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Abstract: Sepsis remains a common cause of death in intensive care units, accounting for approx-
imately 20% of total deaths worldwide. Its pathogenesis is partly attributable to dysregulated
inflammatory responses to bacterial endotoxins (such as lipopolysaccharide, LPS), which stimulate
innate immune cells to sequentially release early cytokines (such as tumor necrosis factor (TNF)
and interferons (IFNs)) and late mediators (such as high-mobility group box 1, HMGB1). Despite
difficulties in translating mechanistic insights into effective therapies, an improved understanding
of the complex mechanisms underlying the pathogenesis of sepsis is still urgently needed. Here,
we review recent progress in elucidating the intricate mechanisms underlying the regulation of
HMGB1 release and action, and propose a few potential therapeutic candidates for future clinical
investigations.

Keywords: sepsis; pyroptosis; innate immune cells; antibodies; herbal medicine; acute-phase
proteins; hemichannel; inflammasome

1. Introduction

Microbial infections and resultant sepsis syndromes are the most common causes
of death in intensive care units, accounting for approximately 20% of total deaths world-
wide [1]. The pathogenesis of sepsis remains poorly understood, but is partly attributable
to immune over-activation or immunosuppression propagated by dysregulated innate
immune responses to lethal infections [2,3]. Innate immune cells (such as macrophages,
monocytes and neutrophils) constitute a front line of defense against microbial infections by
eliminating invading pathogens via phagocytosis, and initiating inflammatory responses
via various mediators. Upon detection of microbial products such as bacterial endotoxins
(lipopolysaccharide, LPS), circulating neutrophils and monocytes immediately infiltrate
into infected tissues [4]. After engulfing and killing pathogens, neutrophils exhaust in-
tracellular enzymes and undergo apoptotic cell death. The cell debris of these apoptotic
neutrophils are then removed by tissue macrophages (e.g., Kupffer cells, dendritic cells,
and glia cells) [5] terminally differentiated from infiltrated monocytes.

Innate immune cells also carry various pattern recognition receptors (PRRs) to rec-
ognize distinct classes of molecules shared by a group of related microbes, which are
collectively termed “pathogen-associated molecular pattern molecules” (PAMPs). For
instance, Toll-like Receptor 2 (TLR2) [6], TLR4 [7] and TLR9 [8], respectively, serve as
PRRs for distinct PAMPs such as peptidoglycans, bacterial endotoxins, and microbial
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un-methylated CpG-DNAs. The engagement of various PRRs by different PAMPs similarly
activates innate immune cells to sequentially release early cytokines (such as tumor necrosis
factor (TNF) and interferons (IFNs)) and late-acting pro-inflammatory mediators [such as
high-mobility group box 1 (HMGB1) and sequestosome 1 (SQSTM1)] [9,10].

HMGB1 is constitutively expressed by most types of cells to maintain a large “pool”
of preformed protein in the nucleus, possibly due to the presence of two lysine-rich
nuclear localization sequences (NLS) [11]. It carries two internal repeats of positively
charged domains (“HMG boxes” known as “A box” and “B box”) in the N-terminus,
and a continuous stretch of negatively charged (aspartic and glutamic acid) residues in
the C-terminus. These HMG boxes enable HMGB1 to bind chromosomal DNA, and
fulfill its nuclear functions to maintain nucleosomal structure and stability, and regulate
gene expression [12,13]. Once released, extracellular HMGB1 can bind many endogenous
proteins, thereby modulating divergent innate immune responses to lethal infections [13].
To complement two relevant reviews in this Special Issue [14,15], here we summarize recent
progress in elucidating the intricate mechanisms underlying both endogenous regulation
and pharmacological modulation of LPS-induced HMGB1 release and action, and propose
a few potential therapeutic candidates for future clinical investigations.

