent the change of a trait or

character as a function, typically of time [13–15]. Although there are multiple approaches to

modeling continuous growth, one particular advantage of FVT modeling is that parameters

describing developmental growth curves can be extracted from the FVT models and used as

biologically interpretable and inter-relatable traits such as the relationship between growth

rates, durations, inflection points denoting cessation of growth, and final sizes. This ‘parame-

ters as data’ approach enables a broad array of analyses at both genetic and phenotypic levels
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[2,16]. In the current study, we employ a Bayesian hierarchical approach to FVT modeling

that utilizes global information from the entire dataset as well as each genotype to estimate rep-

licate-level parameters describing growth curves that underlie the developmental dynamics of

plant height.

One inherent but seldom addressed complication in studying developmental genetics is

that development of a given trait rarely occurs independently of organism-level attributes. For

instance, in plants the pool of available carbon can severely limit and alter organismal-level

development including aspects of determinate structures such as leaves [17,18] and indetermi-

nant growth such as plant height [19]. Further, including physiological parameters such as car-

bon assimilation in plant breeding models is predicted to accelerate and improve yield gains

[20]. One solution is using a hierarchical Bayesian approach to FVT modeling that incorpo-

rates genotype-specific values for organism-level physiological conditions such as carbon avail-

ability (estimated, for instance, using maximum photosynthetic capacity, Amax) to statistically

factor out variation caused by resource availability. Accounting for carbon availability in FVT

parameter estimation can increase estimates of heritability and improve QTL mapping results

[21,22].

QTL mapping provides a well-tested method of uncovering the genetic architecture of com-

plex Function-Valued Traits (FVT). FVT variation may arise from structural or regulatory

genes that differ among sampled genotypes. Examining gene expression can therefore provide

insight into the mechanistic connections between genomic architecture and developmental

dynamics of phenotypes [23–26]. We use Mutual Rank (MR) and Weighted Gene Co-expres-

sion Network Analyses (WGCNA) to identify expression networks associated with FVT trait

variation. These networks are then used to focus our analysis to specific sub-sets of biologically

relevant expression traits for eQTL mapping [27,28]. Interestingly, the genomic architecture of

eQTL appears to depart from that of other phenotypic QTL such as FVT QTL in two impor-

tant respects: first, gene expression traits tend to have only one or a few eQTL whereas mor-

phological phenotypic traits are often highly polygenic [29]. Second, eQTL from multiple

expression traits in diverse taxa from yeast to Brassica can be highly colocalized into eQTL

“hotspots”. These hotspots may indicate a regulatory gene or switch that has a disproportion-

ate impact on downstream gene expression [30–32]. In contrast, QTL for morphological traits

may colocalize, but typically they do not do so to the same extent [31,33]. Whether general

eQTL trends hold for targeted expression traits in agroecologically relevant field settings

remains unknown. Further, to the best of our knowledge eQTL mapping has not been used to

examine the mechanistic basis of developmental morphology captured via function-valued

trait modeling.

Here, we estimate continuous developmental growth curves of plant height, a trait that

when selected upon can lead to more effective increases in yield than directly selecting on yield

itself [34], in a set of Brassica rapa Recombinant Inbred Lines (RILs) while mathematically fac-

toring out the effects of carbon availability. We examine the patterns of genetic correlations

among parameters describing change in height over time such as growth duration and final

plant size, and we ask whether these developmental parameters correlate with yields. Using

QTL mapping, we outline the genetic architecture of plant height development. Next, we use

MR and WGCNA to identify genes and gene network modules whose expression patterns cor-

relate with FVT parameters. We compare the predictive capacity of QTL and co-expression

approaches in two ways: first, we test the relative effectiveness of QTL vs. MR genes vs.
WGCNA module eigengenes (and combinations thereof) in explaining genetic variation of

developmental traits. Second, we test whether QTL for FVT traits are enriched for genes iden-

tified via co-expression approaches. To explore the mechanistic basis of FVT QTL, we perform

eQTL mapping on our MR genes and WGCNA module eigengenes. For eQTL and FVT QTL
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that colocalize, we explore the relative proportion cis- vs. trans-eQTL and their effect sizes. We

ask whether eQTL colocalize to regulatory hotspots and if so how these compare to FVT QTL.

Our eQTL analysis offers an additional line of inference for candidate gene identification as

well as a potential mechanistic explanation for the regulation of yield-related FVT QTL.

Results

Function-Valued Traits (FVTs)

Brassica rapa Recombinant Inbred Lines from the IMB11xR500 cross were grown in the field

in 2011 and 2012. In each year, there were two treatments: crowded and uncrowded. Multiple

replicates of the full RIL set were planted out for each combination of year and treatment. FVT

modeling was conducted based on replicate-level data, the data were sufficient to support all

aspects of the growth curves modeled, and the models fit the data well (Fig 1 for example

model fits). Plots for all FVT models can be found in S1 Fig and a conceptual overview of the

analyses performed is presented in S2 Fig.

Phenotypic plasticity and heritability

To assess the effects of the environment on plastic growth responses, we analyzed raw replicate

level data. Although there were main effects of Block (nested within treatment) and genotype

(RIL ID) for all traits, there were no significant main effects of crowding (treatment; Table 1).

However, there was genetic variation for a plastic response to crowding for all traits except iD

(inflection time, in Degree Days; treatment-by-genotype interaction; Table 1).

Genetic correlations

To explore the genetic relationships among the height FVT parameters and previously pub-

lished estimates of plant phenology and fitness, we conducted a correlation analysis on BLUPs

Fig 1. Representative genotypes (A, IMB211; B, R500) of Bayesian FVT trait estimation approaches for uncrowded plants from the 2012 season. Within each panel, dots

represent observed data. Colors indicate replicates within each genotype and indicate that each replicate was measured multiple times throughout the growing season.

The black line is the Bayesian estimate of logistic growth curve that best represents each genotype. The yellow envelope is a 95% credible envelope for the observed data;

the green envelope is a 95% credible envelope for where new data is predicted to occur for a specific genotype and environment combination.

https://doi.org/10.1371/journal.pgen.1008367.g001
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of each trait. In general, the pattern of genetic correlations within years and treatments was

similar. Uncrowded (UN) r from 2012 was correlated with all traits except Hmax (Fig 2). In

contrast, Crowded (CR) r in 2012 was negatively correlated with other all other 2012 CR FVT

traits, with all CR phenology traits (except the bolting-to-flowering interval) and CR fitness

traits (S3 Fig). UNr in 2012 was negatively correlated with UNd and iD but not Hmax. UNr

2012 was also negatively correlated with phenology and fitness. These patterns of genetic cor-

relations are largely consistent across both years and treatments (S3 Fig); a representative sub-

set of correlations from 2012 is presented in Fig 2.

