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Abstract: Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective
elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with
recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2
gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-
related modifications. Intriguingly, research in recent years has shown that parkin depletion is not
limited to PD but is also observed in other neurodegenerative diseases—especially those characterized
by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar
degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease
phenotypes, its emerging connections with TDP-43, and its possible functional implications.

Keywords: TDP-43 pathology; parkin; mitophagy; fronto-temporal lobar degeneration (FTLD);
amyotrophic lateral sclerosis (ALS); Parkinson’s disease (PD)

1. Introduction

Frontotemporal dementia (FTD) is the second most common type of early onset
dementia under 65 years of age, characterized by atrophy of the frontal and temporal
lobes resulting in behavioral and/or language dysfunction [1–3]. Amyotrophic lateral
sclerosis (ALS; alias motor neuron disease, MND) is an incurable neurodegenerative
and neuromuscular disease, with degeneration of motor neurons in the brain and spinal
cord which leads to progressive weakness of muscles, and gradual paralysis followed by
respiratory failure [4–6]. A total of 10% of ALS cases and c.a. 30–40% of frontotemporal
lobar degeneration (FTLD) cases are caused by genetic mutations, the remaining cases being
sporadic [7]. Due to extensive clinical and genetic overlap, FTLD and ALS are thought
to form a continuum of endophenotypes [8], and according to current diagnostic criteria,
the term amyotrophic lateral sclerosis–frontotemporal spectrum disorder (ALS–FTSD) is
used [9].

The common hallmark of sporadic and the majority of the genetic forms of ALS–FTSD
is TDP-43 (transactive response DNA-binding protein 43 kDa) pathology, characterized by
TDP-43 protein depletion from the nucleus and its cytoplasmic aggregation [10,11]. This
pathology is present in the brain and spinal cord of 97% of ALS cases and c.a. 45% of FTLD
cases [12,13].

Parkinson’s disease (PD) is a neurodegenerative disease with progressive death of
dopaminergic neurons in the substantia nigra, the brain region producing neurotransmitter
dopamine (DA). PD is clinically characterized by bradykinesia, resting tremor, and rigid-
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ity [14]. Around 15% of patients have genetic forms of the disease due to mutations in
PARK(1–23) genes [15,16].

Mitochondrial dysfunction has been extensively described in sporadic and genetic
forms of ALS–FTSD and PD [6]. In particular, the research on mitochondrial dysfunction
in genetic PD caused by biallelic PARK2 mutations [17] has gained pace since the discovery
of parkin as a key mediator of mitophagy in 2008 [18] (Figure 1). Only two years earlier,
in 2006, TDP-43 has emerged as an important protein for neurodegenerative diseases,
such as ALS–FTSD, in which parkinsonian symptoms are reported [11,19] (Figure 1).
Further, the observation of decreased parkin in TDP-43 proteinopathies is a relatively
recent finding [20,21] (Figure 1), and its significance in terms of mitochondrial functioning
has been hardly investigated. However, since these initial observations (Figure 1) a plethora
of new research that has been performed is presented below.

Figure 1. Timeline of the initial key research observations leading to the formation of our working hypothesis: parkin deficit
observed in PARK2-related PD and patients with TDP-43 proteinopathies can lead to similar consequences.

In our review, we address the possible consequences of parkin deficit in TDP-43
proteinopathies. In the first part of the review, we provide background information on
mitophagy, parkin/PINK1-associated PD, followed by a chapter on TDP-43 proteinopathy.
As the main body of the article, we discuss the current evidence of parkin deficiency in
sporadic and genetic forms of TDP-43 proteinopathies, its possible functional relevance,
and the underlying molecular mechanisms. Further, we review the overlapping symptoms
between PD and TDP-43 proteinopathies. Finally, we provide updated information on
mitochondrial dysfunction in sporadic and major genetic forms TDP-43 proteinopathies
and discuss the potential rationale for using parkin as a therapeutic target in ALS–FTSD.

2. Parkin and PINK1—The Key Players in Mitophagy Initiation

Mitophagy is a highly coordinated process whereby defective or old mitochondria are
eliminated as whole organelles. This process occurs through the lysosomal pathway with
the aid of the ubiquitin–proteasome system which concomitantly marks mitochondrial
outer membrane proteins for disposal [22,23]. Mitophagy has been studied in numerous
cellular and animal models either as a naturally occurring process or upon induction with
various mitochondrial stressors [24]. Among mitophagy inducers, there are agents leading
to mitochondrial membrane depolarization, mitochondrial respiratory complex inhibition,
mutagenic stress, and proteotoxicity (e.g., CCCP, oligomycin, antimycin A, valinomycin,
MPP+, and rotenone) [25,26].

The first step in mitophagy initiation is performed by mitochondrial kinase PINK1
(PTEN-induced kinase 1) “a sensor of mitochondrial damage” [26]. Under normal condi-
tions, PINK1 expression levels are generally low in cells, because it is cleaved by protease
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PARL upon translocation to the inner mitochondrial membrane [27–29], followed by sub-
sequent ubiquitination and degradation by the proteasome [30]. The other key player is
represented by parkin (Parkin RBR E3 Ubiquitin Protein Ligase), which resides predomi-
nantly in the cytoplasm. Its expression levels in mitochondria are also normally low, as
reviewed in Reference [31].

In response to mitochondrial stress, PINK1 normal processing is hindered. As a conse-
quence, it gets anchored to the translocase of the outer mitochondrial membrane (TOMM)
complex where subsequent PINK1 autophosphorylation leads to its auto-activation [32,33].

Further to this, PINK1 recruits parkin along with ubiquitin onto damaged mitochon-
dria and activates them through phosphorylation on Ser65 [33]. To enhance this process,
the Ser65-phosphorylated ubiquitin reinforces parkin activation and stabilization on the
OMM [26].