2. Role of Cell-Surface PRRs in the Regulation of Early Pro-Inflammatory Cytokines

Innate immune cells employ cell-surface PRRs such as TLR4 [7] to recognize extracel-
lular bacterial endotoxins (e.g., LPS) in conjunction with a LPS-binding protein (LBP) [16]
and a cell-surface co-receptor CD14 [17,18]. Upon capturing LPS, LBP interacts with CD14
to deliver it to a cell-surface receptor, TLR4 [7], thereby triggering immediate production of
early cytokines (e.g., TNF and IFN-γ) and subsequent release of late-acting mediators (e.g.,
HMGB1 and SQSTM1) [9,10]. The critical role of CD14 in the regulation of LPS-induced
inflammation was evidenced by: (1) an enhanced sensitivity to lethal endotoxemia in
CD14-over-expressing mice [19]; (2) a reduced susceptibility to lethal endotoxemia in CD14-
deficient mice [20]; and (3) an abolishment of LPS-induced production of early cytokines
(e.g., TNF) in CD14-deficient innate immune cells [21,22]. However, we found that the
depletion of CD14 expression only partly attenuated the LPS-induced HMGB1 release [22],
suggesting a potential involvement of other CD14/TLR4-independet signaling pathways
in the regulation of HMGB1 release.

In a murine model of endotoxemia induced by intraperitoneal administration of
LPS, HMGB1 was first detected in the circulation eight hours after endotoxemia, and
subsequently increased to plateau levels from 16 to 32 hours [9]. This late appearance
of circulating HMGB1 paralleled with the onset of animal lethality from endotoxemia,
and distinguished itself from TNF and other early proinflammatory cytokines [23]. Lack-
ing a leader peptide sequence, HMGB1 could not be actively secreted through classical
endoplasmic reticulum-Golgi exocytotic pathways [9]. Instead, upon post-translational
acetylation or phosphorylation [24,25] of the nuclear localization sequence (NLS) [26,27],
nuclear HMGB1 is translocated to the cytosol and sequestered into cytoplasmic vesi-
cles [11,24,28,29]. These cytoplasmic HMGB1 vesicles could then be secreted into the
extracellular space through pyroptosis, a programmed cell death leading to rapid release
of cellular contents such as HMGB1 and SQSTM1 [10].

3. Role of Cytoplasmic PRRs (Caspase-11/4/5/1) in the Regulation of Pyroptosis and
HMGB1 Release

We and others demonstrated that ultra-pure LPS (free from any contaminating bacte-
rial proteins, lipids, or nucleic acids) completely failed to induce HMGB1 release, unless the
initial LPS priming was accompanied by a second stimulus (e.g., ATP) [30,31]. However,
crude LPS that might carry trace amounts of bacterial proteins, lipids and nucleic acids,
triggered a marked HMGB1 release [9]. It is possible that some contaminating bacterial
proteins and lipids might enhance endocytosis of LPS, and consequently facilitate its innate
recognition by cytoplasmic PRRs such as Casp-11/4/5. Indeed, when LPS was deliv-
ered to cytoplasmic Casp-11/4/5 either via CD14/TLR4 receptor-mediated endocytosis or
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bacteria-derived outer membrane vesicles (OMV) [32], it induced “non-canonical” inflam-
masome activation via oligomerization and proximity-induced activation of Casp-11/4/5
(Figure 1) [33]. The activated Casp-11/4/5 then catalyzes the cleavage of Gasdermin D
(GSDMD) to form cytoplasmic membrane pores that cause immediate ionic gradient loss,
osmotic burst and cell membrane rupture, a process aforementioned as “pyroptosis”. For
the optimal activation of non-canonical inflammasome, both type I IFN-α/β and type
II IFN-γ are needed to up-regulate Casp-11/4/5 [34,35] as well as guanylate-binding
proteins [36] responsible for disrupting pathogen-containing vacuoles and releasing LPS.
Coincidently, we and others demonstrated that LPS-inducible type I IFN-α/β [37,38] and
type II IFN-γ [28] effectively stimulated innate immune cells to release HMGB1 in a time-
and dose-dependent fashion.
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Figure 1. Role of Casp-1-mediated canonical and Casp-11/4/5-mediated non-canonical inflam-
masome activation in LPS- or SAA-induced pyroptosis and HMGB1 release. LPS or SAA may
prime innate immune cells to up-regulate the expression of Cx43/Panx1 hemichannels, sPLA2s
and interferon-induced double-stranded RNA-activated protein kinase (PKR), thereby eliciting the
release of ATP or LPC that may activate P2X7R- or other receptor-mediated Ca2+ signaling. It then
induces a feed-forwarding activation of PKR and inflammasome, cleavage of GSDMD, pyroptosis,
and subsequent release of late mediators (such as HMGB1 and SQSTM1) of lethal infections.

