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Abstract
Background: This	 study	 aimed	 to	 find	 ferroptosis-	related	 genes	 linked	 to	 clinical	
outcomes	of	adrenocortical	carcinoma	(ACC)	and	assess	the	prognostic	value	of	the	
model.
Methods: We	downloaded	the	mRNA	sequencing	data	and	patient	clinical	data	of	78	
ACC	patients	from	the	TCGA	data	portal.	Candidate	ferroptosis-	related	genes	were	
screened	by	univariate	regression	analysis,	machine-	learning	least	absolute	shrinkage,	
and	selection	operator	(LASSO).	A	ferroptosis-	related	gene-	based	prognostic	model	
was constructed. The effectiveness of the prediction model was accessed by KM and 
ROC analysis. External validation was done using the GSE19750	cohort.	A	nomogram	
was generated. The prognostic accuracy was measured and compared with conven-
tional	 staging	 systems	 (TNM	stage).	 Functional	 analysis	was	 conducted	 to	 identify	
biological	characterization	of	survival-	associated	ferroptosis-	related	genes.
Results: Seventy	 genes	 were	 identified	 as	 survival-	associated	 ferroptosis-	related	
genes.	The	prognostic	model	was	constructed	with	17	ferroptosis-	related	genes	in-
cluding STMN1, RRM2, HELLS, FANCD2, AURKA, GABARAPL2, SLC7A11, KRAS, ACSL4, 
MAPK3, HMGB1, CXCL2, ATG7, DDIT4, NOX1, PLIN4, and STEAP3.	A	RiskScore	was	cal-
culated	for	each	patient.	KM	curve	indicated	good	prognostic	performance.	The	AUC	
of	the	ROC	curve	for	predicting	1-	,	3-	,	and	5-		year(s)	survival	time	was	0.975,	0.913,	
and	0.915	respectively.	The	nomogram	prognostic	evaluation	model	showed	better	
predictive ability than conventional staging systems.
Conclusion: We	constructed	a	prognosis	model	of	ACC	based	on	ferroptosis-	related	
genes with better predictive value than the conventional staging system. These ef-
forts	provided	candidate	targets	for	revealing	the	molecular	basis	of	ACC,	as	well	as	
novel targets for drug development.
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1  |  INTRODUC TION

Programmed cell death has been shown to be a significant type 
of cell death. It acts as a natural barrier to prevent cells from 
developing into cancers.1,2 Dysregulation of programmed cell 
death signaling pathways is emerging as a key factor in tumor-
igenesis.3 The most thoroughly studied aspect of programmed 
cell death is apoptosis.4 Research has revealed new mechanisms 
of programmed cell death, one of which is ferroptosis. The con-
cept of ferroptosis was first proposed by Stockwell et al.5 in 2012, 
and	it	is	a	non-	apoptotic	programmed	cell	death	process.	Recent	
studies have focused on the role of ferroptosis in the progression, 
invasion, migration, and cell death of multiple types of cancers.6–	8 
For	most	anti-	cancer	drugs,	activation	of	programmed	cell	death	
pathways	to	kill	tumor	cells	is	a	vital	anti-	tumor	mechanism.	Due	
to	 the	 acquired	 and	 intrinsic	 resistance	 of	 tumor	 cells	 to	 apop-
tosis, the therapeutic efficacy of inducing apoptosis in tumor is 
limited.9	Therefore,	the	use	of	other	forms	of	non-	apoptotic	cell	
death	 to	clear	 tumor	cells	 and	control	 the	proliferation	of	drug-	
resistant cell clones provides a new therapeutic possibility. The 
potential of targeting ferroptosis in cancer treatment has gener-
ated high expectations.10– 12