QTL mapping

To further explore the genetic architecture of the height FVT parameters, we conducted QTL

mapping analyses of the height FVT traits. In total we mapped 32 individual QTL from 2012

(2011 FVT QTL are presented in S1 Table); however, an alternative interpretation is that we

mapped as few as 9 highly pleiotropic QTL. QTL were observed throughout the genome,

except on chromosomes 2, 4, and 8. Most QTL localized to chromosome 3, 9 and 10. Across

all traits, each QTL explained 29% of trait variation on average. The minimum explained vari-

ance was 9.5% and the maximum was 73% of variance (Fig 3 & S1 Table).

Genes under FVT QTL

To determine positional candidates within mapped FVT QTL, we compared our FVT QTL to

the B. rapa genome and identified genes under the QTL. We restricted our search to QTL with

LOD> 9 (Table 2). All 9 of these QTL were on either chromosome 3 or 10. Because several of

the QTL co-localized (had overlapping 1.5 LOD confidence intervals), we often found the

same genes under multiple QTL. After removing duplicate entries, we found 490 unique genes

underlying the 9 QTL investigated (S2 Table).

RNAseq

We used RNA sequencing (RNAseq) to understand the transcriptomic mechanisms underly-

ing FVT QTL and as an alternative approach for examining the genetic architecture of our

FVT traits without a priori knowledge. 21,147 genes of 28,668 genes with detectable expression

in UN treatment were differentially expressed among RILs (FDR< 0.01). The 10,000 genes

with the most variable expression among RILs were used for downstream network analysis.

Table 1. Phenotypic plasticity and heritabilities of FVT parameters. Block is nested within the Treatment effect. Treatment corresponds to the crowded and uncrowded

treatments in 2012 and Genotype indicates RIL id. Significant effects are emphasized by bold text.

Random effects–Chi Square value (degrees of freedom) Heritabilities (%)

Trait Model t-value (df) Block (Treat) Treatment Genotype Treatment × Genotype UN 2012 CR 2012

r 16.62 (1.08)
�

80.2 (2)
���

7.28e-12 (1)

NS

136 (1)
���

211 (1)
���

74.5 76.0

d 43.32 (1.57)
��

58.5 (2)
���

3.64e-12 (1)

NS

294 (1)
���

4.88 (1)
�

79.5 79.3

iD 37.16 (1.65)
��

98.2 (2)
���

1.42e-10 (1)

NS

369 (1)
���

0.34 (1)

NS

86.8 83.7

Hmax 8.70 (1.83)
�

116 (2)
���

0.0 (1)

NS

226.4 (1)
���

42.3 (1)
���

81.2 68.1

Signif. codes: p < 0.001 ‘���’; p < 0.01 ‘��’; p < 0.05 ‘�’; p < 0.1 ‘.’; p > 0.1 ‘NS’

https://doi.org/10.1371/journal.pgen.1008367.t001
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Mutual Rank (MR) network analysis

MR Network Analysis is an alternative method that is independent of QTL analysis for identi-

fying genes that may contribute to phenotypic variation. Genes identified as members of MR

Fig 2. Genetic correlations among UN 2012 FVT height, phenology, and fitness traits. Each point is a genotypic mean (BLUP). Bonferroni corrections for multiple tests

(n = 7) have been applied. Non-significant correlations are in gray. All time is expressed in Degree Days. � p<0.05, �� p<0.01, ��� p<0.001, ���� p<0.0001, NS p� 0.05.

https://doi.org/10.1371/journal.pgen.1008367.g002
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networks therefore likely contribute to and predict phenotypic variation. To find gene co-

expression networks relevant to the FVT model parameters, we built MR networks nucleated

on each FVT model parameter and performed permutation analyses to determine the statisti-

cal significance of our networks. Ninety-five or more of 100 permutations had zero connec-

tions between FVT parameters and gene expression. Therefore, our MR networks are enriched

for bona fide connections at a variety of MR threshold cutoffs (The MR30 network is shown in

Fig 4; larger networks become difficult to visualize and are presented in S4 Fig). Complete

gene membership for all MR-thresholds annotated with the best hit obtained by blastn against

the predicted A. thaliana proteome are presented in supplemental materials S3 Table.

Fig 3. A map of all QTL identified in 2012. Horizontal lines on chromosomes indicate the position of RNAseq markers used to genetic map construction. Each QTL

is indicated with a vertical arrow under the trait name. Horizontal hatches indicate QTL position, the arrow length indicates 1.5 LOD support limits. Arrow heads and

color (up, red = positive; down, blue = negative) indicate QTL direction relative to the R500 parent. Exact locations, markers, and LOD scores for all QTL can be

found in S1 (Table).

https://doi.org/10.1371/journal.pgen.1008367.g003

Table 2. Fishers exact tests for enrichment of FVT QTL for MR-identified genes.

QTL

Yes No p-value

MR10 Yes 0 2 1.0

No 5,816 37,645 (NS)

MR20 Yes 16 0 6.91e-13

No 6,800 37,647 ���

MR30 Yes 25 4 4.98e-09

No 5,791 37,643 ���

MR50 Yes 46 10 9.93e-21

No 5,770 37,637 ���

p> 0.05, NS; p<0.0001, ����

https://doi.org/10.1371/journal.pgen.1008367.t002
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We used Fisher’s exact test to determine whether FVT QTL were enriched for MR-identi-

fied genes. We found no evidence for enrichment for MR10 networks (p = 1.0) but significant

evidence for enrichment for MR20, MR30, and MR50 networks (p<5E-09; Table 2). In theory,

Fig 4. A scale-free diagram of the Mutual Rank network nucleated around FVT traits from 2012 with a cutoff of 30. Network nodes consist of

either FVT traits or co-expressed genes. FVT traits are shown in red circles and genes are indicated in blue circles. Network edges indicate significant

correlations. Purple lines indicate positive correlation values while green lines indicate negative correlation values and line thickness corresponds to

strength of the correlation. UN, uncrowded; r, growth rate; d, duration of growth; iD, time in degree days when the growth curve reached its inflection

point; Hmax, estimated maximum height based on FVT modeling. Additional network cutoffs, 2011, and 2012 crowded networks are in S4 Fig; gene

names and annotations are in S3 Table.

https://doi.org/10.1371/journal.pgen.1008367.g004

Integrating developmental traits, expression networks, and eQTLs reveals genotype-phenotype connections

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008367 September 12, 2019 8 / 27

https://doi.org/10.1371/journal.pgen.1008367.g004
https://doi.org/10.1371/journal.pgen.1008367


MR10 networks should contain only those genes whose expression values are most highly cor-

related with FVT phenotypes. The non-significant results for MR10 may be caused by low

power due to the single gene identified.

To visualize the relationship between FVTs and genes in the MR networks, we made scatter

plots of each FVT against each directly connected MR gene (S5 Fig). For a minority of these

genes (21 of 71) the samples group into two clusters on the scatter plot, corresponding to RILs

with low/high expression of the MR gene. This pattern suggests that expression of the MR

gene and the FVT value are either controlled by the same gene or by two closely linked genes.