In contrast, the “canonical” inflammasome activation is characterized by the oligomer-
ization of intracellular “nucleotide-binding oligomerization domain (NOD)-like receptors”
(NLRs such as NLRP1, NLRP3, and NLRC4) and the “apoptosis-associated speck-like
protein containing a C-terminal caspase recruitment domain” (ASC) adaptor, as well as
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the recruitment and activation of pro-Casp-1 (Figure 1) [30]. Specifically, the pro-Casp-
1 forms a heteromeric protein complex with an ASC adaptor and a NLR receptor, and
the resultant protein complex, termed the “inflammasome”, is responsible for cleaving
pro-Casp-1 to generate Casp-1, which triggers canonical inflammasome activation and
pyroptosis via GSDMD cleavage [30]. Likewise, the optimal activation of canonical inflam-
masome also depends on a two-step process: (1) a priming signal elicited by extracellular
PAMPs (e.g., LPS) to up-regulate NLRP3 expression; and (2) a secondary signal elicited by
extracellular damage-associated molecular pattern (DAMPs, e.g., ATP) to induce NLRP3
oligomerization with ASC and pro-Casp-1 (Figure 1). Notably, the cleavage of pannexin-1
(Panx1) hemichannel by Casp-11/4/5 might be needed for releasing ATP and activating
the purinergic P2X7 receptor (P2X7R) and inflammasome signalings (Figure 1) [39,40].
Consistently, we found that crude LPS also markedly up-regulated Panx1 expression in
macrophages and monocytes, and consequently elevated their hemichannel activities to
release ATP [41], supporting a pathogenic role of Panx1 in LPS-induced HMGB1 release
and animal lethality [39] (Figure 1).

It is thus possible that following cytoplasmic translocation, HMGB1 could be secreted
extracellularly through Casp-1- or Casp-11/4/5-mediated inflammasome activation and
pyroptosis (Figure 1). Recent evidence suggested that inflammasome-dependent HMGB1
release could not occur immediately after the formation of GSDMD membrane pores, but
became prominent following the rupture of cytoplasmic membranes [42,43]. Consistently,
pharmacological inhibition (with a broad-spectrum Caspase inhibitor Z-VAD-FMK) or
genetic disruption of key inflammasome components (e.g., Casp-1 or Nlrp3) uniformly
blocked the LPS/ATP-induced HMGB1 secretion [30,44]. Likewise, genetic disruption
of interferon-induced double-stranded RNA-activated protein kinase (PKR) expression
or pharmacological inhibition of its phosphorylation similarly reduced the LPS-induced
inflammasome activation [31,45], pyroptosis [31,45], and HMGB1 release [31]. Thus, crude
LPS may prime macrophages by simultaneously up-regulating PKR expression and eliciting
Panx-1-mediated ATP release, thereby activating P2X7R [46] to induce a feed-forwarding
PKR/inflammasome activation, pyroptosis and HMGB1 secretion (Figure 1).

In addition, HMGB1 can also be passively released by somatic cells undergoing
cytoplasmic membrane destruction due to accidental mechanical events or regulated pro-
cesses governed by other caspases or kinases. For instance, circulating levels of HMGB1
were rapidly elevated in critical ill patients with non-penetrating trauma [47–49], thereby
contributing to trauma-induced dysregulated inflammation, immune paralysis or immuno-
suppression. Even following viral infections with influenza [50,51] or SARS-CoV-2 [52],
proinflammatory cytokines such as TNF and IFN-γ can also induce necroptosis [53–55]
or PANoptosis [52] via other caspases and kinases such as the Receptor-Interacting Ser-
ine/Threonine Kinase 3 (RIPK3) [50,51] and Casp-8 [55]. Thus, various cell death pathways
can potentially lead to the passive release of HMGB1 following traumatic injuries or micro-
bial infections. However, the possible roles of HMGB1 and various other cytokines in the
pathogenesis of lethal infections such as COVID-19 remain controversial, because there is
still a lack of clear association between many cytokine biomarkers and the severity of viral
infections [56,57].