Adrenocortical	carcinoma	(ACC)	is	an	isolated	malignant	tumor,	
which has attracted more and more attention since the end of the 
last century.13 It is a rare and highly aggressive malignant disease 
and	can	occur	at	any	age.	Localized	 tumors	can	be	cured	by	sur-
gery.14 Even if the tumor has been completely removed, however, 
recurrence is common. Unlike other tumors, treatment options 
after	ACC	recurrence	are	limited.14– 16 The prognosis remains poor. 
Most	 studies	 have	 shown	 that	 the	median	 survival	 time	 of	 ACC	
patients is about 12 months. It has been thought that changes in 
the Wnt / β-	Catenin	and	IGF-	2	signaling	pathways	lead	to	ACC,	but	
recent studies have shown that these changes are not sufficient to 
cause the occurrence of malignant adrenal tumors.17,18 Therefore, 
the	 mechanism	 of	 the	 development	 and	 occurrence	 of	 ACC	 re-
mains incompletely understood, and numerous genes and their 
functions remain to be discovered and explained.17,19	ACC	shares	
some genetic profiles that are associated with promising thera-
peutic responsiveness in other cancers.20 With the development 
of precision medicine, we have the opportunity to identify genes 
that are related to clinical outcomes and novel molecular targets 
for	 new	 drugs.	 A	 genomics-	guided	 clinical	 care	 approach	 offers	
the potential for prolonging life expectancy and also improving the 
quality	of	life	for	ACC	patients.

In this study, we aimed to find candidates ferroptosis genes, 
which	were	 related	 to	 clinical	 outcomes	 of	 ACC.	We	 constructed	
a	prognosis	model	of	ACC	based	on	 ferroptosis-	related	genes	and	
then	 clarified	 the	 prognostic	 value	 of	 ferroptosis	 genes	 in	 ACC.	
These efforts may contribute to the development of better treat-
ment strategies in the future.

2  |  METHODS

2.1  |  Data acquisition

We	downloaded	the	RNA-	sequencing	data	and	clinical	data	for	78	
ACC	 patients	 from	 the	 TCGA	 data	 portal	 (https://tcga-	data.nci.
nih.gov/tcga/dataA	ccess	Matrix.htm).	 Regulator	 genes	 and	 marker	
genes	 for	 ferroptosis	 (ferroptosis-	related	genes)	were	downloaded	
from	the	FerrDb	database,21 and articles were downloaded from the 
PubMed database.

2.2  |  Candidate gene screening and validation, 
prediction model establishment

Two	 steps	 were	 involved	 in	 the	 candidate	 gene	 screening.	 First,	
we	performed	univariate	regression	analysis	of	every	ferroptosis-	
related gene and overall survival. Genes with p-	values	< 0.05 were 
included in the next step. Univariate Cox regression was carried 
out	 using	 the	 “survival”	 R	 package.	 Then,	machine-	learning	 least	
absolute	 shrinkage	 and	 selection	 operator	 (LASSO)22 were used 
to	select	independent	risk	factors	that	affected	outcomes.	LASSO	
Cox regression was implemented using the “glmnet” R package. 
Correlation coefficients at lambda.min were chosen for the final 
model,	 and	 cross-	validation	 was	 used	 to	 tune	 and	 optimize	 the	
LASSO	penalty	terms.	K-	fold	cross-	validation	 (k	=	5)	was	used	to	
train and test the model.

After	candidate	genes	were	selected	at	lambda.min,	a	prognostic	
model was then constructed using the formula below. RiskScore was 
then calculated for each patient.

2.3  |  Assessing the effectiveness of 
prediction models

We	grouped	the	patients	into	high-		and	low-	risk	groups	based	on	the	
median riskScore. The KM curve for these data was used to compare 
the	prognosis	 between	high-	risk	 and	 low-	risk	 groups	 according	 to	
the	 riskScore.	 Receiver	 operating	 characteristic	 (ROC)	 curves	 and	
areas	 under	 the	 curve	 (AUCs)	were	 calculated	with	 the	 “survival-
ROC”23 and “survminer” R packages to demonstrate the predictive 
ability	of	riskScore	for	1-	,	3-	,	and	5-	year	OS.	A	flow	diagram	of	this	
trial is shown in Figure 1.

