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Abstract Signaling molecules derived from attachment of diverse metabolic building blocks to

ascarosides play a central role in the life history of C. elegans and other nematodes; however, many

aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a

pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for

biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides.

Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly

of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that

modular glucosides, like the ascarosides, may serve signaling functions. We further show that

carboxylesterases that localize to intestinal organelles are required for the assembly of both

modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO

function and carboxylesterase homologs in C. elegans and other animals may reveal additional new

compound families and signaling paradigms.

Introduction
Recent studies indicate that the metabolomes of animals, from model systems such as Caenorhabdi-

tis elegans and Drosophila to humans, may include >100,000 of compounds (da Silva et al., 2015;

Artyukhin et al., 2018). The structures and functions of most of these small molecules have not

been identified, representing a largely untapped reservoir of chemical diversity and bioactivities. In

C. elegans (Girard et al., 2007), a large modular library of small-molecule signals, the ascarosides,

are involved in almost every aspect of its life history, including aging, development, and behavior

(Schroeder, 2015; Butcher, 2017; Butcher et al., 2007; Jeong et al., 2005). The ascarosides repre-

sent a structurally diverse chemical language, derived from glycosides of the dideoxysugar ascary-

lose and hydroxylated short-chain fatty acid (Figure 1a; von Reuss et al., 2012). Structural and

functional specificity arises from optional attachment of additional moieties to the sugar, for exam-

ple indole-3-carboxylic acid (e.g. icas#3 (1)), or carboxy-terminal additions to the fatty acid chain,

such as p-aminobenzoic acid (PABA, as in ascr#8 (2)) or O-glucosyl uric acid (e.g. uglas#11 (3),

Figure 1b; Artyukhin et al., 2018; Artyukhin et al., 2013; Bose et al., 2014; Aprison and
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Ruvinsky, 2017; Curtis et al., 2020; Pungaliya et al., 2009). Given that even small changes in the

chemical structures of the ascarosides often result in starkly altered biological function, ascaroside

biosynthesis appears to correspond to a carefully regulated encoding process in which biological

state is translated into chemical structures (Panda et al., 2017). Thus, the biosynthesis of ascarosides

and other C. elegans signaling molecules (e.g. nacq#1) (Ludewig et al., 2019) represents a fascinat-

ing model system for the endogenous regulation of inter-organismal small-molecule signaling in

metazoans. However, for most of the >200 recently identified C. elegans metabolites

(Artyukhin et al., 2018; von Reuss et al., 2012; Artyukhin et al., 2013), biosynthetic knowledge is

sparse. Previous studies have demonstrated that conserved metabolic pathways, for example peroxi-

somal b-oxidation (Artyukhin et al., 2013; Bose et al., 2014) and amino acid catabolism (von Reuss

et al., 2012; Srinivasan et al., 2012; Figure 1a), contribute to ascaroside biosynthesis; however,

many aspects of the mechanisms underlying assembly of multi-modular metabolites remains unclear.

Recently, metabolomic analysis of mutants of the Rab-GTPase glo-1, which lack a specific type of

lysosome-related organelles (LROs, also referred to as autofluorescent gut granules), revealed com-

plete loss of 40-modified ascarosides (Panda et al., 2017). The glo-1-dependent LROs are acidic,

pigmented compartments that are related to mammalian melanosomes and drosophila eye pigment

organelles (Coburn and Gems, 2013; Hermann et al., 2005). LROs form when lysosomes fuse with

other cellular compartments, for example peroxisomes, and appear to play an important role for

recycling proteins and metabolites (Coburn and Gems, 2013). Additionally, it has been suggested

that LROs may be involved in the production and secretion of diverse signaling molecules

(Dell’Angelica et al., 2000; Luzio et al., 2014), and the observation that glo-1 mutant worms are

deficient in 40-modified ascarosides suggested that intestinal organelles may serve as hubs for their

assembly (Figure 1a; Panda et al., 2017). In addition to the autofluorescent LROs, several other

types of intestinal granules have been characterized in C. elegans, including lipid droplets

(Cao et al., 2019) and lysosome-related organelles that are not glo-1-dependent (Tanji et al.,

2016).

Parallel studies of other Caenorhabditis species (Dong et al., 2016; Bergame et al., 2019;

Dolke et al., 2019) and Pristionchus pacificus (Falcke et al., 2018), a nematode species being devel-

oped as a satellite model system to C. elegans (Rae et al., 2008), revealed that production of modu-

lar ascarosides is widely conserved among nematodes. Leveraging the high genomic diversity of

sequenced P. pacificus isolates, genome-wide association studies coupled to metabolomic analysis

revealed that uar-1, a carboxylesterase from the a/ß-hydrolase superfamily with homology to choli-

nesterases (AChEs), is required for 40-attachment of an ureidoisobutyryl moiety to a subset of ascaro-

sides, e.g. ubas#3 (4, Figure 1c; Falcke et al., 2018). Homology searches revealed a large

expansion of carboxylesterase (cest) homologs in P. pacificus as well as C. elegans (Figure 1—figure

supplement 1), and recently it was shown that in C. elegans, the uar-1 homologs cest-3, cest-8, and

cest-9.2 are involved in the 40-attachment of other acyl groups in modular ascarosides (Faghih et al.,

2020). Based on these findings, we posited that cest homologs localize to glo-1-dependent intesti-

nal granules where they control assembly of modular ascarosides, and perhaps other modular

metabolites. In this work, we present a comprehensive assessment of the impact of glo-1-deletion

on the C. elegans metabolome and uncover the central role of cest homologs that localize to intesti-

nal granules in the biosynthesis of diverse modular metabolites.