Activated parkin ubiquitinates several mitochondrial outer membrane proteins (e.g.,
MFN2—mitofusin 2; TOMM20—translocase of outer mitochondrial membrane 20; and
VDAC1—voltage dependent anion channel 1), tagging them for proteasome degradation
with long ubiquitin chains [26,34]. Subsequent phosphorylation of these long ubiquitin
chains by PINK1 on Ser65 makes it impossible for ubiquitin specific peptidase 30 (USP30)
to detach ubiquitin residues from OMM proteins [35]. This generalized polyubiquitina-
tion of OMM proteins recruits, in turn, autophagy receptors, such as optineurin (OPTN)
and sequestosome-1 (SQSTM1, p62), in such a way as to start forming an autophago-
some around the damaged/old mitochondrion, eventually leading to its engulfment and
subsequent digestion upon fusion with a lysosome [33].

3. Clinical Phenotypes Associated with Mutations in PARK2 and PARK6 Genes
3.1. Biallelic PARK2 (Parkin) and PARK6 (PINK1) Mutations Cause Young/Juvenile-Onset
Parkinson’s Disease

Homozygous mutations in PARK2 and PARK6 are the most common known causes of
autosomal recessive early onset parkinsonism (EOPD; age of onset—AAO < 50) and account
for c.a. 5% of familial PD [17,36] (Figure 2A). EOPD has been further subdivided into cases
with the onset before 21 years, grouped under the term of autosomal recessive juvenile
parkinsonism (ARJPD, AAO < 21), and young-onset PD (YOPD, AAO > 21). Juvenile
parkinsonism is very rare, patients have usually strong familial history, and present with
atypical features. YOPD clinically resembles late-onset PD with positive family history in
c.a. 3% cases [37]. EOPD cases have slower disease progression, less cognitive decline, and
earlier motor fluctuations with dyskinesias and dystonia than sporadic PD (sPD) [38].

Patients with parkin mutations are good responders to anticholinergics and are very
sensitive to small doses of levodopa that may cause severe dyskinesia and psychosis.
Preserved olfactory function, sleep benefit, early postural instability, and brisk reflexes are
often present [39]. Autonomic nervous system dysfunction and myocardial sympathetic
denervation are less pronounced in PARK2 mutation carriers than in individuals with
sPD [40].

PINK1 gene mutations cause YOPD with an onset between 30 and 50 years. Most
patients have slow disease progression, good response to levodopa and levodopa-induced
dyskinesias. Dystonia, hyperreflexia, sleep benefit, psychiatric problems, and dementia
may be present early. Although most patients have features similar to those with sPD, a
subset demonstrates features similar to those with biallelic PARK2 mutations [41].
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Figure 2. Schematic representation of parkin functional depletion grades. (A) Biallelic PARK2 and PARK6 mutations cause
either complete lack of their respective proteins (parkin or PINK1) or their enzymatic activity, eventually causing early onset
Parkinson’s disease. (B) Single heterozygous PARK2 and PARK6 mutations with partial lack of functional parkin or PINK1
are rarely found in symptomatic patients with PD and have mainly subclinical effects. (C) TDP-43 loss-of-function has been
consistently observed to cause parkin downregulation, whilst the contribution of TDP-43 gain-of-function to parkin/PINK1
pathway deregulation requires more research (discussed in Section 5; see also Table 1).
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Clinical symptoms and postmortem pathology are both suggesting that the disease
process is largely caused by the loss of dopaminergic nerve cells in the Substantia nigra
pars compacta and subsequent nerve degeneration in the putamen with relative sparing
of the Locus coeruleus and other brain regions. On the other hand, the neuropathology
found in carriers of PARK6 mutations is not well established, and it has also been noted
that Lewy bodies’ pathology is inconsistently reported in cases with PARK2 or PARK6
mutations [42,43].

Finally, biallelic PARK2 pathogenic variants have been very rarely associated with the
phenotype of behavioral variant of FTD (bvFTD) with only mild parkinsonism [44].

3.2. Single Heterozygous PARK2 or PARK6 Mutations Lead to Subclinical PD

Single heterozygous PARK2 or PARK6 mutations occur with similar frequency in
patients with sporadic PD and healthy individuals; their estimated penetrance is around
1–25%, and their role in pathogenesis is still not well understood [45–48] (Figure 2B).
Individuals who carry a single PARK2 or PARK6 mutation are usually free of clinical
motor symptoms; however, some of them can present clinical signs of parkinsonism [49,50]
and may also have impaired facial emotion recognition [51]. Asymptomatic carriers
of single PARK2 or PARK6 mutation show a stronger increase of cortical-motor-related
activity during execution of self-initiated movements in functional magnetic resonance
imaging (fMRI) studies, thus indicating additional recruitment of motor cortical areas
during simple motor tasks, as is suggestive of compensatory response [52,53]. There is
also evidence of nigrostriatal dysfunction in asymptomatic mutation carriers compared to
control subjects: a significant reduction of striatal 18F-fluoro-L-DOPA uptake in putamen,
caudate, dorsal, and ventral midbrain in positron emission tomography (PET) [50,54,55].
Subclinical deregulation of putamen dopaminergic signaling was observed in as much
as 69% of asymptomatic single PARK2 mutation carriers [50]. However, after a 5-year
follow-up, these patients manifested no signs of parkinsonism at neurological examination
and had very slow rates of nigrostriatal dysfunction progression, in comparison to patients
with sporadic PD (a mean of 0.56% vs. 9–12% annual reduction in putamen F-DOPA
uptake), suggesting that the probability of developing clinical parkinsonism by single
PARK2 mutation carriers is very low [56]. Finally, the reduced presynaptic dopamine
terminal signaling is a pathological finding of subclinical nigrostriatal damage in the
presence of one mutated parkin allele [55].