External validation was done using the GSE19750 cohort. Data 
were downloaded from the GEO database. The riskScore was calcu-
lated using the formula mentioned above. The clinical data were also 
downloaded. We determined the ROC curve and the Kaplan– Meier 
curve to test the predictive value of the prognostic model.

riskScore=
∑

candidate ferroptosis−related genes level

∗coresponding Coef level

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19750
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We generated nomogram by combining the riskScore value and 
clinic-	pathological	factors	to	predict	survival	probability	at	1,	3,	and	
5	years.	This	is	a	quantitative	and	intuitive	method	to	assess	the	as-
sociation between variables and survival. We then measured the 
prognostic	accuracy	by	calculating	the	Harrell's	concordance	index	
(C-	index).	The	larger	the	C-	index,	the	more	accurate	the	prognostic	
prediction proved to be.24 We compared the prediction model with 
conventional	staging	systems	using	the	C-	index.	We	assessed	cali-
bration by comparing observed and predicted survival probabilities 
using the KM method and applied bootstraps with 100 replicates 
Nomogram	was	undertaken	using	the	“rms”	R	package.

2.4  |  Functional analysis

We	used	Gene	Ontology	analysis	(GO)	to	identify	characteristic	bio-
logical	 attributes	of	 survival-	associated	 ferroptosis	genes	and	per-
formed	Kyoto	Encyclopedia	of	Genes	and	Genomes	pathway	(KEGG)	
enrichment analysis to identify functional attributes. GO and KEGG 
analysis was done using the following R packages: “DOSE” “org. 
Hs.eg.db”,25 “clusterProfiler”26 and “pathview”.27	For	visualization	of	
the data, the “ggplot2”28 package was used.

3  |  RESULTS

The	RNA-	sequencing	data	and	clinical	data	of	78	ACC	patients	were	
downloaded	from	TCGA	database.	Two	patients	were	excluded	from	

the analysis due to missing clinical information. Of those who were 
qualified	for	inclusion,	48	were	female	and	28	were	male.	The	aver-
age	overall	survival	time	was	3.39	±	2.69	years.	Two	hundred	fifty-	
nine	ferroptosis	genes	were	downloaded	from	the	FerrDb	database	
and	 Pubmed	 database	 (123	marker	 genes,	 109	 suppressor	 genes,	
and	150	driver	genes).

First,	 we	 performed	 univariate	 regression	 analysis	 of	 every	
ferroptosis-	related	 gene	 and	 overall	 survival.	 Seventy	 genes	were	
identified	 as	 survival-	associated	 ferroptosis-	related	 genes	 with	
p < 0.05. Figure 2A	shows	the	HR	level	of	each	survival-	associated	
ferroptosis-	related	genes.

Next,	 LASSO	 Cox	 regression	 was	 implemented	 for	 these	
70	 genes.	Correlation	 coefficients	 at	 lambda.min	were	 chosen	 for	
the final model (Figure 2B, C, optimal lambda.min =0.078).	 After	
fivefold	cross-	validation,	17	genes	were	included	in	the	final	model.	
The Coef level for each gene is shown in Table 1. RiskScore was also 
calculated for each patient (Table 2).

Figure 3 showed that patients with poorer prognosis had lower 
riskScores.	For	patients	who	died	during	the	follow-	up,	the	average	
riskScore	 was	 −25.51	 (SD	 =	 74.47),	 while	 patients	 who	 survived	
follow-	up	 had	 an	 average	 riskScore	 of	 80.84	 (SD	=	 101.83).	 It	 is	
clear that these groups were significantly different with regard to 
RiskScores (p =	1.21E-	07,	Figure 3).

The	median	riskScore	was	19.68	for	all	patients.	Patients	were	
grouped	 into	 high-		 and	 low-	risk	 groups	 based	on	 their	 riskScores.	
The	high-	risk	group	(riskScore	>19.68)	had	37	patients,	and	the	low-	
risk	 group	 (riskScore	 ≤19.68)	 had	 39.	 KM	 curve	 showed	 that	 the	
high-	risk	group	had	poorer	prognoses	(p < 0.0001, Figure 4A).	Then,	

F I G U R E  1 Flowchart	of	the	experiment
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we	 determined	 the	 time-	dependent	 ROC	 curve	 to	 find	 the	 prog-
nostic	performance	of	riskScore	for	survival	prediction.	The	AUC	of	
the	ROC	curve	for	predicting	1-	,	3-	,	and	5-	year(s)	survival	time	was	
0.975,	0.913,	and	0.915	respectively	(Figure 4B– D).

