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Abstract
Background: This study aimed to find ferroptosis-related genes linked to clinical 
outcomes of adrenocortical carcinoma (ACC) and assess the prognostic value of the 
model.
Methods: We downloaded the mRNA sequencing data and patient clinical data of 78 
ACC patients from the TCGA data portal. Candidate ferroptosis-related genes were 
screened by univariate regression analysis, machine-learning least absolute shrinkage, 
and selection operator (LASSO). A ferroptosis-related gene-based prognostic model 
was constructed. The effectiveness of the prediction model was accessed by KM and 
ROC analysis. External validation was done using the GSE19750 cohort. A nomogram 
was generated. The prognostic accuracy was measured and compared with conven-
tional staging systems (TNM stage). Functional analysis was conducted to identify 
biological characterization of survival-associated ferroptosis-related genes.
Results: Seventy genes were identified as survival-associated ferroptosis-related 
genes. The prognostic model was constructed with 17 ferroptosis-related genes in-
cluding STMN1, RRM2, HELLS, FANCD2, AURKA, GABARAPL2, SLC7A11, KRAS, ACSL4, 
MAPK3, HMGB1, CXCL2, ATG7, DDIT4, NOX1, PLIN4, and STEAP3. A RiskScore was cal-
culated for each patient. KM curve indicated good prognostic performance. The AUC 
of the ROC curve for predicting 1-, 3-, and 5- year(s) survival time was 0.975, 0.913, 
and 0.915 respectively. The nomogram prognostic evaluation model showed better 
predictive ability than conventional staging systems.
Conclusion: We constructed a prognosis model of ACC based on ferroptosis-related 
genes with better predictive value than the conventional staging system. These ef-
forts provided candidate targets for revealing the molecular basis of ACC, as well as 
novel targets for drug development.
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1  |  INTRODUC TION

Programmed cell death has been shown to be a significant type 
of cell death. It acts as a natural barrier to prevent cells from 
developing into cancers.1,2 Dysregulation of programmed cell 
death signaling pathways is emerging as a key factor in tumor-
igenesis.3  The most thoroughly studied aspect of programmed 
cell death is apoptosis.4 Research has revealed new mechanisms 
of programmed cell death, one of which is ferroptosis. The con-
cept of ferroptosis was first proposed by Stockwell et al.5 in 2012, 
and it is a non-apoptotic programmed cell death process. Recent 
studies have focused on the role of ferroptosis in the progression, 
invasion, migration, and cell death of multiple types of cancers.6–8 
For most anti-cancer drugs, activation of programmed cell death 
pathways to kill tumor cells is a vital anti-tumor mechanism. Due 
to the acquired and intrinsic resistance of tumor cells to apop-
tosis, the therapeutic efficacy of inducing apoptosis in tumor is 
limited.9 Therefore, the use of other forms of non-apoptotic cell 
death to clear tumor cells and control the proliferation of drug-
resistant cell clones provides a new therapeutic possibility. The 
potential of targeting ferroptosis in cancer treatment has gener-
ated high expectations.10–12

Adrenocortical carcinoma (ACC) is an isolated malignant tumor, 
which has attracted more and more attention since the end of the 
last century.13 It is a rare and highly aggressive malignant disease 
and can occur at any age. Localized tumors can be cured by sur-
gery.14 Even if the tumor has been completely removed, however, 
recurrence is common. Unlike other tumors, treatment options 
after ACC recurrence are limited.14–16 The prognosis remains poor. 
Most studies have shown that the median survival time of ACC 
patients is about 12 months. It has been thought that changes in 
the Wnt / β-Catenin and IGF-2 signaling pathways lead to ACC, but 
recent studies have shown that these changes are not sufficient to 
cause the occurrence of malignant adrenal tumors.17,18 Therefore, 
the mechanism of the development and occurrence of ACC re-
mains incompletely understood, and numerous genes and their 
functions remain to be discovered and explained.17,19 ACC shares 
some genetic profiles that are associated with promising thera-
peutic responsiveness in other cancers.20 With the development 
of precision medicine, we have the opportunity to identify genes 
that are related to clinical outcomes and novel molecular targets 
for new drugs. A genomics-guided clinical care approach offers 
the potential for prolonging life expectancy and also improving the 
quality of life for ACC patients.