A possible molecular explanation for the observed abnormal nigrostriatal dysfunction
in heterozygous carriers of PARK2 or PARK6 mutation is a reduction in enzymatic activity
of ubiquitin ligase and kinase, respectively, leading to functional haploinsufficiency, unable
to secure normal nigrostriatal activity [55,57]. Indeed, primary human skin fibroblasts
and induced neurons derived from PINK1 p.Q456X heterozygotes demonstrate both re-
duced levels of PINK1 protein and kinase activity [57]. However, in a different scenario, a
dominant-negative mechanism has been proposed for the PINK1 p.G411S mutation [57,58].
Heterozygous carriers of this mutation had normal levels of the PINK1 protein accom-
panied by a significant reduction in PINK1 kinase activity [57]. In addition, the authors
observed impairment of ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric
complex (in vitro assay) [57].

Independently of the mechanism, those mutations likely interfere with the protective
functions of the PINK1/parkin-mediated mitochondrial quality control [57]. In conclusion,
therefore, even if recent findings support the notion of heterozygous PARK2/PARK6 vari-
ants representing a strong risk factor for Parkinson’s disease [59], whether or not these
heterozygotes with subclinical dysfunction will develop clinical parkinsonism over time is
difficult to predict.
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3.3. Parkin Inactivation in Sporadic PD

Parkin activity can be compromised by post-translational modifications, such as
oxidative, nitrosative, or dopamine-related stress, which has implications for patients with
sporadic PD and Lewy body neuropathology, as reviewed in References [31,60].

4. Loss-of-Function (LOF) and Gain-of-Function (GOF) Mechanisms in TDP-43
Proteinopathies

TAR DNA-Binding Protein-43 (TDP-43) was first identified in 2001 as a protein able
to bind the HIV-1 TAR binding sequence [61], and in 2006, as the main component of
aggregates found in the brains of patients with ALS and FTLD [11,19] (Figure 1). Recently,
many reviews have been focused on elucidating the role of this protein in disease and
normal development, and, for this reason, the reader is referred to these works for a more
detailed description [10,62–65]. Briefly, TDP-43 belongs to the class of heterogeneous
ribonucleoproteins (hnRNPs) that have been long referred to as the “RNA histones”.
Normally, these proteins bind nascent RNA molecules and affect all aspects of RNA
processing within the cell, from capping/splicing/polyadenylation to transport/translation
and eventually degradation. At the structural level, TDP-43 possesses a highly structured N-
terminus domain (NTD) [66,67] that controls protein dimerization/oligomerization [66,68].
This NTD is followed by two RNA Recognition Motifs (RRMs) that are responsible for
sequence-specific binding to RNA [69,70] and then by an unstructured C-terminus region
that plays a fundamental role in phase separation and aggregation [71–74].

In pathological aggregates, TDP-43 is subject to various post-translational modifica-
tions that include ubiquitination, phosphorylation, acetylation, sumoylation and is also
cleaved to generate C-terminal fragments [62]. From a pathomechanistic point of view,
there are two major disease pathways that have been proposed to become disrupted by
TDP-43 aggregation and modifications: gain- and loss-of-function disease mechanisms [10].
The gain-of-function mechanisms may include various factors such as direct toxicity of the
aggregates [75–78], direct toxicity of the C-terminal fragments [79,80], or indirect toxicity
caused by sequestration of other proteins that are normally in close contact with TDP-43
in the cellular environment [81–85]. Intriguingly, it is also possible that aggregates might
be protective at least during the early stages of the disease. This hypothesis is supported
in a recent study based on random mutagenesis of the TDP-43 C-terminus where it has
been observed that mutations that increase hydrophobicity and aggregation can decrease
toxicity in yeast cells [85]. Alternatively, the loss-of-function pathological mechanisms
might eventually occur through the sequestration of soluble TDP-43 in the aggregates, thus
leaving not enough TDP-43 to perform its normal functions within cells. Therefore, this will
result in multiple defects that range from preventing DNA damage to all aspects of RNA
processing [86]. In support of this view, many recent studies agree that alterations in RNA
metabolism could be a major contributor to ALS/FTLD processes in humans [87]. Most
importantly, it should be kept in mind that all these gain- and loss-of-function possibilities
do not necessarily exclude each other, and these different mechanisms could play a role at
different stages of the disease. In conclusion, the emerging picture from all of these studies
is that, following aggregation of TDP-43, a combination of RNA processing alterations
might represent the principal disease contributor in patients with ALS and FTLD [88–90].

5. Interwoven Relations between TDP-43 and Parkin

Interestingly, apart from Parkinson’s disease, decreased levels of parkin have been
found in several TDP-43 proteinopathies (Table 1/Figure 2C). To this date, in fact, there are
several examples where the deregulation of parkin expression or its cellular localization
has been linked to TDP-43 complex neuropathology and/or has been observed to occur
following manipulations of TDP-43 expression levels [20,21,91–94] (Table 1).
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Table 1. Effects of TDP-43 pathology, TDP-43 depletion, or overexpression on parkin protein and mRNA levels.

TDP43-Proteinopathy Model Cell Type/Treatment Length Parkin
mRNA/Protein

Accompanying Changes References

Patients with sporadic ALS
(n = 12) vs. control subjects

ca. 1000 motor neurons/- Trend for decreased
mRNA (microarray) - [95]

Patients with sporadic ALS
(n = 11) vs. control subjects

(n = 3)

Spinal cord motor neurons—only those
with TDP-43 inclusions/- Decreased protein (IF) - [21]

Carriers of PGRN mutations
from families with FTLD

Human primary skin fibroblasts with
PGRN mutations

Decreased mRNA/protein by
ca. 60% (qRT-PCR)

Unchanged MFN2 and
VDAC1 mRNA and protein [94]

Mouse TDP-43 knockdown
Striatum injection of antisense

oligonucleotides/2 weeks
Decreased mRNA by ca. 70%

(RNAseq) - [20]

Mouse TDP-43 knockdown
Brain and spinal-cord injection of

antisense oligonucleotides/2 weeks
Decreased mRNA by ca. 80%

(qRT-PCR) - [21]

TDP-43 knockdown in human
neurons (TDP-43 expression

reduction by 60–75%)

Human neurons (iPSC-derived and
HUES6 line) lentiviral shRNA

constructs/na

Decreased mRNA by ca. 25%
(qRT-PCR) - [21]