However, the majority (50 of 71) of the FVT / MR gene pairs show a relatively continuous lin-

ear relationship. This pattern is unlikely to arise simply by linkage and suggests that expression

of these MR genes is indeed biologically related to FVT values.

Single Nucleotide Polymorphism (SNP) identification in for MR genes

To identify candidate SNPs that could alter protein function of MR gene products, we com-

pared the sequence data from the RIL population for all MR50 genes and identified segregating

SNPs that are predicted to cause an amino acid changes (see methods). We identified a total of

53 SNP variants across 24 MR50 genes (S4 Table). Most of these were mis-sense mutations

predicted to have moderate effects on gene function (including three mis-sense mutations in

Br025497, a BEL1 homolog). However, one frame-shift mutation predicted to have a high

impact on gene function was identified in unannotated gene Bra08635.

Weighted Gene Co-expression Network Analysis (WGCNA)

In a second, statistically independent approach to identifying gene expression networks related

to estimates of FVT trait parameters, we used a Weighted Gene Co-expression Network Analy-

sis (WGCNA) to identify 50 gene co-expression network modules consisting of a median of 90

genes each. We calculated eigengene values for gene expression within each module. Modules

of interest were identified as those with a significant correlation between the eigengene expres-

sion values and FVT model parameters across the RILs (Fig 5). Gene Ontology (GO) enrich-

ment analysis was performed to examine the potential function of correlated modules (S5

Table); below we discuss correlations with module eigengenes that had at least one GO term

Fig 5. Correlations among WGCNA identified eigengenes and UN 2012 FVT traits. Significant correlations are denoted with an asterisk. r, growth rate; d,

duration of growth; iD, time in degree days when the growth curve reached its inflection point; Hmax, estimated maximum height based on FVT modeling.

Modules are named using a numerical system (above) and color scheme (below).

https://doi.org/10.1371/journal.pgen.1008367.g005
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enriched. There are positive correlations between 2012 BLUPs for maximum height (Hmax),

growth duration (d), and the time that the growth curve reached its inflection point (iD) and

the “cyan (34)” module (related to protein translation), the “midnight blue (35)” module

(related to wounding/herbivore defense responses as well as some abiotic stress responses),

and the “blue (30)” module (enriched for genes related to cell division and development). This

suggests that plants that have a longer duration of growth and reach a higher maximum height

produce more protein, undergo more rounds of cell division, and have increased defense sig-

naling. These three parameters also showed negative correlations with the “brown (9)” module

(enriched for actin cytoskeleton and protein dephosphorylation terms). Hmax is negatively

correlated with “yellow (45)” (enriched for terms related to photosynthesis). This correlation

could be caused by a difference in cellular maturation rates: plants with more rapid cellular dif-

ferentiation would be expected to show an upregulation of chloroplast genes and reduced

growth due to earlier differentiation and consequently relative lack of cell elongation.

Comparisons of QTL and network modeling for phenotypic prediction

To test the effectiveness of QTL, MR genes, and WGCNA in explaining the variation in FVT

trait estimates, we compared a series of additive linear models based on QTL, MR genes, or

WGCNA eigengenes both singly and in combination. For UNr (in 2012), models containing

only QTL outperformed models containing either MR30 identified gene expression or

WGCNA-identified eigengene expression (Table 3). For two-data type models, models with

only QTL outperformed those containing multiple data types. For Hmax, MR gene expression

Table 3. Comparison of additive linear models using genetic and transcriptomic data to explain 2012 uncrowded phenotypic data.

Trait Best single-data type

model

AIC Next best AIC (next best

model)

Formula§ Best model F-value (DF),

significance and adjusted

R2

r QTL -1305.97 -1256.43

(WGCNA)

y ~ rQTL2 + rQTL2 +r QTL3 F(3, 113) = 30.9
���

R2 = 0.4361

Hmax MR 735.5348 783.6546

(WGCNA)

y ~ Bra03899 + Bra011761 + Bra006755_Bra006756

+ Bra036465 + Bra008859 + Bra037542

F(6,109) = 45.48
���

R2 = 0.6989

Best 2-data type model

r QTL + WGCNA

(reduces to just QTL)

-1305.97 -1297.869

(MR+WGCNA)

y ~ rQTL1 + rQTL2 + rQTL3 F(3,113) = 30.9
���

R2 = 0.4361

Hmax MR + WGCNA

(reduces to just MR)

734.2895 752.3889

(QTL+MR; reduces to

just MR�)

y ~ Bra011761 + Bra006755_Bra006756 + Bra13959 + Bra08840

+ Bra008859 + Bra037542 _ Bra002411

F(7,108) = 40.16
���

R2 = 0.7045

Best overall model

r Full model (QTL

+ MR+ WGCNA)

-1308.602 -1305.97 (QTL

+ WGCNA)

y ~ rQTL2 + yellowgreen(22) + Bra006755_Bra06756

+ Bra025790 + Bra028216

F(5, 110) = 25.31
���

R2 = 0.5138

Hmax Full model (reduces

to MR + WGCNA)

731.63 -734.2895 (MR

+ WGCMA; reduces to

just MR�)

y ~ yellow(45) + Bra011761 + Bra006755_Bra006756

+ Bra008575 + Bra008577 + Bra008840 + Bra008859

+ Bra037542 + Bra002411

F(9,106) = 33.16
���

R2 = 0.7157

��� p < 0.0001

� This model reduced to include just MR gene expression values but is different from the best Hmax single-data type model that also includes just MR gene expression

values.
§ rQTL 1–3 have markers at A03x 6417941, A05x23393567, and A10x11427369, respectively

https://doi.org/10.1371/journal.pgen.1008367.t003
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outperformed both QTL and WGCNA-identified eigengene expression as well as combina-

tions of two data types. For both traits, the full model (with all three data types for r, but which

reduced to WGCNA and MR gene expression values for Hmax) were the best models for

explaining phenotypic variation (r: F(5,110) = 25.31, p<0.0001; Hmax: F(9,106) = 33.16,

p<0.0001). Similarly, the best two-data type models were a significantly better fit to the data

than the best single-data type models (r: F(5,114) = 40.182, p<0.0001; Hmax: F(4,113) = 80.398,

p<0.0001). For all comparisons, the significantly better model according to ANOVA also had

lower AIC scores (Table 3). Taken together, these results indicate that although each approach

has significant predictive capacity, combining multiple approaches improves estimation of

trait variation.

