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In a complex and uncertain world, how do we select appropriate behavior? One possibility
is that we choose actions that are highly reinforced by their probabilistic consequences
(model-free processing). However, we may instead plan actions prior to their actual
execution by predicting their consequences (model-based processing). It has been
suggested that the brain contains multiple yet distinct systems involved in reward
prediction. Several studies have tried to allocate model-free and model-based systems to
the striatum and the lateral prefrontal cortex (LPFC), respectively. Although there is much
support for this hypothesis, recent research has revealed discrepancies. To understand
the nature of the reward prediction systems in the LPFC and the striatum, a series of
single-unit recording experiments were conducted. LPFC neurons were found to infer
the reward associated with the stimuli even when the monkeys had not yet learned
the stimulus-reward (SR) associations directly. Striatal neurons seemed to predict the
reward for each stimulus only after directly experiencing the SR contingency. However,
the one exception was “Exclusive Or” situations in which striatal neurons could predict the
reward without direct experience. Previous single-unit studies in monkeys have reported
that neurons in the LPFC encode category information, and represent reward information
specific to a group of stimuli. Here, as an extension of these, we review recent evidence
that a group of LPFC neurons can predict reward specific to a category of visual stimuli
defined by relevant behavioral responses. We suggest that the functional difference in
reward prediction between the LPFC and the striatum is that while LPFC neurons can
utilize abstract code, striatal neurons can code individual associations between stimuli
and reward but cannot utilize abstract code.

Keywords: lateral prefrontal cortex, striatum, reward inference, model-free learning, model-based learning

Introduction

Reward prediction is paramount for learning behavior (Sutton and Barto, 1998; Schultz, 2006) and
for decision-making processes in the brain (Rangel et al., 2008). Much research has shown that
many brain areas are involved in reward prediction (Yamada et al., 2004; Knutson and Cooper,
2005; Padoa-Schioppa and Assad, 2006; Paton et al., 2006; Behrens et al., 2007, 2008; Hare et al.,
2008; Hayden et al., 2008; Hikosaka et al., 2008; Haber and Knutson, 2010; Rushworth et al., 2011;
Levy and Glimcher, 2012; Garrison et al., 2013). The basal ganglia and multiple sub-areas in the
prefrontal cortex especially play important but different roles in the reward prediction process
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FIGURE 1 | A strategy to examine model-free and model-based
learning processes. (A) The two-stage Markov decision task described in
Daw et al. (2011). The choice of the first stage led predominantly (70%) to one
of the two pairs of options and rarely (30%) to the other pair. The probability of
payoff associated with the four second-stage options was changed
independently according to a Gaussian random walk protocol. (B) A
model-free (simple reinforcement learning) strategy predicts higher stay
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probability in the first stage choice on the next trial after a rewarded present
trial than after an unrewarded present trial, regardless of whether the present
first stage choice led to a common or rare transition. On the other hand, a
model-based strategy predicts higher stay probability in the first stage choice
on the next choice after a rewarded present trial than after an unrewarded
present trial in a common transition case, and after an unrewarded present
trial in a rare transition case.

(Watanabe, 1996; Hollerman et al., 1998; O’Doherty et al., 2003;
Roesch and Olson, 2003; Samejima et al., 2005; Hare et al,
2008; Hikosaka and Isoda, 2010; Diekhof et al., 2012). Several
fMRI studies have demonstrated the importance of both the
lateral prefrontal cortex (LPFC) and the striatum in the basal
ganglia for reward prediction and have compared the functional
difference in reward prediction between them (McClure et al.,
2004; Tanaka et al., 2006; Kahnt et al., 2011). Some studies in
monkeys have also directly examined neuronal activities in the
LPFC and striatum, providing results that suggest that both areas
are involved in the learning of stimulus-reward (SR) associations
and that both represent positive and negative reward prediction
(Pasupathy and Miller, 2005; Kobayashi et al., 2007; Histed et al.,
2009; Asaad and Eskandard, 2011; Pan et al., 2014). Because of the
neuroanatomical and pharmacological differences between the
cerebral cortex and basal ganglia, the likely functional differences
between the LPFC and the striatum can be predicted. For example,
numerous discussions have been performed about the functional
differences between the prefrontal cortex and the striatum for
the learning of behavior in the frameworks of goal-directed/habit
learning (Balleine and Dickinson, 1998; Killcross and Coutureau,
2003; O’Doherty et al., 2004; Tricomi et al., 2009; Balleine and
O’Dobherty, 2010; McNamee et al., 2015).