TDP-43 silencing (siRNA) in
HEK293T

Human HEK293T (DMSO vs.
mitochondrial uncoupler CCCP;

siTDP-43 or si CTRL)/na

Decreased protein
cytoplasmic localization (IF)

Decreased
prohibitin 2 (PHB2) [91]

TDP-43 silencing (siRNA) in
skin fibroblasts derived from

patients with FTLD

Human primary skin fibroblasts with
PGRN mutations and control fibroblasts

(siTDP-43 or siCTRL)/48 h

Decreased protein
by ca. 40% (WB) - [94]

Overexpression of wild-type
TDP-43-HA or mutant

TDP-43-Q331K

Primary mouse neurons/motor cortex
and human HEK293T cells/48 h

Decreased endogenous
parkin mRNA and protein by

c.a. 50% (qRT-PCR, WB)
Increased PINK1 protein [92]

Exogenous co-expression of
wild-type TDP-43-HA and

intron-free human parkin or
intron-free PINK1

Human HEK293T cells/48 h
Decreased intron-free parkin

mRNA and protein
by c.a. 50% (qRT-PCR)

Increased cleaved PINK1
protein forms insoluble
cytoplasmic aggregates

[92]

Transgenic Drosophila
knock-in of wild-type human

TDP-43-H
Fly heads/na

Decreased mRNA and
protein by c.a. 45% (qRT-PCR,

WB)
- [92]

Wild-type TDP-43
overexpression

Human HEK293T
(DMSO vs. mitochondrial uncoupler

CCCP; wild-type pLX-TDP-43-v5
vector/na)

Increased protein cytoplasmic
localization (IF)

Increased
prohibitin 2 (PHB2) [91]

Wild-type TDP-43
overexpression

Human primary skin fibroblasts with
transiently silenced PGRN (48 h)

overexpressing wild-type flag-TDP-43
(24 h)

Increased protein
by c.a. 40% (WB) Increased PGRN protein [94]

Wild-type TDP-43
overexpression

Human skin fibroblasts with PGRN
mutations overexpressing wild-type

flag-TDP-43 (48 h)

Decreased protein
by c.a. 50% (WB) - [94]

Transgenic mouse with
heterozygous knock-in of

human mutant TDP-43
(A315T)

Whole-brain tissue

mRNA and protein reduced
by 70% compared to
wild-type controls

(qRT-PCR, WB)

Abnormal neuronal
mitochondrial cristae, fusion

and fission defects;
[96]

Overexpressed wild-type
TDP-43

Human M17 neuroblastoma cells Increased protein
by c.a. 50% (WB) - [93]

Transgenic mouse with
knock-in of human mutant

TDP-43A315T

Increased mRNA
by c.a. 50% (qRT-PCR) - [93]

Abbreviations: IF—immunofluorescence, qRT-PCR—quantitative real-time PCR; iPSC—induced pluripotent stem cells, WB—Western
blot. Experiments in Table 1 are presented as follows: dark grey-colored rows—evidence from patients with TDP-43 proteinopathies; light
grey-colored rows: experiments with TDP-43 silencing; white smoke-colored rows—experiments with TDP-43 overexpression.

5.1. Consistent Effects of TDP-43 Depletion on Parkin Levels

At the mechanistic level of RNA processing, TDP-43 has turned out to be crucial for the
maintenance of brain enriched mRNAs with long introns (>100 kb) such as PARK2 [20,21].
Indeed, PARK2 pre-mRNA possesses multiple TDP-43 binding sites, suggesting that the
control of its stability depends on TDP-43 RNA binding function, at least partially [20]
(Figure 2C). In keeping with this view, and irrespectively of animal or cellular models
under investigation, TDP-43 depletion consistently resulted in parkin mRNA/protein
downregulation [20,21,91,94] (Table 1).

To date, a decrease in parkin mRNA has been observed upon TDP-43 depletion in
mouse adult brain, stem cell-derived human neurons, HEK293T cells, human primary skin
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fibroblasts, and motor neurons obtained from patients with sporadic ALS [20,21,91,94]
(Table 1). However, in motor neurons derived from patients with sporadic ALS, parkin
decrease correlated with the presence of TDP-43 aggregates while ca. 95% of motor neurons
without TDP-43 pathology showed normal parkin levels [21].

Recently, Sun et al., have elegantly shown that TDP-43 can affect parkin expression
post-transcriptionally and in an intron/UTR-independent manner [92]. In a recent study,
the authors have observed that overexpression of human TDP-43 in HEK293T cells down-
regulated plasmid-expressed, intron-free parkin, both at the mRNA and protein level
(Table 1). This required both the RNA-binding and protein–protein interaction domains of
TDP-43 that included the RNA recognition motif 1 (RRM1) and the glycine-rich domain
(GRD) domain in the C-terminus [92].

In conclusion, the consistency of the results of TDP-43 depletion (Table 1) in different
animal and cellular models and in patients with ALS/FTLD suggests that TDP-43 loss-
of-function is crucial to maintaining parkin expression levels. Whether this is the only
mechanism by which parkin decreases in ALS/FTLD remains elusive.

5.2. Discrepant Effects of TDP-43 Overexpression on Parkin Levels

Supporting the notion of parkin being a direct target for TDP-43, a significant increase
in PARK2 mRNA was observed in transgenic mice (hTDP43-Tg) brains compared to controls
and a few cellular TDP-43 overexpression models [91,93,94]. Transgenic hemizygous mice
harboring human TDP-43 A315T had increased levels of both soluble and insoluble parkin
(by ca. 50 and 60%, respectively) [93] (Table 1). In contrast, other groups reported parkin
downregulation upon wild-type and mutant TDP-43 overexpression, depending on the
cellular model used [92,94,96] (Table 1).