eQTL analyses and colocalization of eQTL with FVT QTL

Because including MR and WGCNA results both improved upon linear models for FVT traits

that contained just QTL (Table 3) and because all models that included MR and WGCNA

gene/eigengene expression values were significant and predicted FVT trait variation, we used

eQTL analyses to assess the mechanistic relationship between MR gene/WGCNA eigengene

expression and FVT QTL. For the 56 MR50-identified genes, 40 genes had a total of 41 signifi-

cant eQTL, 22 of which were cis-eQTL (S6 Table). The 41 eQTL were distributed on chromo-

somes 1, 3, 4, 6, 9, and 10. In congruence with FVT QTL mapping results, there were eQTL

with particularly high LOD scores on chromosomes 3 and 10 (LOD>75; Fig 6). There was sig-

nificant overlap among 2012 FVT QTL confidence intervals and MR eQTL confidence inter-

vals based on permutation tests (n = 1000, p = 0.003). One explanation for co-localization of

FVT QTL and MR eQTL is pleiotropy; i.e. the same genetic change is causing changes in MR

gene expression and in the FVT trait. An alternative interpretation is that causal loci are in

Fig 6. Expression trait QTL (eQTL) identified using Composite Interval Mapping (CIM) for MR50-identified genes where MR networks were nucleated around

UN FVT traits. Note the eQTL hotspots on chromosomes 3 and 10.

https://doi.org/10.1371/journal.pgen.1008367.g006
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linkage disequilibrium. These two interpretations are not mutually exclusive; it is likely that

pleiotropy explains the association for some traits and linkage explains the association for

others.

Of the 40 MR50 genes that had eQTL, a total of 37 genes had a total of 38 eQTL that over-

lapped with FVT QTL. Eighteen of the 37 MR50 genes with eQTL that colocalized with FVT

QTL had cis-eQTL (Table 4). The co-occurrence of these loci as MR-identified cis-eQTL and

FVT QTL identifies a list of strong candidate genes for regulating the FVT traits. One MR

gene (Bra 012899) had multiple eQTL that overlapped with FVT QTL; both of these were on

chromosomes 3 and 10 and both were trans-eQTL.

Next we performed eQTL analyses (S6 Fig) for the 11 WGCNA-identified eigengene mod-

ules that were significantly correlated with UN 2012 FVT (see Fig 5). Six of these 11 eigengenes

had eQTL: Chromosome 3 harbored strong eigengene eQTL for “darkslateblue (13)”, “steel-

blue (33)”, and “yellowgreen (22)” (all with no go enrichment; nge). Chromosome 6 had eQTL

for “midnightblue (35)” (herbivore/wounding). Chromosome 10 had eQTL in two locations,

one for “brown (9)” (actin cytoskeleton) and “lightgreen (29)” (nge), the other for “midnight-

blue (35)” (herbivore/wounding). Four eigengenes had eQTL that colocalized with FVT QTL,

indicating a potential causative connection between eigengenes and FVT for r, iD, and Hmax

(Table 5). However, each eigengene had only one eQTL that colocalized with an FVT QTL.

The second chromosome 10 location (“midnightblue (35)”) overlaps with the FVT QTL9

and the eigengene has significant correlations with d and iD FVTs indicating a possible causa-

tive connection. We then performed permutation tests and determined that FVT QTL were

enriched for WGCNA eQTL (n = 1000, p = 0.002).

Discussion

Plant height is often correlated with fitness and yield. Height is a complex and dynamic trait

that changes over the course of development, and variation in plant height is necessarily

Table 4. MR-identified genes with cis-eQTL that co-localize with UN 2012 FVT QTL. Note that because multiple FVT QTL overlap, a single MR cis-eQTL may coloca-

lize with FVT QTL for multiple traits. Genes with missense mutations (S4 Table) are indicated in bold.

MR gene MR network Chromo-some FVT trait eQTL LOD AGI A. thaliana symbol

Bra022867 20 3 iD 36.97 AT2G31810 NA

Bra023009 20 3 iD 25.05 AT2G43590 NA

Bra023056 50 3 iD 37.78 AT2G36230 APG10;HISN3
Bra023094 50 3 iD 39.40 AT2G37050 NA

Bra029099 50 3 R 59.98 AT5G53050 NA

Bra029100 50 3 R 28.52 AT5G53045 NA

Bra008566 20 10 r, Hmax 31.22 AT5G17270 NA

Bra008575 20 10 r, Hmax 67.28 AT5G17170 ENH1

Bra008577 20 10 r, Hmax 82.10 AT5G17150 NA

Bra008635 50 10 iD, r, d, Hmax 47.76 AT5G16210 NA

Bra008637 20 10 iD, r, d, Hmax 100.525 AT5G66450 LPPepsilon2
Bra008684 30 10 iD, r, Hmax 17.86 AT5G15630 COBL4;IRX6
Bra008711 50 10 r, Hmax 24.58 AT5G15250 ATFTSH6;FTSH6
Bra008734 30 10 r, Hmax 41.79 AT5G14860 NA

Bra008750 30 10 r, Hmax 15.37 AT5G14600 NA

Bra008840 20 10 r, Hmax 22.52 AT5G13280 AK;AK-LYS1;AK1
Bra008859 20 10 r, Hmax 41.59 AT5G13070 NA

Bra008931 50 10 Hmax 8.51 AT5G11880 NA

https://doi.org/10.1371/journal.pgen.1008367.t004
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generated through variation in developmental dynamics. However, similar heights can be

achieved through multiple different growth curves. Quantifying the underlying genetic archi-

tecture and mechanistic basis of growth dynamics may result in improved estimations of final

plant height, fitness, and yield. Here, we use Bayesian hierarchical modeling to estimate Func-

tion-Valued Trait (FVT) parameters describing continuous plant growth and explore their

correlations with phenology and fitness. We test whether mapped QTL, genes identified

through Mutual Rank (MR) co-expression, eigengenes identified through Weighted Gene Net-

work Co-expression Analyses (WGCNA), or combinations of these information types best

explain variation in agroecologically relevant FVT traits in the field. Further, we employ eQTL

analyses to explore the regulatory mechanisms that connect FVT QTL with phenotypic

variation.

Although development typically occurs in a continuous fashion, most studies quantifying

development necessarily collect data at discrete timepoints. We take a “parameters as data”

approach to FVT modeling to estimate the continuous nature of plant development [2,16].

Much as floral development or leaf development has well defined core molecular genetic path-

ways that govern organ formation, elaboration, or elongation [reviewed in 35], there is likely a

core genetic architecture that contributes to plant height. However, exogenous and endoge-

nous factors can influence the outputs of these developmental programs. For instance, crowd-

ing may trigger a shade avoidance response and lead to rapid increases in height [e.g. 36].

Similarly, plant carbon status can affect the developmental morphology and final size of organs

such as leaves [17,18,21]. We took two approaches to examining the core developmental genet-

ics of plant height. First, we grew plants across multiple growing seasons and in crowded and

uncrowded conditions. Second, we included a genotype-specific co-factor in our FVT models

that accounts for variation in photosynthetic rates (approximated through Amax), thereby sta-

tistically factoring out variation due to carbon availability and allowing us to more directly

interrogate the developmental genetic architecture and molecular mechanisms contributing to

plant height [21,22]. In our study, all FVT traits had relatively high broad sense heritabilities

(>70%), and all had significant main effects of genotype. Although there were no significant

main effects of treatment (i.e. treatment means did not differ), all FVT trait estimates (except

iD) exhibited genetic variation for assimilation-independent phenotypic plasticity via a geno-

type by environment (G�E) interaction, likely because of rank-order differences across treat-

ments at the genotypic level (Table 1).