In this study, we aimed to find candidates ferroptosis genes, 
which were related to clinical outcomes of ACC. We constructed 
a prognosis model of ACC based on ferroptosis-related genes and 
then clarified the prognostic value of ferroptosis genes in ACC. 
These efforts may contribute to the development of better treat-
ment strategies in the future.

2  |  METHODS

2.1  |  Data acquisition

We downloaded the RNA-sequencing data and clinical data for 78 
ACC patients from the TCGA data portal (https://tcga-data.nci.
nih.gov/tcga/dataA​ccess​Matrix.htm). Regulator genes and marker 
genes for ferroptosis (ferroptosis-related genes) were downloaded 
from the FerrDb database,21 and articles were downloaded from the 
PubMed database.

2.2  |  Candidate gene screening and validation, 
prediction model establishment

Two steps were involved in the candidate gene screening. First, 
we performed univariate regression analysis of every ferroptosis-
related gene and overall survival. Genes with p-values < 0.05 were 
included in the next step. Univariate Cox regression was carried 
out using the “survival” R package. Then, machine-learning least 
absolute shrinkage and selection operator (LASSO)22 were used 
to select independent risk factors that affected outcomes. LASSO 
Cox regression was implemented using the “glmnet” R package. 
Correlation coefficients at  lambda.min  were chosen for the final 
model, and cross-validation was used to tune and optimize the 
LASSO penalty terms. K-fold cross-validation (k = 5) was used to 
train and test the model.

After candidate genes were selected at lambda.min, a prognostic 
model was then constructed using the formula below. RiskScore was 
then calculated for each patient.

2.3  |  Assessing the effectiveness of 
prediction models

We grouped the patients into high- and low-risk groups based on the 
median riskScore. The KM curve for these data was used to compare 
the prognosis between high-risk and low-risk groups according to 
the riskScore. Receiver operating characteristic (ROC) curves and 
areas under the curve (AUCs) were calculated with the “survival-
ROC”23 and “survminer” R packages to demonstrate the predictive 
ability of riskScore for 1-, 3-, and 5-year OS. A flow diagram of this 
trial is shown in Figure 1.

External validation was done using the GSE19750 cohort. Data 
were downloaded from the GEO database. The riskScore was calcu-
lated using the formula mentioned above. The clinical data were also 
downloaded. We determined the ROC curve and the Kaplan–Meier 
curve to test the predictive value of the prognostic model.

riskScore=
∑

candidate ferroptosis−related genes level

∗coresponding Coef level

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19750
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We generated nomogram by combining the riskScore value and 
clinic-pathological factors to predict survival probability at 1, 3, and 
5 years. This is a quantitative and intuitive method to assess the as-
sociation between variables and survival. We then measured the 
prognostic accuracy by calculating the Harrell's concordance index 
(C-index). The larger the C-index, the more accurate the prognostic 
prediction proved to be.24 We compared the prediction model with 
conventional staging systems using the C-index. We assessed cali-
bration by comparing observed and predicted survival probabilities 
using the KM method and applied bootstraps with 100 replicates 
Nomogram was undertaken using the “rms” R package.

2.4  |  Functional analysis

We used Gene Ontology analysis (GO) to identify characteristic bio-
logical attributes of survival-associated ferroptosis genes and per-
formed Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) 
enrichment analysis to identify functional attributes. GO and KEGG 
analysis was done using the following R packages: “DOSE” “org. 
Hs.eg.db”,25 “clusterProfiler”26 and “pathview”.27 For visualization of 
the data, the “ggplot2”28 package was used.

3  |  RESULTS

The RNA-sequencing data and clinical data of 78 ACC patients were 
downloaded from TCGA database. Two patients were excluded from 

the analysis due to missing clinical information. Of those who were 
qualified for inclusion, 48 were female and 28 were male. The aver-
age overall survival time was 3.39 ± 2.69 years. Two hundred fifty-
nine ferroptosis genes were downloaded from the FerrDb database 
and Pubmed database (123 marker genes, 109  suppressor genes, 
and 150 driver genes).

First, we performed univariate regression analysis of every 
ferroptosis-related gene and overall survival. Seventy  genes were 
identified as survival-associated ferroptosis-related genes with 
p < 0.05. Figure 2A shows the HR level of each survival-associated 
ferroptosis-related genes.