Apart from parkin, TDP-43 ectopic expression influenced also other mitophagy key
players. Sun et al. reported accumulation of cleaved PINK1(~52 kDa) insoluble aggregates
in the cytoplasm via the mechanism of TDP-43 overexpression–related impairment of
the proteasomal activity [92]. To confirm that these findings hold true also in vivo, the
authors confirmed aggregation of cleaved endogenous PINK1 in the motor cortex of mice
expressing Q331K mutant of TDP-43 [92]. Finally, they demonstrated that TDP-43-driven
PINK1 accumulation affected negatively mitochondrial respiratory functions and lifespan
in the Drosophila model [92].

At present, there is no satisfactory explanation for the observed differences between
TDP-43 overexpression experiments. In contrast to TDP-43 knockdown, it should nonethe-
less be considered that TDP-43 overexpression levels may vary substantially between
different labs/experimental systems. At the cellular level, this may result in the overex-
pressed TDP-43 binding/interacting with different partners, depending on the absolute
level of overexpression reached during the study. If this could be the case, it would not be
surprising that different overexpression levels could even have opposite effects on parkin
expression. Of course, such a possibility would have to be experimentally tested and this is
an area that certainly deserves further investigation.

5.3. Parkin as an E3-Ubiquitin Ligase Affects TDP-43 Aggregation

Notwithstanding the fact parkin levels are regulated by TDP-43, it has been shown
that parkin, in turn, can affect the state of TDP-43 within cells. In particular, Hebron
et al. have shown that parkin promoted Lys-48- and Lys-63-linked ubiquitination of TDP-
43 and formed a multi-protein complex with histone deacetylase 6 (HDAC6) inducing
sequestration of TDP-43 into cytosolic inclusions [93]. Co-expression of exogenous parkin
and TDP-43 increased cytosolic co-localization of TDP-43, parkin, and ubiquitin. Moreover,
parkin double knockout mice presented significantly higher levels of endogenous TDP-43
than control ones, although the number of hippocampal cells positive for TDP-43 was
similar between transgenic and control mice [97].
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5.4. Unanswered Question 1: Is Parkin Downregulation in TDP-43 Proteinopathies Functionally
Relevant (Molecular Biology Perspective)?

While biallelic PARK2 mutations lead to complete parkin depletion in patients with
PD [98,99] (Figure 2A), the parkin decrease in carriers of single PARK2 mutations re-
mains yet to be determined (Figure 2B). In fact, it is important to note that in cellular
PD models almost complete parkin deficiency (ca. 80%), obtained by silencing with
small interfering RNAs (siRNA), is sufficient to trigger mitochondrial dysfunction in wild-
type fibroblasts [100]. However, in contrast to patients with EOPD due to homozygous
PARK2 mutations, healthy carriers of heterozygous parkin mutation do not present ab-
normal mitochondrial function, including deregulated ultrastructure, morphology, and
metabolism [99,101]. Likewise, 50% parkin silencing, which models haploinsufficiency (that
would correspond to single PARK2 mutation carriers), did not change any mitochondrial
parameters, thus indicating the importance of the dose [100].

How do the above-mentioned observations correspond to TDP-43 proteinopathies?
First of all, many transcriptomic/proteomic analyses in patients with ALS–FTSD or TDP-43
proteinopathy animal models do not report parkin expression alterations [102–106]. These
might be due to the fact that all “omic” results (RNAseq, microarrays, and proteomics) carry
a bias, since they are not able to distinguish between healthy cells and those with TDP-43
pathology. Moreover, the severity of TDP-43 pathology may be of varying grades [107,108].

In models where parkin expression changes are observed (Section 5.1 and Table 1),
PARK2 mRNA decrease upon TDP-43 depletion ranges from c.a. 25% in human neurons,
60% in human fibroblasts to 60–80% in rodent models. However, TDP-43 depletion does
not mirror the complex pathology present in the brains of patients with ALS–FTLD. Thus,
the local threshold effect might be extremely important, in terms of neurons with TDP-43
pathology and magnitude of parkin decrease. Furthermore, additional genetic or epigenetic
risk factors may decide to what extent mitochondrial dysfunction would manifest itself.

Since carriers of single PARK2 mutations can present subclinical brain dysfunction
(see Section 3.2 for detailed description) it could therefore be speculated that subtle parkin
decrease in TDP-43 proteinopathies can lead to similar subclinical phenotypes as in sin-
gle PARK2 mutation carriers. Nonetheless, this is an assumption that will need careful
validation in the future. Indeed, there are limited existing data regarding parkinsonian
phenotypes observed in TDP-43 proteinopathies, and this subject is discussed in Section 5.5
below.

5.5. Unanswered Question 2: What Is the Evidence of Parkinsonism in TDP-43 Proteinopathies
(Clinical Perspective)?

ALS–FTSD comprises cases with dementia (ALS–FTD), cases with behavioral and/or
cognitive impairment without dementia (ALSbci, ALSbi, and ALSci), ALS–parkinsonism/
dementia complex (ALS–PDC, named also Western Pacific variant of ALS, lytico bodig),
and other mixed variants [9].

ALS–FTSD is predominantly associated with TDP-43 proteinopathy [109], ALS being
the most common one, and includes many movement disorders presentations, but MND
and parkinsonian symptoms predominate.

First of all, it is important to keep in mind that cases of ALS–FTSD that have not been
genetically defined may present other types of pathology (such as TAU, FUS, etc.). For this
reason, in this review we focus on parkinsonism in genetic forms of ALS–FTSD with confirmed
TDP-43 proteinopathy, caused by mutations in C9orf72, PGRN, and TARDBP [110–113].

Regarding FTLD it is interesting to note that the first links between this disease and
parkinsonism extend before the recognition of TDP-43 proteinopathies. Indeed, until a
few decades ago parkinsonian symptoms were regarded as a rare manifestation of FTLD
associated with MAPT mutation, so the term frontotemporal dementia and parkinsonism
linked to chromosome 17 (FTDP-17) was coined [114]. More recently, the association
between progranulin mutations and parkinsonism [115–117] enabled us to distinguish
between FTDP-17 (MAPT) and FTDP-17 (PGRN) [117]. Currently, the FTDP-17 term is no
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longer used clinically, considering that parkinsonism in FTLD has been shown to extend
far beyond mutations in chromosome 17 [118].