Data from the GSE19750 cohort were used to perform exter-
nal validation of the predictive value of the model. Consistent with 
the	results	in	the	TCGA	cohort,	patients	in	the	high-	risk	group	had	
significantly	 poorer	 survival	 probability	 than	 the	 low-	risk	 group	
(p = 0.011, Figure 5A).	The	AUCs	for	1-	year,	3-	year,	and	5-	year	OS	
were	0.765,	0.773,	and	0.805,	respectively	(Figure 5B– D).

We constructed the nomogram prognostic evaluation model to 
predict	the	1-	,	3-	,	or	5-	year	OS	time	in	patients	by	combining	riskS-
cores and pathological information (Figure 5A).	The	predictive	accu-
racy	of	1-	,	3-	,	or	5-	year	OS	is	shown	in	Figure 5B– D.	The	C-	index	of	
the	nomogram	was	0.92	(se(C)=0.02).	We	also	compared	the	predic-
tion	model	with	conventional	staging	systems.	The	C-	index	for	the	
TNM	staging	system	was	0.75	 (se(C)=0.05),	which	was	 lower	than	
that of our model. Thus, our prognostic prediction model had better 
predictive ability.

Figure 6 shows the GO (Figure 6A)	and	KEGG	(Figure 6B)	analy-
ses	of	survival-	associated	ferroptosis	genes.	KEGG	analysis	showed	
that the genes were mostly enriched in central carbon metabolism 
in	cancer,	cellular	senescence,	and	the	NOD-	like	receptor	signaling	
pathway.

4  |  DISCUSSION

Adrenocortical	 carcinoma	 is	 a	 highly	malignant	 cancer	with	 lim-
ited therapeutic options. Patients usually exhibit lymph node and 

TA B L E  1 Seventeen	genes	included	in	the	model	and	its	
corresponding Coef

Gene Coef

STMN1 0.006855766

RRM2 0.003733332

HELLS 0.017375996

FANCD2 0.00161208

AURKA 0.007796465

GABARAPL2 −0.0054616

SLC7A11 0.016787224

KRAS 0.014846229

ACSL4 −0.021912674

MAPK3 −0.008147927

HMGB1 0.013098853

CXCL2 0.006211908

ATG7 −0.005985336

DDIT4 0.00576449

NOX1 −0.007679209

PLIN4 0.000928894

STEAP3 0.002633784

F I G U R E  2 Parameter	selection.	(A)	Forest	map	of	the	univariate	regression	analysis.	The	horizontal	axis	represents	the	Hazard	ratio	(HR).	
The	horizontal	ordinate	represents	each	gene	with	a	p-	value	<	0.05	in	univariate	regression	analysis.	(B)	and	(C)	Tuning	parameter	selection	
using	LASSO	with	k-	fold	cross-	validation	(k	=	5)
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TA B L E  2 RiskScore	and	clinical	stage	for	each	patient