Recently, from the viewpoint of computational theory, vigorous
discussion has emerged about the functional differences in the
learning of behavior between the LPFC and the striatum. In
particular, the hypothesis of Daw et al. (2005) which relates the
difference between “model-based vs. model-free” processes to the
difference in functions of the LPFC and striatum, is supported
by the results of studies on humans and primates (Joel et al.,
2002; Bunge et al., 2003; Doya, 2008; Maia, 2009; Rygula et al,,
2010; Beierholm et al., 2011). According to this hypothesis, while
the model-free process allows reward prediction to be achieved
directly by reinforcement learning without internal models, the

model-based process generates in the brain an internal model of
the environment (such as cognitive map; Tolman, 1948), grasps
the relationship among states in the environment, and predicts
rewards depending on these relationships (Glascher et al., 2010).
To segregate the model-free and model-based processes, state
transition tasks were used in several studies (Glascher et al.,
2010; Daw et al,, 2011; Doll et al., 2012; Lee et al., 2014;
Deserno et al., 2015). For example, in a task with a structure
that has a SR relationship as shown in Figure 1A, we may
predict different responses depending on whether the model-free
strategy (Figure 1B, left) or the model-based strategy (Figure 1B,
right) is adopted. In the state transition task, state prediction
error (SPE) can be calculated for each choice because transitions
between choices are determined stochastically. Glascher et al.
(2010) showed that reward prediction error (RPE) calculated
from the model-free process is represented in the striatum and
that SPE is represented in the LPFC. Because SPE cannot be
calculated from the model-free process alone but requires the
model-based process instead, it seems the state transition task is
useful for separating the model-free and model-based processes in
the striatum and LPFC. Daw et al. (2011) also showed that a RPE
calculated from the model-free process was represented in the
striatum with a state transition task in Figure 1. They additionally
showed a RPE calculated from the model-based process which
happened to be represented in the striatum rather than the LPFC.
Based on these results, Daw suggested that this task can separate
the model-free and model-based processes but cannot separate
the striatal function and LPFC functions. This proposal has been
further supported by several studies (Wunderlich et al., 2012; Lee
et al.,, 2014; Walsh and Anderson, 2014; Deserno et al., 2015).
Therefore, the hypothesis that the differences in the function of
reward prediction in these two areas corresponds to the difference
between reward prediction using model-free and model-based
processes appears dubious.
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Here, we attempt to dissociate the reward prediction functions
of the striatum and the LPFC by focusing on two elements. The
first is the existence/non-existence of information on transition
among environmental states. This has long been discussed in
relation to rule-based behavior and higher-order conditioning
and many studies have shown the importance of the LPFC for
such types of behavior (Sakagami and Niki, 1994; White and
Wise, 1999; Hoshi et al., 2000; Wallis et al., 2001; Amemori and
Sawaguchi, 2006; Han et al., 2009; Vallentin et al., 2012). The
second element we consider is whether and how the LPFC and
striatum use subjects’ experience to predict reward. This has a
history of debate in relation to syllogism, transitive inference,
categorical inference, and so forth (McGonigle and Chalmers,
1977; Blaisdell et al., 2006; Murphy et al., 2008). It has been
argued that the model-free reinforcement learning process, which
is believed to be performed in the nigro-striatal circuit, requires
direct experience of obtaining reward for reward prediction
(Schultz et al., 1997; Daw et al, 2005; Doya, 2008). On the
contrary, it has been argued that the LPFC may integrate several
pieces of fragmentary information to associate a stimulus with a
future event without learning their interrelations directly (Miller,
2000; Duncan, 2001; Pan et al., 2008, 2014; Pan and Sakagami,
2012). However, the amount of research that has attempted
to directly investigate these ideas in regards to striatum and
LPFC function remains meager. Therefore, we shall discuss here
whether experimental results and the difference in the functions
of the prefrontal cortex and striatum are consistent with the two
elements proposed above.