Morphological phenotypes, such as components of yield and height, can be highly inte-

grated throughout development [reviewed in 37]. Final height is often used as a proxy for yield

or fitness, yet plant growth dynamics throughout ontogeny may also be correlated with aspects

of yield such as fruit and seed set [38,39]. In our experimental set of Brassica rapa Recombi-

nant Inbred Lines (RILs), plant developmental dynamics including duration of growth (d), the

inflection point in the growth curve that represents the change from exponentially accelerating

to decelerating growth (iD), and estimates of final plant height (Hmax) were all significantly

and positively genetically correlated (Fig 2). Interestingly, growth rates (r) were negatively cor-

related with d and iD, but were not correlated with Hmax, indicating that while there is a

Table 5. Eigengene eQTL and FVT QTL colocalization.

Trait (eigengene) Chromo-some FVT trait LOD range

Brown (9) 10 r, Hmax 6.05–7.22

Darkslateblue (13) 3 r, iD 47.82–47.82

Midnightblue (35) 10 r, Hmax, 8.82–9.67

Yellowgreen (22) 3 Hmax 48.42–48.55

https://doi.org/10.1371/journal.pgen.1008367.t005

Integrating developmental traits, expression networks, and eQTLs reveals genotype-phenotype connections

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008367 September 12, 2019 13 / 27

https://doi.org/10.1371/journal.pgen.1008367.t005
https://doi.org/10.1371/journal.pgen.1008367


trade-off between growth rates and durations, duration of growth may be more important for

final plant height than growth rate. All of our estimates of plant growth and final size were sig-

nificantly genetically correlated with phenology and yield traits, demonstrating that the devel-

opmental dynamics of growth can be related to crop yields and plant fitness through

mechanisms that are at least partially independent of final size. Because final size is positively

correlated with yields while growth rates are negatively correlated with yields, selection for

maximum yields at early harvest dates may come at the expense of late harvest yields and vice

versa.

To examine the genetic architecture underlying the FVT estimates of growth rates, dura-

tions, and final sizes, we mapped QTL for FVT parameters. Of particular note, when QTL for r

colocalized with d, the QTL were of opposite sign, confirming our negative genetic correla-

tions between growth rates and durations, and indicating potentially pleiotropic loci contrib-

uting to both traits. On average, FVT QTL explained 24% of trait variation and the number of

genes under each QTL ranged into the hundreds. To narrow down the list of candidate genes

and understand the mechanistic regulation of FVT via QTL, we took two additional transcrip-

tomic co-expression approaches to exploring regulation of FVT traits: First, we seeded a

Mutual Rank (MR) co-expression network with FVT traits and asked which gene expression

values correlated with variation in FVT traits. Second, we constructed 50 eigengenes based on

a Weighted Gene Co-expression Network Analysis (WGCNA) and asked which eigengenes

were correlated with individual FVT trait. We found that FVT QTL were significantly enriched

for MR genes, indicating that these two approaches were identifying some common drivers of

FVT traits. To compare the effectiveness of all three approaches, we asked whether QTL, MR

genes, or eigengenes best explained variance in FVT traits. Although QTL outperformed both

co-expression network modeling approaches for r, combining data from multiple approaches

yielded improvements in our models, indicating that even though QTL, MR genes, and eigen-

genes often physically co-localize within the genome, they are not interchangeable with one

another (Table 3).

To understand the potential function of genes related to growth WGCNA and MR net-

works, we examined gene annotations of homologous Arabidopsis thaliana genes. Although

about half of the eigengenes that correlated with FVT BLUPs had no gene ontology enrich-

ment, three eigengenes with eQTL on chromosome 9 were enriched for actin/cytoskeleton,

herbivore/wounding and cell division. The MR30 genes include a homolog of the homeodo-

main gene BEL1 [40]; BEL1 homologs have been implicated in regulation of the shoot apical

meristem [41] and thus could be related to plant growth. The BEL1 homolog had three mis-

sense mutations predicted to have moderate impact on genet function. An additional gene was

identified with homology to the COBRA family gene COBL4/IRX6 (negatively correlated with

iD), involved in secondary cell wall biosynthesis. The MR30 network also contains a number

of genes involved in metabolic homeostasis. Four of these genes are localized to the plastid and

negatively correlated with d and iD, including three orthologs of the plastidic lipid phosphate
phosphatase epsilon 2 gene (LPPε2), which is potentially involved in synthesis of diacylglycerol,

a precursor to essential photosynthetic membrane components [42]. Another plastid-localized

MR30 network gene is ENHANCER OF SOS3-1 (ENH1); ENH1 functions to mitigate the

effects of reactive oxygen species [43]. Thus, plants with longer growing periods appear to put

less resources into photosynthesis. The MR30 network also includes a homolog of the A. thali-
ana LATERAL ORGAN BOUNDARY DOMAIN37 (LBD37) gene, which is an important regu-

lator of nitrogen response in both A. thaliana and Oryza sativa [44,45]. LDB37 is negatively

correlated with Hmax and had two moderate missense mutations. Two genes involved in

amino acid synthesis or homeostasis are present in the MR30 network and show positive cor-

relations with d and iD: first, a homolog of ASPARTATE KINASE1 (AK1), which is required
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for regulation of aspartate, lysine, and methionine was recovered [46]. The B. rapa AK1 homo-

log had a single moderate mis-sense mutation. Second, AROMATIC ALDEHYDE SYNTHASE
(AAS), which converts phenylalanine into phenylacetaldehyde [47] was also present. Overall

the MR30 network results point to a close connection between metabolic regulation and

growth.

Transcriptomic data allowed us to further explore the regulatory control of the FVT using

eQTL mapping of WGCNA eigengenes and MR genes. eQTL mapping treats gene expression

levels as quantitative traits. When combined with QTL studies of morphological phenotypes,

the ultimate goal of eQTL mapping is to identify the molecular genetic changes in gene expres-

sion that lead to structural phenotypic variation, thus providing mechanistic explanations for

the associations between genotype and phenotype [48]. In humans, such studies demonstrate

that eQTL can be used in a cell-type specific fashion to annotate GWAS associations [49].

Based on the 56 MR50 genes in our study, we identified 41 significant eQTL, 40 of which colo-

calized with FVT QTL. Six of the 11 WGCNA eigengenes that correlated with FVT also had

eQTL, and four of these eQTL colocalized with FVT QTL. These data demonstrate that the

relationship between genomic loci (FVT QTL) and phenotypic variation in FVT traits is likely

mediated by gene expression, specifically the expression of the genes and eigengenes we identi-

fied via MR and WGCNA.