Next, LASSO Cox regression was implemented for these 
70  genes. Correlation coefficients at  lambda.min were chosen for 
the final model (Figure  2B, C, optimal lambda.min =0.078). After 
fivefold cross-validation, 17 genes were included in the final model. 
The Coef level for each gene is shown in Table 1. RiskScore was also 
calculated for each patient (Table 2).

Figure 3 showed that patients with poorer prognosis had lower 
riskScores. For patients who died during the follow-up, the average 
riskScore was −25.51 (SD  =  74.47), while patients who survived 
follow-up had an average riskScore of 80.84 (SD =  101.83). It is 
clear that these groups were significantly different with regard to 
RiskScores (p = 1.21E-07, Figure 3).

The median riskScore was 19.68 for all patients. Patients were 
grouped into high-  and low-risk groups based on their riskScores. 
The high-risk group (riskScore >19.68) had 37 patients, and the low-
risk group (riskScore ≤19.68) had 39. KM curve showed that the 
high-risk group had poorer prognoses (p < 0.0001, Figure 4A). Then, 

F I G U R E  1 Flowchart of the experiment
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we determined the time-dependent ROC curve to find the prog-
nostic performance of riskScore for survival prediction. The AUC of 
the ROC curve for predicting 1-, 3-, and 5-year(s) survival time was 
0.975, 0.913, and 0.915 respectively (Figure 4B–D).

Data from the GSE19750 cohort were used to perform exter-
nal validation of the predictive value of the model. Consistent with 
the results in the TCGA cohort, patients in the high-risk group had 
significantly poorer survival probability than the low-risk group 
(p = 0.011, Figure 5A). The AUCs for 1-year, 3-year, and 5-year OS 
were 0.765, 0.773, and 0.805, respectively (Figure 5B–D).

We constructed the nomogram prognostic evaluation model to 
predict the 1-, 3-, or 5-year OS time in patients by combining riskS-
cores and pathological information (Figure 5A). The predictive accu-
racy of 1-, 3-, or 5-year OS is shown in Figure 5B–D. The C-index of 
the nomogram was 0.92 (se(C)=0.02). We also compared the predic-
tion model with conventional staging systems. The C-index for the 
TNM staging system was 0.75 (se(C)=0.05), which was lower than 
that of our model. Thus, our prognostic prediction model had better 
predictive ability.

Figure 6 shows the GO (Figure 6A) and KEGG (Figure 6B) analy-
ses of survival-associated ferroptosis genes. KEGG analysis showed 
that the genes were mostly enriched in central carbon metabolism 
in cancer, cellular senescence, and the NOD-like receptor signaling 
pathway.

4  |  DISCUSSION

Adrenocortical carcinoma is a highly malignant cancer with lim-
ited therapeutic options. Patients usually exhibit lymph node and 

TA B L E  1 Seventeen genes included in the model and its 
corresponding Coef

Gene Coef

STMN1 0.006855766

RRM2 0.003733332

HELLS 0.017375996

FANCD2 0.00161208

AURKA 0.007796465

GABARAPL2 −0.0054616

SLC7A11 0.016787224

KRAS 0.014846229

ACSL4 −0.021912674

MAPK3 −0.008147927

HMGB1 0.013098853

CXCL2 0.006211908

ATG7 −0.005985336

DDIT4 0.00576449

NOX1 −0.007679209

PLIN4 0.000928894

STEAP3 0.002633784

F I G U R E  2 Parameter selection. (A) Forest map of the univariate regression analysis. The horizontal axis represents the Hazard ratio (HR). 
The horizontal ordinate represents each gene with a p-value < 0.05 in univariate regression analysis. (B) and (C) Tuning parameter selection 
using LASSO with k-fold cross-validation (k = 5)

ACSF2ACSL4AIFM2ARNTLATF3ATG16L1ATG4DATG5ATG7AURKACAV1CBSCDKN2ACXCL2DDIT4FANCD2G6PDGABARAPL2GABPB1GPX4HELLSHERPUD1HMGB1HRASHSPB1IDH1IL33IL6ISCUJDP2KLHL24KRASLAMP2LPIN1MAPK14MAPK3MAPK9MIOXMTORMUC1NF2NNMTNOX1NOX4NQO1NRASPANX1PGDPLIN4PTGS2RPL8RRM2SLC1A5SLC2A1SLC2A3SLC2A6SLC2A8SLC7A11SLC7A5SQSTM1STEAP3STMN1TFRCTGFBR1TNFAIP3TP63TSC22D3ULK1YY1AP1ZFP36
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TA B L E  2 RiskScore and clinical stage for each patient