4. Pathogenic Role of Extracellular HMGB1 in Dysregulated Inflammation,
Immunosuppression, and Immune Paralysis

Once released, extracellular HMGB1 can bind various PRRs and PAMPs to orchestrate
divergent inflammatory responses. For instance, HMGB1 can bind TLR4 [58–60], TLR9 [61],
receptor for advanced glycation end products (RAGE) [62], cluster of differentiation 24
(CD24)/Siglec-10 [63], Mac-1 [64], or single-transmembrane-domain proteins (e.g., synde-
cans) [65]. Due to its relatively higher affinity to TLR4 (KD = 22.0 nM) [66] and lower affinity
to RAGE (KD = 97.7-710 nM) [67,68], HMGB1 might first bind TLR4 when it was actively
secreted by innate immune cells at relatively lower amounts [69]. Consequently, it could
directly activate macrophages [70], neutrophils [71] and endothelial cells [72] to produce
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various cytokines and chemokines [58,72–76] partly through MyD88-IRAK4-dependent
signaling pathways (Figure 2A).
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bind different PRRs such as TLR4 (Panel A) and RAGE (Panel B) with different affinities, and consequently induce divergent
inflammatory responses such as immune cell migration, immune activation, or pyroptosis and resultant immunosuppression.

When HMGB1 was passively released by innate immune and somatic cells at relatively
higher levels, it might also bind various microbial PAMPs (e.g., CpG-DNA or LPS) and
RAGE [67,77] and consequently promoted RAGE-receptor-mediated endocytosis of these
microbial products (Figure 2B) [78]. Upon reaching acidic endosomal and lysosomal com-
partments near HMGB1′s isoelectric pH, HMGB1 became neutrally charged and set free its
cargos (LPS or CpG-DNA) [78], thereby facilitating their recognition by respective PRRs
such as TLR9 [61] or Casp-11 [78] to augment inflammatory responses (Figure 2B). Further-
more, the engagement of RAGE with HMGB1 might also induce chemotaxis [79] and the
migration of monocytes, dendritic cells [80,81] and neutrophils [64], thereby facilitating the
recruitment of innate immune cells to site of the infection to orchestrate inflammatory re-
sponses [79] (Figure 2B). Finally, the engagement of HMGB1 with RAGE [67,77] might also
induce TLR4 internalization and desensitization to subsequent stimulus (e.g., endotoxin),
and might even trigger macrophage pyroptosis [78,82] via a cascade of events including
cathepsin B release from ruptured lysosomes followed by pyroptosome formation and
Casp-1 activation (Figure 2B).

In neutrophils, HMGB1 can bind TLR4 to promote the formation of neutrophil extra-
cellular traps (NETs), thereby amplifying neutrophil-mediated inflammatory responses [83].
In contrast, the engagement of RAGE by HMGB1 can adversely impair neutrophil NADPH-
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dependent production of reactive oxidation species (ROS) and associated bacterial killing,
contributing to sepsis-induced immune paralysis and immuno-suppression [84,85]. Con-
sistently, the blockade of extracellular HMGB1 activities with neutralizing antibodies even
during a late stage of sepsis still restored neutrophil NADPH activity and anti-bacterial
capacities [85]. Thus, excessive HMGB1 release contributes to the pathogenesis of lethal
infections by posing divergent adverse effects such as immune tolerance [86,87], immune
paralysis [84,85,88] and immunosuppression [85,89] (Figure 2B).

5. Positive Regulators of LPS-Induced HMGB1 Release

In addition to LPS-inducible type I IFN-α/β [37,38] and type II IFN-γ [28], human
serum amyloid A (SAA) also effectively induced HMGB1 release by innate immune cells
in a TLR4/RAGE-dependent fashion [90] (Figure 3). Consistent with its capacity in stim-
ulating NLRP3 inflammasome activation [91,92], we observed that SAA also stimulated
PKR expression and phosphorylation [90]. Conversely, pharmacological inhibition of
PKR inhibited SAA-induced HMGB1 release [90], supporting an important role for PKR
phosphorylation, inflammasome activation and pyroptosis in the SAA-induced HMGB1
release (Figure 1). In addition, some LPS-inducible enzymes [such as the 14 kDa type II
secretory phospholipase A2 (sPLA2), inducible nitric oxide synthase (iNOS), and pyruvate
kinase M2 (PKM2)] were also implicated in the regulation of LPS-induced HMGB1 release
(Figure 3) [29,93–96]. In agreement with these findings, we found that human SAA ef-
fectively up-regulated the expression of sPLA2-IIE and sPLA2-V in murine macrophages
(Figures 1 and 3) [97], and concurrently induced HMGB1 release [90]. Conversely, the
suppression of sPLA2-IIE expression by high density lipoproteins (HDL) also attenuated
SAA-induced HMGB1 release, supporting a role of sPLA2 in the regulation of HMGB1
release [97]. It is not yet known whether sPLA2s facilitate HMGB1 release partly by catalyz-
ing the production of lyso-phosphatidylcholine (LPC) and leukotrienes that are capable of
activating NLRP3 inflammasome and pyroptosis (Figure 1) [98–100].