The Sequential Paired-Association Task
with an Asymmetric Reward Schedule

To clarify the difference in the reward predictive functions in
the LPFC and striatum, Pan et al. (2008) developed a reward
inference task. In this task, the monkey subjects first learned
two stimulus-stimulus association sequences (here denoted:
Al—B1—Cl and A2—B2—C2, where A1,B1, C1, A2, B2,and C2
were six different visual stimuli; Figure 2A). These were learned
in sequential paired-association trials (SPATs) with a symmetrical
reward schedule (Pan et al., 2008). After having mastered the task,
the monkeys were then taught an asymmetric reward schedule
using reward instruction trials (RITs), in which one stimulus (C1
or C2) was paired with a large reward (0.4 ml of water) and the
other stimulus (C2 or C1) with a small reward (0.2 ml of water). In
behavioral and single-unit recording sessions, RITs were followed
by SPATs within each block (Figure 2B). In the SPATS, the amount
of reward received at the end of correct trials was consistent with
that of the RITs from the same block: if C1 had been paired
with the large reward, and C2 with the small reward in RITs,
then in the subsequent SPATs the sequence A1—B1—C1 would
lead to the larger reward, while the sequence A2—B2—C2 would
lead to the smaller reward, and vice versa. Because in each block,
subjects were taught in RITs whether C1 or C2 would be paired
with the larger reward in the following SPATS, and because these
associations changed randomly between blocks, experience from
the previous block could not be effectively used to predict reward
in the SPATS of the current block.

Pan et al. (2008) investigated whether monkeys would be able to
transfer the reward information associated with C1 and C2 in the
RITs to the first visual stimuli, A1 and A2, in the SPATs. Stimuli
Al and A2 were not directly paired with the different amounts of
reward. However, if the monkeys could use both the SR relations
(C with reward amount), and the stimulus-stimulus (A—B—C)
associations, then after the RITs they should be able to predict
reward amount at the time of the first stimulus presentation of Al
or A2 in a SPAT. On the contrary, if the monkeys just depended
on the experience of SR relations from the previous block, their
reward prediction should not necessarily be correct, particularly
at the time of the first presentation of Al or A2 in the first SPAT.
Behaviorally, Pan et al. (2008) confirmed a significant decrease
in performance in the first choice of the first SPAT (selection of
B on the basis of A) when the trial used a sequence leading to
smaller amount of reward (see Figure 1D in Pan et al., 2008). This
shows that despite not yet receiving the reward itself, performance
differed right from the first stimulus presentation depending on
reward size (and therefore probably motivation). This indicates
that monkeys were able to infer which reward condition they were
currently experiencing right from the first stimulus presentation
after reward instruction of C1 and C2.

Two different neuronal response patterns in the sequential
paired-association task with an asymmetric reward schedule can
be predicted based on the model-based and model-free learning
processes. Using model-based learning processes (Daw et al.,
2005), relevant brain areas should represent stimulus—stimulus
associations acquired in the task in a tree-search manner, i.e.,
A1—B1—Cl and A2—B2—C2. Once C1 has been paired with
the large reward in RITs and Al is then presented in the SPAT
as the first cue, the model-based system would search the tree-
structure from Al to Bl, from Bl to Cl1 and from CI to the
large reward, and thereby predict that A1 would be associated
with the large reward. In contrast, the model-free system does not
store stimulus—stimulus associations; instead it saves a “cached”
reward value associated with each stimulus (Daw et al., 2005). For
example, when the brain experiences that in the current block
the Al-sequence is paired with the large reward and the other
sequence with the small reward, a larger value (e.g., 1) is assigned
to the stimuli Al, B1, and C1, and a smaller value (e.g., 0) to the
stimuli A2, B2, and C2. In the next block, the brain then learns
that the stimulus C1 is paired with the small reward in RITs and
the value of Cl1 is changed from 1 to 0, however the values of
Al and A2 remain yet unchanged. When Al is then presented
in SPATSs, the model-free system would predict that it would lead
to the large reward because Al is still associated with the larger
reward value. Overall, the model-based system is expected to
predict reward information for the first stimulus (A1 or A2) on the
basis of associations between the stimulus (C1 or C2) and reward
acquired in RITs in the current block, while the model-free system
is expected to predict reward information for the first stimulus on
the basis of experience from the previous block. By considering
the neuronal activity recorded from the LPFC and the striatum
in the sequential paired-association task with the asymmetric
reward schedule, we can verify whether the neurons in these areas
use the model-based learning process or the model-free learning
process.
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FIGURE 2 | The sequential paired-association task and neuronal
activities in the LPFC and striatum. (A) Two stimulus—stimulus
associative sequences were learned by monkeys. These six stimuli were
denoted as “old stimuli”; the monkeys extensively experienced them with
different amounts of rewards. (B) An asymmetric reward schedule was used
in each block in which RITs were presented first and then followed by SPATs.
The stimulus-reward contingency was the same in RITs and SPATs within
each block, but this was randomized between blocks. The yellow arrows
indicate saccadic eye movements and were not actually shown in the
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experiment. (C) Population activity of reward neurons to the old stimuli (A1
and A2) when they were presented as the first cue in SPATs. The left column
shows neuronal activity in the LPFC, and the right column shows the activity
in the striatum. The x-axis in the figure indicates SPAT order in the block
directly after RITs. The normalized activity of each neuron was sorted into the
preferred reward condition (orange curves) and the non-preferred reward
condition (blue curves), and this was averaged across the population of
reward neurons. Statistical significance was determined by Mann-Whitney U
test, **P < 0.01. Error bars indicate SEM.