OS Event RiskScore Risk T N M Stage

TCGA.OR.A5J2 1677 1 26.65612951 High t3 n0 m1 Stage iv

TCGA.OR.A5J3 1942 0 −82.55082586 Low t3 n0 m0 Stage iii

TCGA.OR.A5J5 365 1 220.2545248 High t4 n0 m0 Stage iii

TCGA.OR.A5J6 2428 0 −60.07161748 Low t2 n0 m0 Stage ii

TCGA.OR.A5J7 490 1 127.9296784 High t3 n0 m0 Stage iii

TCGA.OR.A5J8 579 1 181.7346398 High t3 n0 m0 Stage iii

TCGA.OR.A5J9 1183 0 53.85394279 High t2 n0 m0 Stage ii

TCGA.OR.A5JA 922 1 20.83685542 High t4 n0 m1 Stage iv

TCGA.OR.A5JB 551 1 249.1943157 High t4 n0 m1 Stage iv

TCGA.OR.A5JD 2782 0 −87.26295608 Low t2 n0 m0 Stage ii

TCGA.OR.A5JE 2105 1 37.11735056 High t1 n0 m0 Stage i

TCGA.OR.A5JF 1259 0 0.159417811 Low t2 n0 m0 Stage ii

TCGA.OR.A5JG 541 1 50.49723047 High t4 n1 m1 Stage iv

TCGA.OR.A5JI 1424 0 −84.30563802 Low t1 n0 m0 Stage i

TCGA.OR.A5JJ 309 0 79.28220068 High t4 n1 m1 Stage iv

TCGA.OR.A5JK 1255 0 −13.39745347 Low t4 n0 m1 Stage iv

TCGA.OR.A5JL 670 0 −124.2939039 Low t1 n0 m0 Stage i

TCGA.OR.A5JM 562 1 46.32584829 High t4 n0 m1 Stage iv

TCGA.OR.A5JO 889 0 30.20226513 High t1 n0 m0 Stage i

TCGA.OR.A5JP 149 0 94.40884423 High t2 n0 m0 Stage ii

TCGA.OR.A5JQ 674 0 −77.31526038 Low t2 n0 m0 Stage ii

TCGA.OR.A5JR 3688 0 −130.3421379 Low t1 n0 m0 Stage i

TCGA.OR.A5JS 383 0 29.70127434 High t2 n0 m0 Stage ii

TCGA.OR.A5JT 488 0 −61.35190065 Low t2 n0 m0 Stage ii

TCGA.OR.A5JV 1541 0 −95.23738127 Low t2 n0 m0 Stage ii

TCGA.OR.A5JW 1924 0 8.031815994 Low t2 n0 m0 Stage ii

TCGA.OR.A5JX 950 0 98.19251924 High t3 n0 m0 Stage iii

TCGA.OR.A5JY 552 1 63.85014088 High t4 n1 m1 Stage iv

TCGA.OR.A5JZ 211 0 −76.63893854 Low t2 n0 m0 Stage ii

TCGA.OR.A5K0 1029 0 30.6211023 High t2 n0 m0 Stage ii

TCGA.OR.A5K1 2723 0 −41.34566511 Low t2 n0 m0 Stage ii

TCGA.OR.A5K2 994 1 94.27576045 High t4 n0 m0 Stage iii

TCGA.OR.A5K3 2842 0 −69.84016404 Low t2 n0 m0 Stage ii

TCGA.OR.A5K4 528 0 −52.32932887 Low t4 n0 m0 Stage iii

TCGA.OR.A5K5 253 0 27.93880869 High t3 n0 m0 Stage iii

TCGA.OR.A5K6 1130 0 1.900433368 Low t2 n0 m0 Stage ii

TCGA.OR.A5K8 504 0 40.08479735 High t2 n0 m0 Stage ii

TCGA.OR.A5K9 344 1 100.4672018 High t2 n0 m0 Stage ii

TCGA.OR.A5KO 1414 0 20.61064176 Low t4 n0 m1 Stage iv

TCGA.OR.A5KT 2673 0 10.91838006 Low t1 n0 m0 Stage i

TCGA.OR.A5KU 4673 0 18.75358502 Low t2 n0 m0 Stage ii

TCGA.OR.A5KV 3659 0 41.91500616 High t2 n1 m0 Stage iii

TCGA.OR.A5KW 1525 0 −23.1429177 Low t2 n1 m0 Stage iii

TCGA.OR.A5KX 1091 0 115.6707949 High t2 n1 m0 Stage iii

TCGA.OR.A5KY 391 1 130.5067414 High t4 n1 m1 Stage iv

(Continues)
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distant metastases by the time of diagnosis. Surgery is the pri-
mary	treatment	strategy,	while	adjuvant	therapies	are	frequently	
needed. Mitotane is currently the only agent approved.16	For	ad-
vanced	ACC,	a	combination	of	mitotane	with	a	cytotoxic	regimen	
of	etoposide,	doxorubicin,	and	cisplatin	(EDP-	M)	is	recommended.	
However,	 a	 narrow	 therapeutic	 window	 and	 endocrine	 side	 ef-
fects restrict the clinical use of these drugs.29,30 Thus, there is an 
urgent need to identify drug targets and develop new therapeutic 
strategies	to	treat	ACC.