Finally, both crude LPS and human SAA effectively up-regulated the expression of
hemichannel molecules such as Panx1 [41] and Connexin 43 (Cx43) [101] in innate immune
cells (Figures 1 and 3). The possible role of Cx43 in the regulation of LPS-induced HMGB1
release was supported by our findings that several Cx43 mimetic peptides, the GAP26
and Peptide 5 (ENVCYD), simultaneously attenuated LPS-induced hemichannel activation
and HMGB1 release [101]. It was further supported by observation that genetic disruption
of macrophage-specific Cx43 expression conferred protection against lethal endotoxemia
and sepsis [102]. It is possible that Cx43 hemichannel provides a temporal mode of ATP
release [103,104], which then contributes to the LPS-stimulated PKR phosphorylation,
inflammasome activation, pyroptosis and HMGB1 secretion (Figures 1 and 3) [41,101].
Intriguingly, recent evidence has suggested that macrophages also form Cx43-containing
gap junction with non-immune cells such as cardiomyocytes [105], epithelial [106,107] and
endothelial cells [108]. It is possible that innate immune cells may communicate with non-
immune cells through Cx43-containing gap junction channels to regulate HMGB1 release
and to orchestrate inflammatory responses [109,110]. Interestingly, recent studies have
revealed an important role of lipid peroxidation [111] and cAMP immune-metabolism [112]
in the regulation of Casp-11-mediated “non-canonical” inflammasome activation and
pyroptosis (Figure 3). However, the possible role of these immunometabolism pathways
in the regulation of LPS-induced HMGB1 release remains an exciting subject of future
investigations.
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induced HMGB1 release or action, mammals have evolved multiple regulatory mechanisms that
include neuro-immune pathways, liver-derived acute-phase proteins (e.g., SAA, Fetuin-A (Fet),
Haptoglobin (Hp)), as well as other endogenous proteins (e.g., tetranectin (TN)) or polysaccharides
(heparin).

6. Negative Regulators of the LPS-Induced HMGB1 Release and Action

During evolution, mammals have evolved multiple negative regulatory mechanisms
to inhibit HMGB1 release and action. For instance, a local feedback mechanism could be
instilled by injured cells via the release of a ubiquitous biogenic molecule, spermine, which
inhibited the LPS- and HMGB1-induced release of multiple cytokines and chemokines (e.g.,
TNF, IL-6, MIP-2, and RANTES) from macrophages and monocytes [70,113–115]. Notably,
spermine exerted its anti-inflammatory effect in conjunction with a liver-derived negative
acute-phase protein, fetuin-A (Figure 3), which served as an opsonin for the cellular uptake
of cationic anti-inflammatory molecules such as spermine [116]. In an animal model of
lethal endotoxemia, circulating fetuin-A levels were decreased in an anti-parallel fashion
when circulating HMGB1 levels were elevated [9,117]. However, supplementation of endo-
toxemic animals with exogenous fetuin-A resulted in a significant reduction in circulating
HMGB1 levels [117]. It is plausible that fetuin-A negatively regulated LPS-induced HMGB1
release partly by facilitating the cellular uptake of cationic anti-inflammatory molecules
(spermine), and partly by stimulating macrophages-mediated ingestion and elimination of
apoptotic neutrophils [118,119]. This is relevant, because inefficient elimination of apoptotic
cells might adversely lead to excessive accumulation of late apoptotic and/or secondary
necrotic cells, which may cause passive leakage of HMGB1 and other DAMPs [120].
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In addition, recent evidence suggested that the central nervous system could also
attenuate peripheral innate immune response through efferent vagus nerve (Figure 3) [121],
which could release neurotransmitter such as acetylcholine to inactivate macrophages via
nicotinic cholinergic receptors [122]. Indeed, stimulation of the vagus nerve by physical
methods (e.g., electrical or mechanical) [123,124] or chemical agonists (such as nicotine and
GTS-21) [125,126] conferred protection against lethal endotoxemia partly by attenuating
systemic HMGB1 accumulation. Furthermore, mammals have also evolved other neuro-
immune pathways by which the PTEN-induced putative kinase 1 (PINK1) and parkin
RBR E3 ubiquitin protein ligase (PARK2) counter-regulate lethal systemic inflammation
through another neurotransmitter, dopamine (Figure 3) [127], which could turn off systemic
inflammation through suppressing NLRP3 inflammasome activation [128].