OS Event RiskScore Risk T N M Stage

TCGA.OR.A5J2 1677 1 26.65612951 High t3 n0 m1 Stage iv

TCGA.OR.A5J3 1942 0 −82.55082586 Low t3 n0 m0 Stage iii

TCGA.OR.A5J5 365 1 220.2545248 High t4 n0 m0 Stage iii

TCGA.OR.A5J6 2428 0 −60.07161748 Low t2 n0 m0 Stage ii

TCGA.OR.A5J7 490 1 127.9296784 High t3 n0 m0 Stage iii

TCGA.OR.A5J8 579 1 181.7346398 High t3 n0 m0 Stage iii

TCGA.OR.A5J9 1183 0 53.85394279 High t2 n0 m0 Stage ii

TCGA.OR.A5JA 922 1 20.83685542 High t4 n0 m1 Stage iv

TCGA.OR.A5JB 551 1 249.1943157 High t4 n0 m1 Stage iv

TCGA.OR.A5JD 2782 0 −87.26295608 Low t2 n0 m0 Stage ii

TCGA.OR.A5JE 2105 1 37.11735056 High t1 n0 m0 Stage i

TCGA.OR.A5JF 1259 0 0.159417811 Low t2 n0 m0 Stage ii

TCGA.OR.A5JG 541 1 50.49723047 High t4 n1 m1 Stage iv

TCGA.OR.A5JI 1424 0 −84.30563802 Low t1 n0 m0 Stage i

TCGA.OR.A5JJ 309 0 79.28220068 High t4 n1 m1 Stage iv

TCGA.OR.A5JK 1255 0 −13.39745347 Low t4 n0 m1 Stage iv

TCGA.OR.A5JL 670 0 −124.2939039 Low t1 n0 m0 Stage i

TCGA.OR.A5JM 562 1 46.32584829 High t4 n0 m1 Stage iv

TCGA.OR.A5JO 889 0 30.20226513 High t1 n0 m0 Stage i

TCGA.OR.A5JP 149 0 94.40884423 High t2 n0 m0 Stage ii

TCGA.OR.A5JQ 674 0 −77.31526038 Low t2 n0 m0 Stage ii

TCGA.OR.A5JR 3688 0 −130.3421379 Low t1 n0 m0 Stage i

TCGA.OR.A5JS 383 0 29.70127434 High t2 n0 m0 Stage ii

TCGA.OR.A5JT 488 0 −61.35190065 Low t2 n0 m0 Stage ii

TCGA.OR.A5JV 1541 0 −95.23738127 Low t2 n0 m0 Stage ii

TCGA.OR.A5JW 1924 0 8.031815994 Low t2 n0 m0 Stage ii

TCGA.OR.A5JX 950 0 98.19251924 High t3 n0 m0 Stage iii

TCGA.OR.A5JY 552 1 63.85014088 High t4 n1 m1 Stage iv

TCGA.OR.A5JZ 211 0 −76.63893854 Low t2 n0 m0 Stage ii

TCGA.OR.A5K0 1029 0 30.6211023 High t2 n0 m0 Stage ii

TCGA.OR.A5K1 2723 0 −41.34566511 Low t2 n0 m0 Stage ii

TCGA.OR.A5K2 994 1 94.27576045 High t4 n0 m0 Stage iii

TCGA.OR.A5K3 2842 0 −69.84016404 Low t2 n0 m0 Stage ii

TCGA.OR.A5K4 528 0 −52.32932887 Low t4 n0 m0 Stage iii

TCGA.OR.A5K5 253 0 27.93880869 High t3 n0 m0 Stage iii

TCGA.OR.A5K6 1130 0 1.900433368 Low t2 n0 m0 Stage ii

TCGA.OR.A5K8 504 0 40.08479735 High t2 n0 m0 Stage ii

TCGA.OR.A5K9 344 1 100.4672018 High t2 n0 m0 Stage ii

TCGA.OR.A5KO 1414 0 20.61064176 Low t4 n0 m1 Stage iv

TCGA.OR.A5KT 2673 0 10.91838006 Low t1 n0 m0 Stage i

TCGA.OR.A5KU 4673 0 18.75358502 Low t2 n0 m0 Stage ii

TCGA.OR.A5KV 3659 0 41.91500616 High t2 n1 m0 Stage iii

TCGA.OR.A5KW 1525 0 −23.1429177 Low t2 n1 m0 Stage iii

TCGA.OR.A5KX 1091 0 115.6707949 High t2 n1 m0 Stage iii

TCGA.OR.A5KY 391 1 130.5067414 High t4 n1 m1 Stage iv

(Continues)
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distant metastases by the time of diagnosis. Surgery is the pri-
mary treatment strategy, while adjuvant therapies are frequently 
needed. Mitotane is currently the only agent approved.16 For ad-
vanced ACC, a combination of mitotane with a cytotoxic regimen 
of etoposide, doxorubicin, and cisplatin (EDP-M) is recommended. 
However, a narrow therapeutic window and endocrine side ef-
fects restrict the clinical use of these drugs.29,30 Thus, there is an 
urgent need to identify drug targets and develop new therapeutic 
strategies to treat ACC.

High-throughput biotechnology such as genomics provides a 
good entry point for basic medicine to clinical medicine. Prognostic 
and predictive biomarkers selected from high-throughput genomic 
data are of critical importance in cancer management.31 The ques-
tion of how to mine valuable information efficiently from vast 

biological sequences is crucial to researchers. Meanwhile, tradi-
tional variable-selecting methods such as multivariate regression 
analysis are insufficient when facing big data. LASSO, a regular-
ization method, is a promising solution. LASSO is particularly at-
tractive in prognostic studies due to its capabilities of regression 
coefficients shrinkage and automatic variable selection.32 LASSO 
has been  successfully  applied in  prognostic  model  studies.33,34 In 
this study, we focused on candidate ferroptosis genes related to 
prognosis of ACC for the first time. We constructed a prognosis 
model based on 17  survival-associated ferroptosis-related genes 
using the machine-learning method. These efforts may contribute 
to the development of better treatment strategies in the future. We 
found that the predictive value of our model is better than that of 
the conventional staging system. Our study provided a handful of 