High-	throughput	 biotechnology	 such	 as	 genomics	 provides	 a	
good entry point for basic medicine to clinical medicine. Prognostic 
and	predictive	biomarkers	selected	from	high-	throughput	genomic	
data are of critical importance in cancer management.31	The	ques-
tion of how to mine valuable information efficiently from vast 

biological	 sequences	 is	 crucial	 to	 researchers.	 Meanwhile,	 tradi-
tional	 variable-	selecting	 methods	 such	 as	 multivariate	 regression	
analysis	 are	 insufficient	 when	 facing	 big	 data.	 LASSO,	 a	 regular-
ization	 method,	 is	 a	 promising	 solution.	 LASSO	 is	 particularly	 at-
tractive in prognostic studies due to its capabilities of regression 
coefficients shrinkage and automatic variable selection.32	 LASSO	
has been successfully applied in prognostic model studies.33,34 In 
this study, we focused on candidate ferroptosis genes related to 
prognosis	 of	 ACC	 for	 the	 first	 time.	We	 constructed	 a	 prognosis	
model	 based	 on	 17	 survival-	associated	 ferroptosis-	related	 genes	
using	 the	machine-	learning	method.	These	efforts	may	contribute	
to the development of better treatment strategies in the future. We 
found that the predictive value of our model is better than that of 
the conventional staging system. Our study provided a handful of 

OS Event RiskScore Risk T N M Stage

TCGA.OR.A5KZ 125 1 218.2568428 High t2 n0 m0 Stage ii

TCGA.OR.A5L3 3897 0 −10.86225829 Low t1 n0 m0 Stage i

TCGA.OR.A5L4 724 0 −262.5860277 Low t4 n0 m0 Stage iii

TCGA.OR.A5L5 840 0 −51.65798978 Low t1 n0 m0 Stage i

TCGA.OR.A5L6 628 0 33.8583362 High t2 n0 m0 Stage ii

TCGA.OR.A5L8 555 0 29.68040353 High t2 n0 m0 Stage ii

TCGA.OR.A5L9 645 0 −38.37036871 Low t2 n0 m0 Stage ii

TCGA.OR.A5LA 487 0 −75.732104 Low t2 n0 m0 Stage ii

TCGA.OR.A5LB 1204 1 80.98199258 High t4 n0 m1 Stage iv

TCGA.OR.A5LC 159 1 198.3267946 High t4 n0 m1 Stage iv

TCGA.OR.A5LD 1197 1 68.83890176 High t4 n0 m0 Stage iii

TCGA.OR.A5LE 662 1 64.07674666 High t2 n0 m0 Stage ii

TCGA.OR.A5LG 1589 0 27.02398016 High t3 n0 m0 Stage iii

TCGA.OR.A5LH 2385 1 −58.9701129 Low t2 n0 m0 Stage ii

TCGA.OR.A5LJ 1105 1 49.85160852 High t2 n1 m1 Stage iv

TCGA.OR.A5LK 2222 0 −44.29088098 Low t2 n0 m0 Stage ii

TCGA.OR.A5LL 1613 1 24.1344422 High t2 n0 m0 Stage ii

TCGA.OR.A5LM 1858 0 −14.74304601 Low t2 n0 m0 Stage ii

TCGA.OR.A5LN 1916 0 −93.96683194 Low t2 n0 m0 Stage ii

TCGA.OR.A5LO 1949 0 147.1147267 High t2 n0 m0 Stage ii

TCGA.OR.A5LP 1583 0 −175.3190167 Low t2 n0 m0 Stage ii

TCGA.OR.A5LR 639 0 −87.18232022 Low t2 n0 m0 Stage ii

TCGA.OR.A5LS 882 0 −8.787969716 Low t2 n0 m0 Stage ii

TCGA.OR.A5LT 365 0 −31.61654757 Low t3 n0 m0 Stage iii

TCGA.OU.A5PI 709 0 12.48413456 Low t2 n1 m1 Stage iv

TCGA.P6.A5OF 207 1 227.6880918 High t4 n0 m0 Stage iii

TCGA.P6.A5OG 383 1 119.2763823 High t4 n0 m1 Stage iv

TCGA.PA.A5YG 470 0 −99.68999465 Low t2 n0 m0 Stage ii

TCGA.PK.A5H8 3240 0 −72.91560771 Low t2 n0 m0 Stage ii

TCGA.PK.A5H9 307 0 −85.04336783 Low t2 n0 m0 Stage ii

TCGA.PK.A5HA 830 0 −72.43647323 Low t1 n0 m0 Stage i

Note: OS, overall survival in days. Events indicate survival status. 1 represents patient was dead. 0 represents patient was alive. The patients were 
classified	into	low-	risk	group	and	high-	risk	group	according	to	the	median	value	of	the	risk	scores.