Finally, emerging evidence has supported a possible role of several endogenous pro-
teins such as thrombomodulin [129], haptoglobin [130], complement factor 1q (C1q) [131],
heat shock protein 70 (HSP70) [132,133], vasoactive intestinal peptide [134], urocortin [135],
and ghrelin [136] in the regulation of LPS-induced HMGB1 release or cytokine activities.
For instance, an endothelial anticoagulant cofactor, thrombomodulin, could bind HMGB1
to prevent its interaction with macrophage cell-surface receptors [137], thereby preventing
HMGB1-induced inflammatory responses [129,138]. Similarly, a liver-derived acute-phase
protein, haptoglobin (Hp, Figure 3), could capture HMGB1 to trigger CD163-dependent
endocytosis of HMGB1/Hp complexes, and induced the production of anti-inflammatory
enzymes (heme oxygenase-1) and cytokines (e.g., IL-10) [69,130]. In addition, a com-
ponent factor 1q (C1q) capable of binding antigen-antibody complexes to initiate the
classical complement pathway [15], also interacted with HMGB1 (KD = 200 nM) and
formed a tetramolecular complex with RAGE and LAIR-1, resulting in the production
of anti-inflammatory cytokines (e.g., IL-10) and pro-resolution lipid mediators [131,139].
Similarly, an anticoagulant polysaccharide, heparin, or other chemically modified (2-O, 3-O
desulfated) heparins, could all bind HMGB1 and prevented its interaction with LPS [140]
or RAGE receptor [67], thereby inhibiting Casp-11-mediated inflammasome activation and
pyroptosis, as well as HMGB1-mediated immunosuppression [141]. Thus, in sharp contrast
to exogenous PAMPs (e.g., CpG-DNA and LPS), many endogenous proteins and polysac-
charides could bind HMGB1 to tilt the balance towards anti-inflammatory responses via
distinct signaling pathways [130,131,137,139,140].

7. Pharmacological Modulation of LPS-Induced HMGB1 Release or Action

Our seminal discovery of HMGB1 as a late mediator of lethal endotoxemia has stimu-
lated extensive interest in search for HMGB1-targeting pharmacological inhibitors ranging
from small molecules to large biological agents.

7.1. Small-Molecule Inhibitors

Among many medicinal herbs that we screened for possible HMGB1-inhibiting
activities, we found that aqueous extracts of Danggui (Angelica sinensis) [142], Gancao
(Radix glycyrrhizae) [143], Green tea (Camellia sinensis) [144], and Danshen (Saliva miltor-
rhiza) [145] conferred significant protection against lethal endotoxemia partly by inhibiting
LPS-induced HMGB1 release via dramatically distinct mechanisms. For instance, a major
component of Gancao, glycyrrhizin (GZA), could directly bind HMGB1 [146] to disrupt
its engagement with RAGE receptor [147], thereby conferring protection against lethal
endotoxemia by inhibiting HMGB1-mediated inflammation (Figure 4) [148]. A chemical
derivative of the GZA, carbenoxolone (CBX), however, dose-dependently inhibited the LPS-
induced HMGB1 secretion [143] partly by inhibiting the LPS-induced PKR expression and
phosphorylation (Figure 4). Given its capacity in inhibiting macrophage Cx43 and Panx1
hemichannel activities [149,150], CBX could also counter-regulate HMGB1 release through
inhibiting LPS-induced activation of Cx43 or Panx1 hemichannels in innate immune cells
(Figure 4) [143].
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A major green tea component, EGCG, prevented the LPS-induced HMGB1 release strate-
gically by destroying it in the cytoplasm via a cellular degradation process—autophagy
(Figure 4) [151]. Specifically, EGCG could be trafficked into cytosol to conjugate with
cytoplasmic HMGB1 either covalently with the free thiol group of cysteine residues [152] or
non-covalently via hydrogen bonding, aromatic stacking or hydrophobic interactions [153].
Consequently, EGCG induced the formation of EGCG–HMGB1 complexes that were even-
tually engulfed by double-membraned autophagosomes, and subsequently degraded by
acidic lysosomal hydrolases [151].