Ability to Use State Transition to Predict
Reward

Pan et al. (2008) recorded single-unit activity in the LPFC
and striatum of monkeys performing this task (for recording
sites, see Figures 3 and 4 in Pan et al, 2014). The majority
of reward neurons, which were defined as showing differential
averaged activity for stimuli indicating different amounts of
reward, modulated their activity at the time of the first stimulus
presentation in a SPAT (229/546 recorded neurons in the LPFC
and 188/366 in the striatum). Results showed that LPFC neurons
discriminated the large reward condition from the small reward
condition right from the first SPATs (Figure 2C, left), indicating
that LPFC neurons performed in a model-based manner. In
addition to this, striatal neurons also distinguished the two reward
conditions from the first SPATs in one block (Figure 2C, right),
inconsistent with the predicted response pattern from model-free

process. The findings that even striatal neurons could correctly
predict rewards right from the first SPAT immediately after RITs
indicate that striatal neurons also possess some information about
state transition of stimuli in the SPAT task. Therefore, it is
reasonable to suggest that the striatal neurons, in addition to
the LPFC neurons, perform reward prediction in a model-based
manner.

Model-based signals in the striatum have been found in both
the state transition task and the sequential paired-association task
(Daw et al,, 2011; Lee et al., 2014; Pan et al.,, 2014), suggesting
that the striatum may not simply use mode-free learning rules
to predict reward. Neither of these two tasks could dissociate
reward prediction functions in the LPFC and striatum. However,
when we examined these two tasks carefully, we found subjects to
have extensively experienced state transition, stimulus-stimulus
and SR associations. Therefore, it is possible that striatal neurons
simply utilize memorized relations (experiences) to predict
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reward. The behavior and neuronal activity patterns that can be
predicted based on memorized experiences should be similar
to results based on the model-based strategy. For example, the
sequential paired-association task with an asymmetric reward
schedule was repeatedly performed using six fixed stimuli: A1, B1,
Cl1, A2, B2, and C2. There were four conditioned SR associations
in the task, (1) CI—LR (large reward), A1—LR and A2—SR
(small reward); (2) C1—SR, A1—SR and A2—LR; (3) C2—LR,
Al1—SR and A2—LR; (4) C2—SR, A1—LR and A2—SR. The
monkeys extensively experienced each of these associations. If
the monkeys and neurons memorized each of the conditioned
SR associations, it would be easy for them to determine which
stimulus (A1 or A2) would be paired with a large reward after
reward instruction with C1 or C2. In that case, the responses
of the LPFC and striatal neurons could be explained by the
reward prediction based on memorized experiences. Some studies
have shown that the activity of dopamine neurons could be
modulated by memorized experiences of state transitions and SR
associations to represent RPE and play a role in reward learning
in the striatum (Nakahara et al.,, 2004; Bromberg-Martin et al,,
2010; Enomoto et al.,, 2011). These results together suggest that
in order to disassociate reward prediction functions in the LPFC
and striatum, it is important to consider the effect of experience
with reward-stimulus associations in the task. To investigate this
issue, Pan et al. (2014) conducted a study where the monkeys
were required to predict reward for a stimulus without any direct
reward experience.