OS Event RiskScore Risk T N M Stage

TCGA.OR.A5KZ 125 1 218.2568428 High t2 n0 m0 Stage ii

TCGA.OR.A5L3 3897 0 −10.86225829 Low t1 n0 m0 Stage i

TCGA.OR.A5L4 724 0 −262.5860277 Low t4 n0 m0 Stage iii

TCGA.OR.A5L5 840 0 −51.65798978 Low t1 n0 m0 Stage i

TCGA.OR.A5L6 628 0 33.8583362 High t2 n0 m0 Stage ii

TCGA.OR.A5L8 555 0 29.68040353 High t2 n0 m0 Stage ii

TCGA.OR.A5L9 645 0 −38.37036871 Low t2 n0 m0 Stage ii

TCGA.OR.A5LA 487 0 −75.732104 Low t2 n0 m0 Stage ii

TCGA.OR.A5LB 1204 1 80.98199258 High t4 n0 m1 Stage iv

TCGA.OR.A5LC 159 1 198.3267946 High t4 n0 m1 Stage iv

TCGA.OR.A5LD 1197 1 68.83890176 High t4 n0 m0 Stage iii

TCGA.OR.A5LE 662 1 64.07674666 High t2 n0 m0 Stage ii

TCGA.OR.A5LG 1589 0 27.02398016 High t3 n0 m0 Stage iii

TCGA.OR.A5LH 2385 1 −58.9701129 Low t2 n0 m0 Stage ii

TCGA.OR.A5LJ 1105 1 49.85160852 High t2 n1 m1 Stage iv

TCGA.OR.A5LK 2222 0 −44.29088098 Low t2 n0 m0 Stage ii

TCGA.OR.A5LL 1613 1 24.1344422 High t2 n0 m0 Stage ii

TCGA.OR.A5LM 1858 0 −14.74304601 Low t2 n0 m0 Stage ii

TCGA.OR.A5LN 1916 0 −93.96683194 Low t2 n0 m0 Stage ii

TCGA.OR.A5LO 1949 0 147.1147267 High t2 n0 m0 Stage ii

TCGA.OR.A5LP 1583 0 −175.3190167 Low t2 n0 m0 Stage ii

TCGA.OR.A5LR 639 0 −87.18232022 Low t2 n0 m0 Stage ii

TCGA.OR.A5LS 882 0 −8.787969716 Low t2 n0 m0 Stage ii

TCGA.OR.A5LT 365 0 −31.61654757 Low t3 n0 m0 Stage iii

TCGA.OU.A5PI 709 0 12.48413456 Low t2 n1 m1 Stage iv

TCGA.P6.A5OF 207 1 227.6880918 High t4 n0 m0 Stage iii

TCGA.P6.A5OG 383 1 119.2763823 High t4 n0 m1 Stage iv

TCGA.PA.A5YG 470 0 −99.68999465 Low t2 n0 m0 Stage ii

TCGA.PK.A5H8 3240 0 −72.91560771 Low t2 n0 m0 Stage ii

TCGA.PK.A5H9 307 0 −85.04336783 Low t2 n0 m0 Stage ii

TCGA.PK.A5HA 830 0 −72.43647323 Low t1 n0 m0 Stage i

Note: OS, overall survival in days. Events indicate survival status. 1 represents patient was dead. 0 represents patient was alive. The patients were 
classified into low-risk group and high-risk group according to the median value of the risk scores.

TA B L E  2 (Continued)
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F I G U R E  3 RiskScores of patients 
with different survival statuses during 
follow-up. 0 representing death and 1 
representing survival

Wilcoxon, p = 1e−07
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F I G U R E  4 (A) KM survival analysis of high- and low-risk groups. Yellow curve represents high-risk patient group; blue curve represents 
low-risk patient group. (B–D). Time-dependent ROC analysis for the prognostic model to predict 1- and 3-, and 5- year(s) survival. Area 
under the curve (AUC) values are shown
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F I G U R E  5 External Validation. (A). Nomogram predicting survival probability. (B–D). Time-dependent ROC analysis for the prognostic 