TA B L E  2 (Continued)
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F I G U R E  3 RiskScores	of	patients	
with different survival statuses during 
follow-	up.	0	representing	death	and	1	
representing survival

Wilcoxon, p = 1e−07
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F I G U R E  4 (A)	KM	survival	analysis	of	high-		and	low-	risk	groups.	Yellow	curve	represents	high-	risk	patient	group;	blue	curve	represents	
low-	risk	patient	group.	(B–	D).	Time-	dependent	ROC	analysis	for	the	prognostic	model	to	predict	1-		and	3-	,	and	5-		year(s)	survival.	Area	
under	the	curve	(AUC)	values	are	shown
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F I G U R E  5 External	Validation.	(A).	Nomogram	predicting	survival	probability.	(B–	D).	Time-	dependent	ROC	analysis	for	the	prognostic	
model	to	predict	1-		and	3-	,	and	5-		year(s)	survival	using	the	GSE19750	cohort.	Area	under	the	curve	(AUC)	values	are	shown	in	the	figure
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represents	gene	count.	Y-	axis	represents	pathway	involved	in	the	analysis.	The	color	represents	–		log	10	(p-	value)
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candidate	targets	for	revealing	the	molecular	basis	of	ACC,	as	well	as	
novel targets for drug development.

Recent	studies	have	demonstrated	that	ACC	is	sensitive	to	fer-
roptosis, indicating that induction of ferroptosis could be a prom-
ising treatment approach. Therefore, we constructed a prognostic 
model	 including	 17	 survival-	associated	 ferroptosis-	related	 genes.	
Belavgeni's	study	showed	direct	inhibition	of	glutathione	peroxidase	
4,	a	key	 factor	 in	 the	 initiation	of	 ferroptosis,	 in	human	ACC	NCI-	
H295R	cells	leading	to	high	necrotic	populations.35	High	STMN1 ex-
pression	has	been	observed	in	aggressive	ACC	patients.36,37	Ikeya's	
recent study shows that overexpression of AURKA, a gene identified 
in our study, can cause atypical mitosis in adrenocortical carcinoma 
with the p53 somatic variant.38 The p53 protein, an important reg-
ulator	of	ferroptosis,	is	frequently	mutated	in	ACC.39 ACSL4, which 
has been reported to dictate ferroptosis sensitivity by shaping cel-
lular lipid composition,40 is demonstrated to be highly expressed in 
mouse adrenal glands.41

In our study, ferroptosis gene riskScores showed good predictive 
value.	Nomograms	have	been	well	developed	as	a	prognostic	assess-
ment tool and proven to be more accurate than conventional stag-
ing systems in several cancers.42– 44 We constructed a nomogram 
by	 combining	 ferroptosis	 gene	 riskScores	 and	 clinic-	pathological	
factors. Our model showed better predictive value than the con-
ventional	staging	system,	a	finding	supported	by	C-	index	(0.92)	and	
calibration curve. In terms of precision medicine, our model has po-
tential clinical applications.

There are some possible weaknesses in this study. We performed 
internal	validation	using	k-	fold	cross-	validation	and	bootstrap	resa-
mpling methods. External and multicenter prospective cohorts with 
large	sample	sizes	are	still	needed	to	validate	the	clinical	application	
of our model, and basic research needs to be done to clarify the un-
derlying mechanism.

In conclusion, our study identified candidate ferroptosis genes, 
which	were	 related	 to	 clinical	 outcomes	 of	 ACC.	We	 constructed	
a	prognosis	prediction	model	of	ACC	based	on	 ferroptosis-	related	
genes. Our model showed better predictive value than the conven-
tional staging system. These efforts provided a handful of underly-
ing	targets	for	revealing	the	molecular	basis	of	ACC,	as	well	as	for	
drug development.
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