Ability to Predict Reward Without
Experience

Pan et al. (2014) conducted an experiment where session-unique
stimuli were introduced into the above task and tested whether
the monkey’s behavior and LPFC and striatal neurons could carry
out similar reward prediction with newly introduced stimuli.
The monkeys were trained to learn new stimulus associations
in a delayed matching-to-sample task with a symmetric reward
schedule (Figure 3A). The new stimuli were learned to be
associated with one of the two color patches (B1 or B2). These
newly learned stimuli are referred to as “new stimuli,” while the
stimuli A1, B1, C1, A2, B2, and C2 are referred to as “old stimuli”
In total, the monkeys learned 924 new stimuli (462 new stimulus
pairs) to be associated with the color patches (B1 or B2). For ease
of explanation, the new stimulus that was randomly selected from
each pair to be presented in the very first SPAT of the relevant
block shall be referred to as N1, and the second new stimulus of
each pair shall be referred to as N2; however it is important to
note that there is not simply one N1 stimulus but 462 N1 stimuli,
and the same for N2 stimuli (N1;-N146, and N2;-N24¢,). The
newly learned stimuli were classified into two groups according
to the old stimuli that they were associated with. The new stimuli
associated with B1 were classified into the Al-group and the new
stimuli associated with B2 were classified into the A2-group (Al,
Bl1, and C1 belonged to Al group and A2, B2, and C2 to A2
group; Figure 3A). Up to this point, the monkeys had experienced
no direct associations between new stimuli and C1 or C2, and
also no information about the asymmetric reward schedule with

respect to the new stimuli (Figure 3B, upper panel). After having
fully acquired the new associations, the monkeys performed the
reward instructed sequential paired-association task with the new
stimuli (Figure 3B, middle panel). This was identical to the reward
instructed SPATs with old stimuli except that in these SPATs a
newly learned stimulus was presented as the first cue instead of
an old stimulus (Al or A2). Behaviorally, the monkeys showed
significantly higher performance when first choosing from new
stimuli in the large than in the small reward trials (see Figure
2 in Pan et al., 2014). This indicates that the monkeys correctly
predicted the reward information for the first new stimulus (N1 or
N2) that was presented in SPATSs based on the reward information
associated with C1 or C2 in RITs, without the requirement of
direct associations between the reward information and the new
stimuli.

Reward-related neurons from the LPFC and striatum were
recorded while monkeys performed the reward instructed SPAT
task with new stimuli. Almost all the reward-related neurons in
the LPFC and striatum, which showed reward differential activity
for Al and A2 in SPATs with old stimuli, showed similar reward
differential activity with new stimuli (at least on average). When
Pan et al. (2008) concentrated on the single-unit activity to the
first new stimulus (N1; independent of the stimulus group it
belonged to, Figure 3B, bottom panel) in the very first SPAT
just after the RITs, reward-related neurons in the striatum did
not show differential activity regardless of whether N1 predicated
large or small reward (Figure 3C, right), however reward-related
neurons in the LPFC did (Figure 3C, left). The striatal reward-
related neurons did discriminate the two reward conditions from
the second presentation of N1. These results seem to show that
the striatum needs direct experience of SR associations to predict
reward. However, when Pan et al. (2008) looked at neuronal
activity to the second new stimulus (N2) when it was first
presented in the SPAT (after one or two presentations of N1),
even the striatal neurons could show reward differential activity
(Figure 3D). This result indicates that in a new stimulus pair (N1
and N2) striatal neurons are able to infer the reward amount of
N2 (after receiving reward information about N1) without direct
experience of which reward amount would follow N2. This type
of function is called a disjunctive inference (Johnson-Laird et al.,
1992).

Lateral prefrontal cortex neurons could predict the reward
amount of a new stimulus from the very first SPAT (just
after the RITs). This result cannot be explained by the reward
prediction based on memorized experiences because at this
point the monkeys had no past experience of the appropriate
SR assignment. Therefore, this result indicates that neurons
in the LPFC had the ability to combine the results of two
associations to predict future outcomes. This ability is called a
transitive inference. In this experiment LPFC neurons combined
the association of the new stimuli with C (through B), with the
association of C with reward size, to predict the reward amount.
Striatal neurons were unable to combine these stimulus-stimulus
and SR associations to predict reward. Instead striatal neurons
could predict the reward amount (e.g., small) of the second
new stimulus (N2) from a pair after directly experiencing the
alternative stimulus (N1) with the alternative amount of reward
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after directly experiencing the N1-reward contingency, one could say that these
neurons have the ability of disjunctive reward inference. (C) Population activities
of reward neurons to new stimuli as a function of SPAT order in the first block
where new stimuli were presented for the first time. LPFC neurons discriminated
the two reward conditions (preferred vs. non-preferred) from the very first SPAT
(T1) after reward instruction trials (left column). Striatal neurons did not
distinguish the preferred reward condition from the non-preferred reward
condition in T1 trials. The orange curves represent the preferred reward
condition, and the blue curves represent the non-preferred reward condition.
Statistical significance was determined by Mann-Whitney U tests, *P < 0.05,
**P < 0.01. Error bars indicate SEM. (D) Both the LPFC (left column) and striatal
(right column) activities to the second new stimulus (N2) discriminated the
reward conditions in T2/T3 trials after direct experience with the first new
stimulus (N1) and with the reward contingency. The orange bars indicate the
preferred reward condition and the blue bars indicate the non-preferred reward
condition. Statistical significance was calculated by Wilcoxon rank sum test.
Error bars indicate SEM.
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FIGURE 4 | Example activity of a stimulus-reward neuron and
population activities. (A) Single-unit activity of a stimulus-reward neuron
for three sequences: ABC (A1 vs. A2), BCA (B1 vs. B2), and CAB (C1 vs.
C2) sequences. In each sequence, all trials were sorted by four
conditions—the first cue stimulus (i.e., A1 vs. A2) and the two reward
conditions (larger reward vs. small reward)—and aligned with the first cue
onset. In the raster-grams, red ticks mark the onset and offset of the first
cue. In the histograms, the orange curves represent data from large-reward
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trials and the blue curves represent data from small-reward trials. (B) The
population histograms of stimulus-reward neurons for three sequences.
Trials of each stimulus-reward type cell were sorted by four conditions:
preferred reward condition and preferred stimulus (solid orange curves),
preferred reward condition and non-preferred stimulus (dashed orange
curves), non-preferred reward condition and preferred stimulus (solid blue
curves), and non-preferred reward condition and non-preferred stimulus
(dashed blue curves).