model to predict 1- and 3-, and 5- year(s) survival using the GSE19750 cohort. Area under the curve (AUC) values are shown in the figure
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candidate targets for revealing the molecular basis of ACC, as well as 
novel targets for drug development.

Recent studies have demonstrated that ACC is sensitive to fer-
roptosis, indicating that induction of ferroptosis could be a prom-
ising treatment approach. Therefore, we constructed a prognostic 
model including 17  survival-associated ferroptosis-related genes. 
Belavgeni's study showed direct inhibition of glutathione peroxidase 
4, a key factor in the initiation of ferroptosis, in human ACC NCI-
H295R cells leading to high necrotic populations.35 High STMN1 ex-
pression has been observed in aggressive ACC patients.36,37 Ikeya's 
recent study shows that overexpression of AURKA, a gene identified 
in our study, can cause atypical mitosis in adrenocortical carcinoma 
with the p53 somatic variant.38 The p53 protein, an important reg-
ulator of ferroptosis, is frequently mutated in ACC.39 ACSL4, which 
has been reported to dictate ferroptosis sensitivity by shaping cel-
lular lipid composition,40 is demonstrated to be highly expressed in 
mouse adrenal glands.41

In our study, ferroptosis gene riskScores showed good predictive 
value. Nomograms have been well developed as a prognostic assess-
ment tool and proven to be more accurate than conventional stag-
ing systems in several cancers.42–44  We constructed a nomogram 
by combining ferroptosis gene riskScores and clinic-pathological 
factors. Our model showed better predictive value than the con-
ventional staging system, a finding supported by C-index (0.92) and 
calibration curve. In terms of precision medicine, our model has po-
tential clinical applications.

There are some possible weaknesses in this study. We performed 
internal validation using k-fold cross-validation and bootstrap resa-
mpling methods. External and multicenter prospective cohorts with 
large sample sizes are still needed to validate the clinical application 
of our model, and basic research needs to be done to clarify the un-
derlying mechanism.

In conclusion, our study identified candidate ferroptosis genes, 
which were related to clinical outcomes of ACC. We constructed 
a prognosis prediction model of ACC based on ferroptosis-related 
genes. Our model showed better predictive value than the conven-
tional staging system. These efforts provided a handful of underly-
ing targets for revealing the molecular basis of ACC, as well as for 
drug development.
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