Our eQTL results qualitatively departed from common morphological trait QTL analyses

in two ways. First, MR-identified gene expression traits mapped to all chromosomes except

chromosome 2, but two locations had multiple eQTL with very high LOD scores (>75): the

top of chromosome 3 and the middle of chromosome 10. Virtually all genes had eQTL that

mapped to one of these two locations, a common result potentially indicating an eQTL ‘hot-

spot’ [50]. A previous study of the effects of soil phosphorous using the same B. rapa RILs also

identified eQTL hotspots [30], but on different chromosomes. The colocalization of eQTL hot-

spots and FVT QTL may indicate novel regions involved in pleiotropic co-regulation of several

downstream genes in the regulatory network contributing to change in plant height [29].

Although the presence of eQTL hotspots indicates pleiotropic gene regulation, our eQTL

analyses also qualitatively departed from the FVT QTL analysis in that most of the gene expres-

sion traits we mapped were not polygenic. Of the 56 MR gene expression traits mapped, only 1

had multiple eQTL that colocalized with FVT QTL. eQTL studies commonly find a relative

paucity of polygenic regulation compared to structural QTL studies, and our results support

the general consensus that expression traits and structural phenotypes have distinctly different

genetic architectures [but see 32 for a counter-example]. However, most eQTL are of relatively

large effect, meaning that many small effect eQTL could remain undetected and contribute to

polygenic regulation of gene expression traits [29], and these eQTL may or may not occur in

regulatory hotspots.

To further understand the regulation of expression traits and FVT QTL, we divided MR

eQTL into two classes: putative cis- and trans-eQTL where cis-eQTL likely correspond to cis-
regulatory elements influencing gene expression [51]. In contrast, trans-eQTL do not contain

the gene whose expression pattern is mapped and likely correspond to trans-acting factors

such as transcription factors that influence the MR gene expression [52]. In our study, 53% of

all eQTL identified were cis-eQTL. Of the 40 MR genes with eQTL that colocalized with FVT

QTL, 18 were cis (45%) and the remaining 22 were in trans, which is a much higher than the

proportion of cis-eQTL than identified in an intraspecific maize cross [53]. Because our B.

rapa RILs are also generated from an intraspecific cross, theoretical and experimental work

suggesting that trans gene regulation should be more prevalent than cis regulation at the intra-

specific level [54,55, but see 56 for an exception]. Our targeted eQTL mapping conducted in

an agroecologically relevant field setting deviates from these expectations, indicating that our
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network construction may act as an strong filter for biologically relevant candidate genes with

cis-eQTL.

Our study demonstrates the importance of examining not just final plant height, but the

developmental dynamics that contribute to height growth curves in agroecologically relevant

field settings. We fit function-valued trait models to our data and, while statistically factoring

out aspects of physiology such as carbon assimilation rates, demonstrate that parameters

describing continuous developmental growth curves are correlated with plant fitness and yield.

There is genetic variation for plasticity of growth rates and final sizes, but not the inflection

point (transition from accelerating to decelerating growth) of growth curves. Changes in the

sign of bivariate correlations indicate a trade-off between yields at given final size vs. yields at

early developmental times. We map FVT QTL to multiple chromosomes and utilize a guided

eQTL mapping approach to investigate the regulatory mechanisms connecting genotype to

FVT phenotype. Specifically, we use WGCNA to identify eigengenes for actin/cytoskeleton and

cell division processes whose expression values that correlate with FVT traits. FVT trait seeded

MR co-expression networks had an overall association with metabolic regulation and growth

processes. We demonstrate that combining multiple approaches yields the best explanation of

phenotypic variance. We identify more cis-eQTL than expected, and these eQTL are highly

colocalized at regulatory hotspots, likely including transcription factors that influence down-

stream gene regulation. Because our cis- and trans-eQTL hotspots colocalize with FVT QTL,

these expression traits are likely components of the molecular regulatory mechanisms mediat-

ing the generation of FVT phenotypic variation from genomic variation (Fig 7).

Materials and methods

Species description

Brassica rapa (Brasssicaceae) is an herbaceous crop species first domesticated in Eurasia. This

study was conducted on Recombinant Inbred Lines (RILs) derived from crossing R500, a yel-

low sarson oil seed variety, with IMB211, which is a rapid cycling line derived from the Wis-

consin Fast Plant line (WFP). All RILs are expected to be>99% homozygous [57–60]. In

comparison with IMB211, R500 flowers later, attains a larger size and greater biomass, and

allocates more resources to seed production. This experiment includes 120 RILs as well as

R500 and representative IMB211 genotypes.

Experimental design and data collection

In 2011, and 2012, the IMB211 × R500 RILs were germinated in the University of Wyoming

greenhouse in fertilized field soil, and transplanted into the field at two planting densities, as

previously described [1]. Briefly, crowded (CR) plants consisted of 5 plants of the same geno-

type per 4” peat pot with the central plant designated as a focal individual. The uncrowded

(UN) treatment consisted of a single plant per pot. When the cotyledons were expanded, plants

were transplanted to the field into randomly located blocks that consisted of either UN or CR

plants. Each block contained a full RIL set (and representatives of the RIL parental genotypes),

and RIL locations were randomized within blocks with 25cm between each focal plant. For

phenotypic data collection 6 UN blocks were transplanted into the field in 2011 and in 2012 8

CR and 8 UN blocks were transplanted. In 2011, an additional 5 UN blocks were transplanted

into the field for RNAseq. Plants were watered daily to field capacity and treated with pesti-

cides as needed following Baker et al. [1]. Each year, we collected data on the timing of germi-

nation, bolting, and flowering by surveying plants 5–7×/week. We recorded temperature data

every 5s in the greenhouse and field using a series of Onset Hobo data loggers (Bourne, MA,

USA) and a Campbell Scientific (Logan, UT, USA) CR23X data logger equipped with a Vaisala
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(Helsinki, Finland) HMP-50 sensor. Temperature data were used to produce hourly and daily

means, as well as hourly and daily minimums and maximums, for Degree Day (DD) calcula-

tions, which used a B. rapa-specific base value of 0.96˚C [61].