(e.g., large). This result indicates that the striatal neurons can
perform disjunctive inferences. Congruent with this finding,
Bromberg-Martin et al. (2010) reported that dopamine neurons,
which have a close relationship with reward prediction in the
striatum, are able to use disjunctive inferences to generate RPE
signals. Furthermore, disjunctive inference is similar to a key
function used for establishing the model-based process in the state
transition task performed by Daw et al. (2011). The evidence that
the nigro-striatal network is involved in reward prediction via
disjunctive inference indicates that the model-based vs. model-
free process distinction is not simply equivalent to dissociation in
LPFC and striatal functions.

Reward Inference by Abstract Neural Code

We further investigated why it may be that LPFC neurons can
perform transitive reward inference while striatal neurons cannot.
Pan et al. (2008) found a subgroup of reward neurons (SR type)
in the LPFC that showed differential reward activity for only one
of the first stimuli (Al or A2). Originally, Pan et al. (2008) used
an ABC sequence (A1—B1—C1 and A2—B2—C2) for recording
and looked at the activity pattern to stimulus A (Al or A2).

However, by investigating only this sequence, they could not
tell whether SR type neurons reflect categorical information or
whether they simply reflect visual properties of the first cues.
To address this, Pan et al recorded activity of SR neurons in
the LPFC with another two sequential associations: the BCA
sequence (B1—+Cl—A1l and B2—C2—A2) and the CAB sequence
(C1—A1—B1 and C2—A2—B2). The majority of SR neurons
showed reward-differential activity only for a group of relevant
visual stimuli (e.g., A1, Bl and C1, or A2, B2 and C2; Figure 4A).
This tendency was confirmed by the population activity of SR
neurons (Figure 4B). Therefore, these neurons (hereby referred
to as “category-reward” neurons) likely coded both the category
information of visual stimuli (either A1 or A2 group), and reward
information (either large or small), simultaneously.

In related literature, many studies have reported that neurons
in the LPFC code categorical information (Freedman et al., 2001;
Shima et al, 2007; Meyers et al,, 2008; Cromer et al., 2010;
Seger and Miller, 2010). Sakagami and Tsutsui (1999) trained
monkeys to make a go response to, for example green and
purple colors, and a no-go response to, for example red and
yellow colors (Sakagami and Tsutsui, 1999). Many neurons in the
ventrolateral PFC showed go/no-go differential activity based on
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color (color go/no-go neurons). A majority of them also showed
color grouping. For example if a neuron showed differentially
increased activity to green, then the same neuron tended to show
the same activity pattern to purple, while if a neuron increased
activity to red, then the same neuron tended to show the same
activity pattern to yellow. Activity of these neurons did not simply
reflect go/no-go discrimination because the same neurons did
not show differential activity when the monkeys performed the
same go/no-go task with motion cues. As the LPFC is located
between sensory output areas and motor execution areas, the
task of the LPFC is likely related to the conversion of sensory
information to motor information (Sakagami and Pan, 2007). If
the area has several hierarchical stages for this process, it is natural
that some neurons in the LPFC should code both sensory and
motor information in a manner similar to the “abstract” coding
seen in both reward-category neurons and in the color go/no-
go neurons. In support of this idea, Shima et al. (2007) found
“motor-category” neurons in the LPFC.