Usually, FTLD is associated with either parkinsonian symptoms (e.g., in PGRN muta-
tions) or with MND (e.g., in C9orf72).

In genetic FTLD parkinsonism is the most frequent movement disorder manifestation.
It occurs in about 80% of cases. However, only ~ 1 in 3 cases with C9orf72 mutation and
1 in 10 cases with PGRN mutations present with parkinsonism at onset [119]. According
to other sources, depending on the population, parkinsonian symptoms occur in >20% of
patients with ALS linked to C9orf72 mutation, and as much as 50% to 75% of cases with
bvFTD [120,121].

PGRN mutations are associated predominantly with parkinsonism and only occasion-
ally with MND [122,123]. In some PGRN kindreds, parkinsonism has been reported in up
to 80% of cases [124]. Importantly, patients with PGRN mutations demonstrate presynaptic
dopaminergic deficit, as evidenced by Dopamine Transporter Scan (DAT-Scan) [125]. Un-
fortunately, DAT-Scan is not routinely performed, and parkinsonism in FTLD is usually
described only based on clinical presentation.

It seems that TARDBP mutations may have a broader symptomatic spectrum than
other gene mutations in FTLD, as they may be associated with all three conditions: ALS,
FTLD, and parkinsonism [126].

At the clinical level, parkinsonism in FTLD syndromes is typically characterized
by akinetic–rigid phenotype (symmetrical muscle rigidity, bradykinesia, hypokinesia,
parkinsonian gait, and rarely resting tremor) [127] and may share clinical features with
either progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS) [128,129].
Sometimes multiple system atrophy-like presentations occur with dysautonomia, ataxia,
and pyramidal symptoms [127].

Akinetic–rigid parkinsonism, as far as TDP-43 proteinopathies are concerned, occurs
commonly in PGRN mutations and is rather uncommon in C9orf72 mutations and VCP
(Valosin Containing Protein) mutations and rare in TARDP mutations cases. PSP-like
features may be rarely observed in both C9orf72 and PGRN mutation carriers, CBS-like
features are uncommon in PGRN and rare in C9orf72 [127]. Of note, parkinsonian symptoms
may be the first symptom in FTLD or develop after the occurrence of language or behavioral
symptoms [121,130].

Among inherited FTLD cases, MND is observed mainly in patients carrying C9orf72
or TARDBP gene mutations, but also those with DCTN1 (Dynactin Subunit 1) and VCP
gene mutations.

In some very rare clinical entities, such as Perry disease, caused by DCTN1 mutation,
TDP-43 pathology is predominant [131]. In others, it co-occurs with tau pathology (PSP,
CBD) or alpha-synuclein pathology (PD, DLB) [13]. In Perry disease, parkinsonism, central
hypoventilation, and weight loss [131] are accompanied by behavioral manifestations. The
syndrome shares symptoms of PD, ALS and may fall into the FTLD spectrum [132].

Another example of the complex relationship between ALS and parkinsonism is the
rare variant of ALS: ALS and parkinsonism/dementia complex (ALS/PDC) in which TDP-
43 pathology may be accompanied by alpha-synuclein pathology. In ALS/PDC three types
of pathology were described: the tauopathy-dominant type, the TDP-43 proteinopathy-
dominant type, and the synucleinopathy-dominant type [133].

The frequency of parkinsonism in ALS–FTSD with TDP-43 proteinopathy cannot be
easily established. Parkinsonism may be an under-diagnosed phenomenon in ALS–FTSD
with TDP-43 proteinopathy due to several reasons. First, genetic testing and/or neuropatho-
logical examination is not routinely performed worldwide, remaining unproven in many
cases. Secondly, C9orf72 is a relatively recently described mutation as are Strong et al.’s
criteria [9]. Third, at the diagnostic stage patients usually attend either a Dementia Clinic or
Movement Disorders Clinics. Inevitably, some clinics focus mainly on cognitive/behavioral
symptoms or motor symptoms and a mixed presentation of ALS–FTSD may be overlooked,
especially if parkinsonism is not present at onset and develops later. At more advanced
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disease stages when the patients require constant supervision/care they are rarely seen by
movement disorder specialists. Therefore, parkinsonism may not be diagnosed even in
cases with pronounced akinetic–rigid manifestations. Furthermore, since akinetic–rigid
parkinsonism is not a commonly known presentation of parkinsonism, specialists without
movement disorder expertise are less likely to diagnose correctly someone that does not
present with tremor phenotype.

In conclusion, the theme of parkinsonism in ALS–FTLD guarantees further research
since at present there are a lot of gaps that need to be filled, specifically regarding parkin-
sonism in sporadic forms of ALS–FTSD with defined neuropathology and its clinical
subgroups. Finally, it would be interesting to investigate whether parkinsonian symptoms
observed in ALS–FTLD could be mediated by TDP-43-associated parkin decrease.

6. Additional Mechanisms of TDP-43—Mediated Mitochondrial Dysfunction

TDP-43 related mitochondrial dysfunction has been observed in genetic and sporadic
forms of TDP-43 proteinopathies and in several cellular and animal models [134,135]. In
particular, mitochondrial impairment ranged from abnormal mitochondrial ultrastructure,
morphology, transport, respiration, membrane potential, dynamics, calcium buffering, and
mitophagy, etc. (reviewed in References [136–140]).

Apart from the above-mentioned direct regulation of PARK2 by TDP-43 (Section 5),
potentially affecting mitochondria, numerous observations of enhanced mitochondrial
localization of TDP-43 (either entire protein or its C- and N-terminal fragments) point to
a global mechanism how TDP-43 can interfere with proper mitochondrial function and
specifically mitophagy, as reviewed in Reference [138]. Consistently, overexpression models
of TDP-43 and its C-terminal fragments display enhanced mitophagy, including parkin-
mediated mitophagy [141,142]. Interestingly, the degradation of the C-terminal fragment
of TDP-43 (CTF TDP-25) itself, localizing in mitochondria, is mitophagy-dependent [142].