Fig 7. Integrating data from multiple biological levels and analyses reveals the mechanistic regulatory connections between genomic architecture and

Brassica rapa developmental phenotypes. Function-Valued Trait QTL (2012 uncrowded data, Fig 3), Weighted Gene Co-expression Network Analysis

(WGCNA) identified eigengene eQTL (S4 Table), and genes identified via Mutual Rank (MR 30) co-expression (S3 Table) occur at regulatory hotspots on

chromosomes 10 and 3, indicating that these MR genes are candidate master regulators that integrate information to generate developmental trait variation. MR

gene cis-eQTL (pink links) on chr10 and 3 lend further credence to this relationship. MR genes with trans-eQTL (green links) that map to these hotspots are

putative upstream genes feeding in to the FVT regulatory network (Fig 6). From exterior to center: chromosomes in black, linkage map in grey, FVT QTL in red,

eigengene eQTL in blue, MR genes in cyan, MR trans-eQTL in light green and MR cis-eQTL in pink.

https://doi.org/10.1371/journal.pgen.1008367.g007
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Morphological data

Plant height was recorded for all plants starting at leaf emergence. In 2011, height was mea-

sured 6 times during the growing season, and these measurements captured final heights. In

2012, height was measured 2–3 times per week until senescence. Perhaps because of the

increased frequency of data collection for 2012 FVT trait estimates, our RNAseq data corre-

sponds more closely to 2012 plant-level phenotypic data compared to 2011, and we focus our

analyses on 2012 plant-level phenotypic data. We present 2012 results for all FVT data; full

results of FVT traits and FVT QTL including 2011 data can be found in supplemental materi-

als. Flowering phenology and performance were estimated based on 2012 fruit and seed num-

bers, as described in Baker et al. [1].

Function-Valued Trait (FVT) modeling and data analysis

Height data were visually inspected for erroneous data points on a replicate level following

Baker et al [1]. FVT modeling for trait estimation used Bayesian approaches that fit logistic

growth curves to longitudinal height data [Eq 1; adapted from 21]. Height for each individual

replicate plant is represented by a minimum of 5 and maximum of 13 sequential measure-

ments. Briefly, we utilized a three-level hierarchical Bayesian model that retains the measure-

ment data structure to account for information across all plants and genetic lines within the

population, including replicate plants within each line.

d
dt

H ¼ rH
HHmax � H

HHmax

� �

1

Replicate-level parameters were extracted from the fitted logistic growth curves and treated

as trait data [13,14,21,62,63]. These parameters include the growth rate (r, cm/DD), and an

estimate of the maximum height based on the asymptote of the logistic growth curve (Hmax,

in cm). Additional parameters were algebraically extracted from the growth curve and include

the duration of growth (d, in DD) and the inflection point of the growth curve in Degree Days

(iD, in DD). The parameter d was defined as the time in DD when 95% of the final size

(Hmax) was achieved. The parameter iD reflects the transition from exponentially accelerating

to decelerating growth rates.

The hierarchical Bayesian model was implemented using PyMC, a Bayesian Statistical

Modeling Python module. The model parameters were estimated via MCMC using the

Metropolis-Hastings algorithm [64,65]. The MCMC estimations were performed using a sin-

gle chain to sample 500,000 iterations, which includes the first discarded 440,000 burn-in itera-

tions; the remaining 60,000 iterations were retained. By thinning to 1 iteration in 20, the

retained iterations were reduced to 3,000 samples for every FVT parameter from which the

posterior distributions were tabulated. All parameters’ trace and auto-correlation plots were

examined to ensure that the MCMC chain had adequate mixing and had reached convergence.

All observed data for each genotype were plotted with two 95% credible interval envelopes.

The inner, yellow envelope represents the credible intervals for the model based on the

observed data, and the green envelope (Fig 1., S1 Fig) is the 95% credible interval where future

observations from the same environment are expected [22,66].

Phenotypic plasticity

To detect environmental factors that might affect the correspondence between genotype and

phenotype, we analyzed replicate level phenotypic datasets from 2012. We tested for the main

effects of genotype and treatment and all possible interactions using the lme4 and pbkrtest

Integrating developmental traits, expression networks, and eQTLs reveals genotype-phenotype connections

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008367 September 12, 2019 18 / 27

https://doi.org/10.1371/journal.pgen.1008367


packages in the R statistical environment [67–69]. In these tests, all effects were considered

random and block was nested within the treatment effect. Significant main effects of environ-

ment (treatment) were considered evidence of phenotypic plasticity, and interactions of

treatment × genotype was considered evidence for genetic variation in phenotypic plasticity.

Best Linear Unbiased Predictions (BLUPs)

BLUPs were calculated independently for UN and CR treatments in R using the lmer function

in the lme4 package while controlling for block effects [69,70]. Broad sense heritability (H2)

was calculated as the genotypic variance divided by the sum of genotypic, block, and residual

variances.

Genetic correlations

We assessed the genetic correlations among height FVT and previously published phenol-

ogy and fitness traits [1] across both environments and years using Pearson’s correlations

of trait BLUPs. Bonferroni corrections for multiple testing were applied to all genetic

correlations.

QTL mapping

QTL analyses were performed in R/qtl [71] based on a map with 1451 SNPs having an average

distance of 0.7 cM between informative markers [58]. The scanone function was used to per-

form interval mapping (1cM resolution with estimated genotyping errors of 0.001 using Haley

Knott regression) to identify additive QTL [72]. All significance thresholds (0.95) were

obtained using 10,000 scanone permutations [71,72]. Significant QTL identified via scanone

were used to seed a search of QTL model space using an iterative process (fitqtl, refineqtl, and

addqtl functions using 1000 imputations at 1cM resolution with estimated genotyping errors

of 0.001) to identify additional QTL while taking into account the effects of QTL identified by

scanone and addqtl. After each iteration, non-significant QTL were dropped and significant

QTL were added to the model. QTL and their 1.5LOD confidence intervals are displayed using

MapChart2.0 [73]. Percent variance explained (PVE) is calculated as PVE = 100 × (1–10^(-2

LOD/ n)). We compared QTL peaks to the B. rapa genome [Version 1.5;, 74] to identify posi-

tional candidate genes underlying each QTL. A similar approach was used for mapping eigen-

gene QTL (see below). However, the R/qtl implementation of composite interval mapping [72]

was used.

RNAseq

We used the RNA sequencing data previously reported in Markelz et al [58]. Briefly, in 2011

five UN blocks of plants designated for destructive sampling were transplanted into the field

and allowed to establish for three weeks. Apical meristem tissue, consisting of the upper 1cm

of the bolting inflorescence, was collected from three individual replicate plants per RIL and

immediately flash frozen on liquid nitrogen as described in Markelz et al [58]. RNA library

preparation and sequencing were performed as previously described [58,75]. Reads were

mapped to the B. rapa CDS reference described in [76] using BWA [77], with an average of

6.52 Million mapped reads per replicate. Read counts were imported to R [67] and filtered to

retain genes where more than 2 counts per million were observed in at least 44 RILs. Libraries

were normalized using the trimmed mean of M-values (TMM) method [78] and a variance

stabilizing transformation was done using voom [79].
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Genetic network reconstruction

To reconstruct gene co-expression networks, the fitted gene expression values for each RIL

from the limma-voom fit (expression ~ RIL) were used and filtered to keep the top 10,000

genes most variable between RILs.