It is an interesting question to ask whether or not striatal
neurons encode category information. Evidence against this
was found in a recent study (Antzoulatos and Miller, 2011).
In this study, Antzoulatos and Miller (2011, 2014) compared
neuronal activity patterns for the LPFC and striatum during a
dot-based shape category learning task in which the monkeys
learned to associate stimuli from one category with a right
saccade and stimuli from the other category with a left saccade.
In each recorded session, two novel dot-pattern prototypes
(two categories) were introduced. In the first block, a single
stimulus per category was presented and the monkeys learned
the relevant stimulus-response associations. In following blocks,
more and more new stimuli were added. The monkeys were
unable to learn each stimulus-response association; instead, they
learned category-response associations. It was found that striatal
neurons represented stimulus-response association in the early
learning stage. In the late learning or category performing
stage, LPFC neurons encoded category-response associations but
striatal neurons did not represent such category information.
These results suggest that striatal neurons do not classify new
category members into a group or represent their category
information.

In the sequential paired-association task of Pan et al. (2008)
the monkeys might have, through extensive training, grouped
stimuli requiring the same response together as a functional
category according to intended behavior. Some LPFC neurons
appeared to represent category information of those associated
stimuli. It is known that LPFC neurons also receive reward
information from the OFC and subcortical areas, such as the
striatum, amygdala, and dopaminergic neurons in the midbrain
(Schultz, 2000; Wallis and Miller, 2003; Sakagami and Watanabe,
2007). Therefore, some LPFC neurons involved in categorization
might also receive reward information and thereby function as
category-reward neurons. In the sequential paired-association
task with new stimuli, the monkeys were unable to rely on rote
memory to predict the amount of reward for the new stimuli
because they had not yet been directly taught associations between
the new stimuli and reward. Effectively, the monkeys had to
integrate independently acquired associations to infer the reward

value of new stimuli. The category-reward neurons may be what
the brain uses to fulfill this integration function. Each member
from the preferred category was found to evoke similar response
patterns in category-reward neurons; this processing may be the
way in which relations between reward and each member in the
same category were established. If a newly introduced stimulus
is a functional member of a given category, then the category
information of the new stimulus and the reward information
acquired in RITs could together activate the category-reward
neurons. This activity of the category-reward neurons may allow
reward neurons in the LPFC to infer the reward information
of the new stimuli. The striatal neurons were unable to predict
reward for the first new stimuli presented in the first SPATS.
As shown above, the striatal neurons were not able to use this
categorical code approach. Instead they likely used memorized
experiences to know which reward N2 must be associated with
after directly experiencing the alternative reward in association
with N1. Our suggestion that the LPFC but not the striatum may
be capable of categorical coding is reinforced by the finding that
LPFC neurons showed categorical related activity whereas striatal
neurons showed response related activity in a category learning
task (Antzoulatos and Miller, 2011, 2014). Overall, reward
prediction neurons in the LPFC, but not those in the striatum,
were able to predict the reward amount of newly introduced
stimuli at their first presentation in SPATs possibly because the
LPFC is capable of categorical coding whereas the striatum is not
(Figure 5).

Discussion and Conclusion

Here, we suggest that LPFC neurons can perform the
categorization process. The categorization process is regarded as
the process utilized to determine which things belong together.
In a related study three types of categories were proposed:
the “perceptual category, the “relational category, and the
“association category” (Zentall et al., 2002). The categorization
process we discussed here is likely to have been of the associative
type, in which shared functions of the stimuli are important
instead of the physical properties of them. The LPFC encodes
associative categorization (Pan et al.,, 2008), and may utilize it as
a model to simulate or predict reward information for both well
learned old stimuli and newly introduced stimuli. This process
does not require the animals and neurons to directly experience
associations between stimuli and reward. The striatum did
not represent the category information as a model; instead, it
might have stored paired stimuli-reward information to predict
reward after directly experiencing the association between one
stimulus of a pair and its associated reward. The functional
difference between the LPFC and striatum might not simply rely
on model-based vs. model-free learning rules. It might instead
rely on whether and how the two areas integrate experiences
with current task state information and use different strategies to
predict reward.

The probabilistic state transition task performed by Daw et al.
(2011) and the sequential paired-association task with old stimuli
by Pan et al. (2008) both consist of several sequences of stimuli
or actions. In both tasks, to obtain reward at the end of trial, it is

Frontiers in Psychology | www.frontiersin.org

July 2015 | Volume 6 | Article 995


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Tanaka et al.