In contrast, a derivative of major ingredient of Danshen, tanshinone IIA sodium sulfonate
(TSN-SS, Figure 4), selectively inhibited LPS-induced HMGB1 release without affecting the
secretion of other cytokines and chemokines (such as IL-6, IL-12p40/p70, KC, MCP-1, MIP-1α,
MIP-2, and TNF) [145]. Unlike EGCG, TSN-SS itself was unable to stimulate autophagic
HMGB1 degradation, but instead facilitated the endocytosis of extracellular HMGB1 through
clathrin- and caveolin-dependent endocytosis (Figure 4) [154]. Because cytoplasmic HMGB1
could induce autophagy [155–157], the TSN-SS-mediated HMGB1 endocytosis may be par-
alleled with the occurrence of HMGB1-induced autophagy, and eventually converged on a
lysosome-dependent final common pathway that eventually leads to HMGB1 degradation
(Figure 4). That is, the HMGB1-containing endosomes might fuse with HMGB1-induced
autophagosomes to form amphisomes [158,159], and then merge with lysosomes to trig-
ger HMGB1 degradation via a lysosome-dependent pathway (Figure 4) [154]. Given its
demonstrated safety in China as a medicine for patients with cardiovascular disorders, and
its capacity to inhibit HMGB1 release after LPS stimulation, TSN-SS may be a promising
therapeutic agent for inhibiting HMGB1 release in clinical settings [27].

7.2. Development of Antibodies Targeting HMGB1 or Its in-Crime Binding Partners

Neutralizing antibodies against endotoxin [160] or early cytokines (e.g., TNF) [161,162]
were protective in an animal model of lethal endotoxemia, but unfortunately failed in
clinical trials [163–165]. This failure partly reflects the complexity of the underlying lethal
infections, and the associated heterogeneity of the patient populations [166]. In contrast to
the relatively unified age, body weight, and genetic background of experimental animals
in pre-clinical studies, patients recruited in clinical studies usually exhibit intrinsic (genetic
and epigenetic) heterogeneity, and harbor various underlying comorbidities that complicate
the pathogenesis and progression of clinical sepsis. Nevertheless, the investigation of
pathogenic cytokines (such as TNF) has led to the development of anti-TNF therapy for
patients with debilitating chronic inflammatory diseases, such as rheumatoid arthritis [167].
Accordingly, we have generated polyclonal and monoclonal antibodies against human
HMGB1 and tested their efficacy in animal models of lethal endotoxemia and sepsis induced
by a surgical procedure termed cecal ligation and puncture (CLP). In an animal model
of lethal endotoxemia, HMGB1-specific polyclonal antibodies were protective in a dose-
dependent fashion [9]. In an animal model of CLP-induced sepsis, HMGB1-neutralizing
monoclonal antibodies (mAbs) [44,168] conferred significant protection even when the
first dose was given 24 h after disease onset [23,169–171], establishing HMGB1 as a “late”
mediator of experimental sepsis with a relatively wider therapeutic window than that
offered by early proinflammatory cytokines.
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inhibit its engagement with various PRRs; (B) direct binding to induce its aggregation and autophagic degradation; (C)
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As aforementioned, many endogenous proteins (such as thrombomodulin, hap-
toglobin, and C1q) [129–131] could physically interact with HMGB1, promoting the search
for other HMGB1-binding proteins that might also affect its biological functions. During
this process, we noticed that the blood level of a 20 kDa protein was almost completely
depleted in patients who died of sepsis. This 20 kDa protein was identified as human
tetranectin (TN) by mass spectrometry and immunoblotting assays [172]. Intriguingly,
TN selectively inhibited the LPS- and SAA-induced HMGB1 release without affecting the
parallel release of other cytokines and chemokines [172], partly because TN could capture
extracellular HMGB1 and facilitated the endocytosis of TN/HMGB1 complexes, thereby
enhancing HMGB1-induced pyroptosis (Figure 5) [172].