For each sample type, two network reconstruction methods were used. First, mutual corre-

lation rank (MR) networks [80] were constructed. Pairwise MRs were calculated between each

of the 10,000 genes and also between each gene and the BLUP parameter estimates from the

2011 and 2012 FVT models. A series of increasingly large growth-related networks were

defined using genes directly connected to the FVT parameters with MR thresholds of� 10, 20,

30, and 50. Multiple different phenotypes were used to jointly seed each network, therefore

networks may contain more nodes (and more genes) than the thresholds suggest. However,

because some gene expression levels are uniquely correlated with specific phenotypes while

others may be correlated with multiple phenotypes, the number of nodes is less than the prod-

uct of the threshold value and number of phenotypes used to seed the network. Permutation

analysis was used to test the network size expected by random chance at each threshold; 95 or

more of 100 permutation networks had zero edges connecting FVT BLUPs and gene expres-

sion, showing that our MR networks are recovering statistically significant connections. We

used the blastn algorithm [81] with the discontiguous megablast option and an E-value cutoff

of 0.001 to compare B. rapa genes to A.thaliana genes (TAIR10 annotation; ftp://ftp.

arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_cds_

20101214_updated).

Second, we constructed networks using a Weighted Gene Correlation Network Analysis

[WGCNA; 82,83]. For these networks a soft threshold power of 3 was used, corresponding to

the lowest power that had a correlation coefficient > 0.9 with a scale-free network topology.

We used the “signed hybrid” network, which only connects genes with positive correlation

coefficients. This network consisted of 50 modules with a median of 91 genes per module. The

eigengene expression value of each module was determined using WGCNA functions. The

Pearson correlation between each module’s eigengene expression value and each FVT BLUP

was calculated to identify modules potentially related to FVTs. Modules were considered sig-

nificantly associated with a FVT BLUP if the multiple-testing corrected p-value (method =

“holm” in R function p.adjust) for the correlation test was less than 0.05. Gene Ontology (GO)

category enrichment was performed on each significant module; we only examined the Biolog-

ical Process (BP) and Cellular Compartment (CC) categories. Categories were considered sig-

nificantly enriched if the false discovery rate adjusted p-value was < 0.05.

Single Nucleotide Polymorphism (SNP) identification in MR genes

To identify SNPs in Mutual Rank genes that could alter protein function, we compared the

RNA sequence data from the RIL population for all MR50 genes to find segregating SNPs pre-

dicted to alter the amino acid sequence of the gene product. To do this, we used samtools v1.

[84] to subset 434 BAM files from the individual RIL RNAseq replicates to retain reads over-

lapping the coding sequence of each MR gene. We then used GNU parallel [85] to FreeBayes

v1.1.0-46-g8d2b3a0 [86] to identify SNPs segregating in the population. Each SNP was anno-

tated with SnpEff v4.3t [87] and the resulting vcf file was imported into R [88] for filtering.

SNPs that had a minimum depth of 400 (~ 1 read per bam file), that were predicted to be segre-

gating in the population, and that were predicted to cause a change in the amino acid sequence

of the gene product were retained; the minimum quality score (QUAL) of the retained SNPs

was 330. Each resulting variant was manually evaluated in IGV [89] and strong candidates

were retained.
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Comparing approaches for genetic architecture

We compared the effectiveness of QTL, MR, and WGCNA approaches for predicting pheno-

typic variation in r and Hmax through a series of multivariate linear regression models (lm

function in R). We extracted the effect size and direction for each QTL using the effectplot

function in r/qtl [72]. In all cases, the trait BLUPs were the dependent variable, and all allele-

specific effect sizes, gene expression, and eigengene expression values were independent vari-

ables. For each trait we generated three types of additive models: 1) models with one type of

independent variable (genotypic information based on alleles harbored at each QTL including

allele-specific effect sizes and direction or genotype specific gene expression values for MR

genes or genotype specific eigengene expression values), 2) models with two types of indepen-

dent variables (QTL and MR gene expression, QTL and eigengene expression, or MR gene

expression and eigengene expression), and 3) full models with all three data types as indepen-

dent variables. For each trait we included only significant QTL, genes from the MR30 network,

and eigengenes that were significantly correlated with the trait of interest. Each model was sub-

jected to a backwards model reduction routine where non-significant terms were iteratively

removed until all terms in the model had significant effects on the dependent variable

(p<0.10). We used AIC scores to compare final models.

Relationships between co-expression and FVT QTL

We performed Fisher’s exact test to determine whether the FVT QTL regions were enriched

for genes and/or eigengenes identified via MR and WGCNA network analyses. Enrichment of

FVT QTL for MR-identified genes was interpreted as evidence that the MR-identified genes

are candidate causal genes for the FVT trait of interest.

eQTL analyses

To explore the regulatory mechanisms of MR-identified genes and WGCNA-identified eigen-

genes, as well as their potential connection to FVT QTL, we performed eQTL analyses. Our net-

work analyses effectively allowed us to reduce the number of expression traits mapped from 10,000

to less than 75. Therefore, we used Composite Interval Mapping [90], which is usually considered

too computationally intensive for eQTL studies. CIM typically has narrower confidence intervals

and should result in fewer spurious overlaps among potentially correlated expression traits. We

used permutation testing [91] to establish a genome and experiment wide significance threshold

for each gene or eigengene. For each of 1,000 permutations we recorded the highest LOD score

observed for eQTL regulating MR genes or eigengenes; the 95th percentile of these LOD scores was

then used as the p< 0.05% significance threshold for declaring an eQTL significant.

Overlap between eQTL and FVT QTL

The bayesint function in r/qtl was used to define 99% confidence intervals for each eQTL. For

some eQTL with very high LOD scores the resulting confidence interval was a single base pair

(clearly unrealistic given the limitations imposed by the number of recombination events in a map-

ping population). For such eQTL we used a window of +/- 2.5cM around the identified base pair as

the eQTL interval. The resulting intervals were then examined for overlap with FVT QTL intervals.

cis and trans-eQTL

We defined cis-eQTL as eQTL that include the physical gene generating the mRNA transcript

and trans-eQTL as any eQTL that does not include the physical location of the gene. For MR-

identified genes, cis-eQTL are interpreted as evidence of variation in cis regulatory elements
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such as promoters whereas trans-eQTL are interpreted as evidence for trans-acting regulatory

proteins such as transcription factors, other signaling proteins, or small RNAs that modulate

gene expression. Because eigengenes represent the composite expression of a median of 90

genes, one cannot assign cis- vs. trans-eQTL identity for these traits (although the majority of

their action is expected to be in trans). MR gene or eigengene eQTL that colocalize with FVT

QTL may explain the underlying basis for the FVT QTL, and such colocalizing eQTL represent

candidate causal genes for the FVT eQTL locus. An alternative explanation is that eQTL that

co-localize with FVT QTL are in linkage disequilibrium with the FVT QTL candidate gene.

eQTL that do not co-localize with FVT QTL may still be affecting plant development, but at a

level not directly detectable in the FVT QTL mapping.
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