Another aspect complicating the situation is that TDP-43 regulates other media-
tors of mitophagy and autophagy, as reviewed in References [140,143–145]. Specifically,
TDP-43 imbalance (downregulation or upregulation) has been observed to impair au-
tophagy flux and disrupt autophagosome–lysosomal fusion [106,140,145–147]. For ex-
ample, overexpression of pathogenic CTF TDP-25 in mice leads to autophagy reduc-
tion/stalling [148]. Blocked autophagy, in turn, can result in the accumulation of de-
polarized mitochondria [149]. In this way, TDP-43-related autophagy deregulation can
aggravate parkin/PINK1-dependent mitophagy dysfunction, as these processes are inter-
connected [150].

In addition, a majority of genes (C9orf72, PGRN, TARDBP, OPTN (optineurin), TBK1
(TANK Binding Kinase 1), SQSTM1/p62, and VCP (Valosin Containing Protein)) that
cause genetic forms of ALS–FTSD with TDP-43 proteinopathy encode proteins involved in
mitophagy/autophagy [151].

As recent findings have demonstrated, enhanced TDP-43 mitochondrial localization
could have broader consequences, through the activation of a robust immune response,
which is a common characteristic observed in neurodegenerative diseases, including
patients with PD or ALS–FTSD. At the mechanistic level, it has been shown that increased
levels of TDP-43 in mitochondria cause the release of mtDNA into the cytoplasm, which
switches on a sensor of cytoplasmic DNA, the cGAS/STING pathway, resulting in a
neuroinflammatory response [152,153].

Importantly, the activation of the cGAS/STING pathway by circular cell-free mtDNA
release, measured as an increase in proinflammatory Interleukin 6 (Il-6) levels has been con-
firmed in Parkinson’s disease patients with PARK2/PARK6 mutations. A partial dose effect
has been observed: symptomatic patients with biallelic mutations > symptomatic patients
with single heterozygous mutation > asymptomatic subjects with single heterozygous mu-
tations [59]. The lack of significant differences in ccf mtDNA/Il-6 levels between unaffected
heterozygous mutation carriers and healthy control subjects or patients with sporadic
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Parkinson’s disease suggests that even slight parkin/PINK1 level/activity deregulation
may be determinant in the transition from health to disease state.

6.1. How Different Genetic Backgrounds of TDP-43 Proteinopathies Might Modulate Mitophagy?

While it is well documented that TDP-43 pathology represents one of the main mech-
anisms underlying various aspects of mitochondrial dysfunction, its actions can also be
modulated by different genetic backgrounds, such as mutations in C9orf72, PGRN, and
TARDBP itself, that cause familial forms of ALS–FTSD.

6.2. Sporadic ALS/FTLD with TDP-43 Inclusions

In this section, we discuss sporadic ALS–FTSD cases where, apparently, TDP-43
proteinopathy is not modified by additional genetic factors.

First, it is important to note that induced pluripotent stem cells (iPSCs) and post-
mortem samples derived from patients with sporadic ALS and FTLD have demonstrated
the destabilization of ribosomal and mitochondrial transcripts with decreased levels of cor-
responding mitochondrial proteins, as well as altered morphology and respiration [104,154].
A similar pattern of changes has been achieved by TDP-43 overexpression, suggesting a
leading role for TDP-43 in the destabilization process [154].

Secondly, transcriptomic analysis of frontal cortex in 16 patients with sporadic FTLD–
TDP followed by mRNA and protein level validation has demonstrated downregulation
and decreased activity of several mitochondrial subunits of electron transport chain (ETC;
complexes I, IV, and V) [104].

The results of these functional studies are supported by ultrastructural and morpho-
logical analyses which have revealed abnormal mitochondrial and lysosomal phenotypes
in brain samples derived from patients with sporadic FTLD or ALS [155,156]. In some
cases, mitochondria were observed to be aberrantly long with broken inner membrane
and cristae, swollen matrix, and enhanced mitochondrial fusion with lysosomes [155,156].
In addition, decreased mitochondrial complex I activity, mitochondrial membrane poten-
tial, and mitochondrial ATP synthesis, along with elevated production of reactive oxygen
species were also commonly observed in sporadic ALS/FTLD [156]. In this case, at the
mechanistic level, it has been shown that TDP-43 activated the mitochondrial unfolded
protein response (UPRmt) in both cellular and animal models [156].

Finally, it has been observed that TDP-43 aggregation-driven oxidative stress in mouse
and human neurons depleted mitochondrial proteins encoded by nuclear-genome, leading
to global mitochondrial dysfunction oxidative stress [157].

In conclusion, TDP-43-induced mitochondrial impairment certainly represents a criti-
cal aspect in TDP-43 proteinopathy.

6.3. C9ORF72 and TARDBP Mutations

In patients with C9ORF72 hexanucleotide repeat expansion, TDP-43 pathology is
accompanied by dipeptide repeat (DPR) protein aggregates arising from the unconven-
tional repeat-associated non-ATG translation [158,159]. Similar to TDP-43 proteinopathy,
C9ORF72 pathology may act through loss-of-function (C9orf72 haploinsufficiency) and
gain-of-function mechanisms. The latter one is associated with the generation of long G4C2
expansions that may sequester cellular proteins from their normal functions and even
generate toxic dipeptide repeat proteins [160].

From a pathological point of view, ALS- and FTLD-associated mutations in C9ORF72
and TARDBP have shown similar effects on various mitochondrial parameters, such as in-
creased oxidative and endoplasmic reticulum (ER) stress, impaired mitochondrial transport
in axons, abnormal morphology, reduced ATP production, Ca2+ signaling, mitochondrial
membrane potential, and activity of mitochondrial respiratory complexes [161–167], all
reviewed in References [135,140]. Experimental models used to obtain these results com-
prised: autopsy brain samples, human primary skin fibroblasts, iPSCs-derived astrocytes,
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motor and cortical neurons of patients with C9ORF72- or TARDBP-linked ALS–FTSD,
Drosophila and mouse models [161–172].