As discussed earlier, pyroptosis not only allows excessive release of HMGB1 and
SQSTM1 that adversely drive a life-threatening dysregulated inflammatory response to
lethal infections, but also leads to immune cell depletion and possible immunosuppression
that may have compromised the host innate immunity against lethal infections (Figure 5).
Accordingly, we have developed a panel of TN-specific mAbs that effectively prevented
both harmful HMGB1/TN interaction and resultant macrophage pyroptosis and lethal
sepsis [172]. It suggested that TN domain-specific mAbs may confer protection against
lethal sepsis partly by preventing harmful TN/HMGB1 interaction that may adversely
trigger macrophage pyroptosis and immunosuppression (Figure 5) [173,174]. This antibody
strategy has also suggested a possibility to develop therapeutic antibodies against harmless
proteins colluding with sepsis mediators [173–175].
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Figure 5. Potential therapeutic effects of cross-reactive monoclonal antibodies against TN and
RBM of SARS-CoV-2. Some TN domain (NDALYEYLRQ)-specific mAbs may confer protection
against lethal infections partly by preventing harmful TN/HMGB1 interaction that may adversely
trigger macrophage pyroptosis and immunosuppression. Some TN-reactive mAbs also cross-reacted
with a tyrosine (Y)-rich segment (YNYLYR) in the RBM of SARS-CoV-2, and specifically inhibited
RBM-induced production of GM-CSF, a biomarker and mediator of COVID-19. The dual effects of
these cross-reactive mAbs in attenuating immuno-suppression and SARS-CoV-2-induced GM-CSF
production make them promising therapeutic candidates for treating COVID-19 and other lethal
infections.

Surprisingly, we recently discovered that two TN-reactive mAbs capable of rescu-
ing mice from lethal sepsis also cross-reacted with the human ACE2 receptor binding
motif (RBM) of SARS-CoV-2 (Figure 5), with an estimated KD of 17.4 and 62.8 nM, respec-
tively [176]. The estimated KD was comparable to that of other SARS-CoV-2 RBD-binding
neutralizing antibodies (KD = 14–17 nM) derived from COVID-19 patients [177]. Fur-
thermore, these TN/RBM-reactive mAbs competitively inhibited RBM-ACE2 interactions
in vitro [176], and selectively impaired the RBM-induced secretion of the granulocyte
macrophage colony-stimulating factor (GM-CSF) [176]. Our findings fully supported the
emerging notion that GM-CSF might be a key biomarker for SARS-CoV-2-induced cytokine
storm in a subset of COVID-19 patients with more severe pneumonia often escalating to res-
piratory failure and death [178–182] (Figure 5), although the possible roles of GM-CSF and
other cytokines in the pathogenesis COVID-19 remain a subject of ongoing debate [56,57].
Nevertheless, it is possible that these TN/RBM-reactive mAbs might selectively prevent
its interaction with a receptor involved in the GM-CSF induction, but did not interfere
with its engagement with other pattern recognition receptors responsible for the induction
of other cytokines or chemokines [183]. Because HMGB1 was similarly accumulated in
patients with COVID-19 [184], these TN/RBM-reactive mAbs might simultaneously block
harmful TN/HMGB1 interaction and resultant immunosuppression, and suppress possible
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SARS-CoV-2/ACE2 interaction to inhibit GM-CSF production in patients with COVID-19
and other lethal infections [71].

8. Future Perspectives

Microbial infections and sepsis remain a major clinical problem that accounts for
approximately 20% of total deaths worldwide [1], and annually costs more than $62
billion in the U.S. alone [185]. Despite a robust increase in the understanding of the
pathophysiology of sepsis, many antibody-based strategies targeting early cytokines (such
as TNF or IL-1) failed in clinical settings. Currently, there is still no effective therapy [173]
other than adjunctive use of antibiotics, fluid resuscitation, and supportive care [185]. Thus,
it would be beneficial to test the therapeutic efficacy of some promising HMGB1 inhibitors
in clinical settings. For instance, a selective HMGB1 inhibitor, TSN-SS, has already been
used in China as a medicine for patients with cardiovascular disorders. The dual effects of
TSN-SS in attenuating late inflammatory response and improving cardiovascular functions
make it a promising therapeutic candidate for treating lethal infections. Similarly, it
would also be exciting to test the therapeutic efficacy of TN-specific mAbs that effectively
prevented its undesired interaction with pathogenic mediators (HMGB1) and resultant
immunosuppression [172]. The discovery of mAbs capable of disrupting TN/HMGB1
interaction and endocytosis and rescuing animals from lethal sepsis has suggested an
exciting possibility to develop therapeutic antibodies against harmless proteins colluding
with disease mediators [175]. Given the cross-reactivity of several TN-reactive monoclonal
antibodies to the RBM of SARS-CoV-2, it will be extremely important to test the efficacy of
these TN/RBM-reactive monoclonal antibodies in clinical trials of COVID-19 and other
microbial infections.
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