Reward inference in the LPFC and striatum

(CE——

©Of |
A1 B1
“r W
C1 N

—

Reward

A1 ]| A2 B1 c1 |l c2
Reward Reward Reward

FIGURE 5 | Schematic drawing of the function of LPFC and striatal neurons. (A) LPFC neurons can use knowledge of categorical relationships to predict
reward. (B) Striatal neurons can code the individual associations between stimuli and reward.

W

[@‘

l] _ =€]=[@

necessary to assign the potential reward to early stimuli or actions
properly. This credit assignment program has been discussed
within the framework of explicit/implicit learning processes (Fu
and Anderson, 2008). Fu and Anderson (2008) performed a state
transition task similar to the task performed by Daw et al. (2011)
and showed that the subjects displayed faster state learning when
explicit memory was dominantly relied upon and that implicit
reinforcement learning required state information. Therefore,
these explicit/implicit learning processes are presumably related
to the model-based/model-free learning processes. On the other
hand, in Pan et al’s (2008) sequential paired-association task
with new stimuli, the monkeys’ behaviors and LPFC activity
showed reward related activities without the direct experience of
obtaining reward after presentations of these new stimuli. This
result indicates that reward value can be assigned to the stimuli
without experience. It is possible to explain this by suggesting
that reward value is assigned to abstract information, such as
the functional category, rather than to representation of the
individual stimulus. Therefore, experience of reward with any
member of a category causes reward to be assigned to this whole
category, thereby making it possible for one to be able predict
reward for another member of the same category without direct
experience.

Where could the model-free learning process be performed in
the brain? We believe that the model-free reinforcement learning
process is the basis of the reward related learning. Furthermore,
a lot of studies support the idea of the existence of a circuit
for reinforcement learning in the nigro-striatal circuit (Schultz
et al., 1997; Daw et al., 2005; Doya, 2008). Therefore, the model-
free learning process is likely performed in parts of the striatum.
However, even if the nigro-striatal circuit simply performs the
model-free reinforce learning process, when it receives signals
calculated in the prefrontal cortex with the model-based process,
its activity then appears to perform the model-based learning
process. In other words, the learning process in the striatum
depends on the signal sent to the striatum. Recently, it was
proposed that the LPFC works as an arbitrator of model-based
and model-free strategies (Lee et al., 2014). Therefore, it is possible
that the LPFC controls the signal sent to the striatum and allocates
the degree of control over behavior determined by model-based

and model-free systems. Nonetheless, the degree to which we can
understand the learning process performed in the striatum based
simply on subjects’ behaviors and neural activities may be limited.
To precisely understand the learning process performed in the
striatum, it would be necessary to reveal the signal processing
mechanism in the striatum using methods which can examine the
circuit mechanism directly, i.e., optogenetics and the DREADD
(Designer Receptors Exclusively Activated by Designer Drugs)
system.

There remains no doubt about the existence of the model-
based learning process in the LPFC. Here, we extend this
idea by specifically proposing the existence of abstraction
or categorization in the LPFC. While this can explain
the SR associations found in the SPAT task, more precise
neurophysiological research is required to explain the model-
based learning process in the state transition task. Furthermore,
it is suggested that the LPFC also contributes to other complex
cognitive processes which are involved in the model-based
system (Yoshida et al., 2010; Donoso et al., 2014). Further study
is necessary to extend understanding of the specific function of
the LPFC in model-based learning processes.

In conclusion, to clarify the functional differences in reward
prediction between the LPFC and striatum in the monkey brain,
we compared activity patterns of neurons in these two areas
mainly from studies using a sequential paired association task
with an asymmetric reward schedule. To predict reward, both
LPFC and striatal neurons were able to use knowledge about
state transitions. LPFC neurons could predict reward via transitive
inference and striatal neurons could predict reward via disjunctive
inference even in previously unexperienced situations. These
results suggest the existence of a model-based system in both the
LPFC and the striatum. These results also indicate that the model-
based vs. model-free hypothesis is not sufficient to explain the
functional difference between the LPFC and striatum. Instead,
the difference seems to be that the LPFC neurons can utilize
abstract code (in this case stimulus categorization; Figure 5A)
to associate a stimulus with a reward, whereas while the striatal
neurons can code the individual associations between a stimulus
and a reward (or sequence of stimuli-reward, Figure 5B), they
cannot use abstract code.
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