Abnormal mitochondrial phenotypes have been described in spinal motor neurons
from patient-derived iPSCs with TDP43 S393L and G294V mutations [173], mice and
Drosophila expressing TDP-43 A315T mutant [155,156].

In Drosophila muscle and patient fibroblasts with C9ORF72 hexanucleotide repeat
expansion, poly(GR) was observed to enter mitochondria and interfere with the function
of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), which led to
abnormal mitochondrial inner membrane structure, metabolism, and ion homeostasis [171].
In iPSC-derived neurons, ectopic expression of DPR protein caused mitochondrial dysfunc-
tion through binding of mitochondrial ribosomal and respiratory complex V (ATP5A1)
proteins [169,170]. This led to increased ATP5A1 degradation, accompanied by reduced
ATP5A1 protein levels in cultured neurons and patients’ brains [169]. In addition, fur-
ther research demonstrated that C9orf72 is crucial for effective mitochondrial complex I
assembly [167]. Finally, C9orf72 hexanucleotide repeat expansion in astrocytes deregulated
metabolism of adenosine, fructose, and glycogen, and the transport of mitochondria-
specific energy substrates, thus increasing toxicity upon starvation [168,174].

In conclusion, it can therefore be speculated that the involvement of C9ORF72 in
mitochondrial complex assembly might be one of the reasons for observation of parkin-
sonisms in FTLD–C9ORF72 cases, since mitochondrial complex dysfunction is one of the
best-documented Parkinson’s disease molecular mechanisms [175].

6.4. PGRN Mutations Leading to Haploinsufficiency

As it has been well established in many previous studies, PGRN haploinsufficiency
always leads to TDP-43 pathology [176,177]. Regarding mitochondria, one of the first tran-
scriptomic analyses of PGRN-deficient primary human neurons showed downregulation of
genes related to mitochondrial function, in particular, oxidative phosphorylation [178]. In
addition to this evidence, mitochondrial membrane potential was higher in lymphoblasts
derived from PGRN mutation carriers as compared to healthy controls upon 72 h serum
starvation [179]. Furthermore, PGRN loss led to lipid metabolism deregulation, i.e., accu-
mulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides
and phosphatidylserines in fibroblast with PGRN mutations [180]. Considering that phos-
phatidylserine is a substrate for mitochondria-synthesized phosphatidylethanolamine,
which is, in turn, important for membrane fusion, it is reasonable to hypothesize that this
could affect the mitophagy process as a consequence.

Regarding the potential role played by PGRN in mitophagy, it has been recently
reported that a decrease in PGRN exacerbated mitochondrial damage and dysfunction
in podocytes from diabetic mice and that PGRN administration was able to restore mi-
tophagy and mitochondrial biogenesis in podocytes challenged with high glucose through
upregulation of Sirt1-PGC-1α/FoxO1 pathway [181].

Finally, as described in Section 5 and Table 1, we have recently demonstrated decreased
parkin levels in fibroblasts carrying PGRN mutations which could not be rescued by TDP-
43 overexpression, suggesting that established life-long TDP-43 pathology effects cannot
be simply resolved through manipulation of TDP-43 level [94].

In summary, while the evidence on mitochondrial dysfunction in TDP-43 proteinopathies
is substantial, it is not known whether TDP-43-related decrease of parkin could contribute
to some of the observed mitochondrial phenotypes. To address this issue, it might be recom-
mended that future studies on mitochondrial function in TDP-43 pathology model systems
could test whether parkin is involved mechanistically, and, if yes, at which specific stage.

7. Increasing Mitophagy as a Therapeutic Approach for TDP-43 Proteinopathies

Mitophagy-enhancing therapies designed to increase PINK1 and parkin activity
and/or inhibit ubiquitin-specific peptidase 30 (USP30) seem to be a plausible solution
to rescue parkin/PINK1 deficiency in Parkinson’s disease caused by PARK2 or PARK6
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mutations, as reviewed in Reference [35]. Notably, there is a report of natural compensation
occurring in a biallelic PARK2 mutation carrier that protected this individual from develop-
ing Parkinson’s disease even in his 80s [182]. The patient had upregulated levels of another
mitophagy factor, NIP-3-Like Protein X (NIX), which bypassed the lack of functional parkin
and restored functional mitophagy [182].

In TDP-43 proteinopathies, it has been shown that drugs increasing endogenous parkin
levels were also able to decrease nuclear TDP-43 levels and prevent the neuronal loss and
cognitive and motor decline in transgenic mice expressing either wild-type human TDP-43
or mutant A315T [97,183,184]. Likewise, upregulation of parkin and downregulation of
PINK1 ameliorated the degenerative phenotypes of Drosophila expressing h-TDP-43 in
neurons [92].

While parkin upregulation could ameliorate deleterious effects of TDP-43 proteinopa-
thy in these cases, an opposite approach—overexpression of TDP-43—could not rescue
decreased parkin levels in fibroblasts with PGRN mutations derived from FTLD patients,
even if it increased PGRN levels [94]. Moreover, as already discussed, this is an issue that
will require clarification in the future.

In contrast to precise targeting of the PINK1/parkin pathway, global mitophagy
boost seems to aggravate phenotypes in TDP-43 proteinopathies. For example, in mice co-
expressing TDP-43WT and mutant Q331K, rilmenidine administration induced autophagy
and mitophagy, promoting accelerated nuclear TDP-43 clearance, but worsening the neu-
rodegenerative phenotype, resulting in enhanced motor neuron death, and shortened
lifespan [185].

Finally, in some genetic forms of ALS and FTLD with elevated basal levels of au-
tophagy [151,180,186,187], mitophagy manipulations could have detrimental effects [35].
In conclusion, maintaining the delicate balance in mitophagy would be crucial for develop-
ing future therapies based on this mechanism.
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