Results

Novel classes of LRO-dependent metabolites
To gain a comprehensive overview of the role of glo-1 in C. elegans metabolism, we employed a

fully untargeted comparison of the metabolomes of a glo-1 null mutant and wild-type worms

(Figure 1d). HPLC–high-resolution mass spectrometry (HPLC–HRMS) data for the exo-metabolomes

(excreted compounds) and endo-metabolomes (compounds extractable from the worm bodies) of

the two strains were analyzed using the Metaboseek comparative metabolomics platform, which

integrates the xcms package (Tautenhahn et al., 2008). These comparative analyses revealed that

the glo-1 mutation has a dramatic impact on C. elegans metabolism. For example, in negative ioni-

zation mode, we detected >1000 molecular features that were at least 10-fold less abundant in the

glo-1 exo- and endo-metabolomes, as well as >3000 molecular features that are 10-fold upregulated
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Figure 1. Modular ascarosides in nematodes and proposed role of the Rab-GTPase GLO-1. (a) Modular ascarosides are assembled from simple

ascarosides, e.g. ascr#1 (5) or ascr#3 (9), and building blocks from other metabolic pathways, e.g. glucosyl uric acid (6), p-aminobenzoic acid (PABA, 8)

indole-3-carboxylic acid (11), or succinyl octopamine (12). We hypothesize that glo-1-dependent gut granules play a central role in their biosynthesis. (b)

Examples for modular ascarosides and their biological context. (c) UAR-1 in P. pacificus converts simple ascarosides into the 40-ureidoisobutyric-acid-

bearing ascarosides, for example ubas#3 (4). (d) Strategy for comparative metabolomic analysis of LRO-deficient glo-1 mutants. (e) Example for modular

ascarosides whose production is increased in glo-1 mutants.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1d.

Figure supplement 1. Dendrogram of serine hydrolase annotated in C. elegans and Ppa-uar-1 (marked blue).

Figure supplement 2. MS peak areas relative to wildtype (N2) of several building blocks of modular ascarosides.

Figure supplement 2—source data 1. Source data for Figure 1—figure supplement 2.
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in glo-1 mutants. For further characterization of differential features, we employed tandem mass

spectrometry (MS2) based molecular networking, a method which groups metabolites based on

shared fragmentation patterns (Figure 1d, Figure 2—figure supplements 1–4; Wang et al., 2016).

The resulting four MS2 networks – for data obtained in positive and negative ionization mode for the

exo- and endo-metabolomes – revealed several large clusters of features whose abundances were

largely abolished or greatly increased in glo-1 worms. Notably, although some differential MS2 clus-

ters represented known compounds, for example ascarosides, the majority of clusters were found to

represent previously undescribed metabolite families.

In agreement with previous studies (Panda et al., 2017), biosynthesis of most modular ascaro-

sides was abolished or substantially reduced in glo-1 mutants, including all 40-modified ascarosides,

e.g. icas#3 (1) (Figure 1b, Figure 2—figure supplement 5a). Similarly, production of ascarosides

modified at the carboxy terminus, e.g. uglas#11 (3) derived from ester formation between ascr#1 (5)

and uric acid glucoside (Curtis et al., 2020) (6), and ascr#8 (2), derived from formation of an amide

bond between ascr#7 (7) and of p-amino benzoic acid (8), was largely abolished in glo-1 mutants

(Figure 1a–b, Figure 2—figure supplement 5a). Metabolites plausibly representing building blocks

of these modular ascarosides were not strongly perturbed in glo-1 mutants (Figure 1—figure sup-

plement 2). For example, abundances of unmodified ascarosides, for example ascr#3 (9) and

ascr#10 (10), or metabolites representing 40-modifications, for example indole-3-carboxylic acid (11)

and octopamine succinate (12), were not significantly perturbed in the mutant (Figure 1a, Figure 2—

figure supplement 5a, Figure 1—figure supplement 2). In contrast, a subset of modular ascaroside

glucose esters (e.g. iglas#1 (13) and glas#10 (14), Figure 1e), was strongly increased in glo-1

mutants (Figure 2—figure supplement 5b). These results suggest that glo-1-dependent intestinal

organelles function as a central hub for the biosynthesis of most modular ascarosides, with the

exception of a subset of ascarosylated glucosides, whose increased production in glo-1 mutants may

be indicative of a shunt pathway for ascarosyl-CoA derivatives (Zhang et al., 2015; Zhang et al.,

2016; Zhang et al., 2018), which represent plausible precursors for modular ascarosides modified at

the carboxy terminus.

Next, we analyzed the most prominent MS2 clusters representing previously uncharacterized

metabolites whose production is abolished or strongly reduced in glo-1 mutants (Figure 2). Detailed

analysis of their MS2 spectra indicated that they may represent a large family of modular hexose

derivatives incorporating moieties from diverse primary metabolic pathways. For example, MS2

spectra from clusters I, II, and III of the positive-ionization network suggested phosphorylated hex-

ose glycosides of indole, anthranilic acid, tyramine, or octopamine, which are further decorated with

a wide variety of fatty acyl moieties derived from fatty acid or amino acid metabolism, for example

nicotinic acid, pyrrolic acid, or tiglic acid (Figure 2, Appendix 1—table 1; Coburn and Gems, 2013;

Stupp et al., 2013). Given the previous identification of the glucosides iglu#1/2 (15/16, Figure 2e)

and angl#1/2 (17/18), we hypothesized that clusters I, II, and III represent a modular library of gluco-

sides, in which N-glucosylated indole, anthranilic acid, tyramine, or octopamine (O’Donnell et al.,

2020) serve as scaffolds for attachment of diverse building blocks. To further support these struc-

tural assignments, a series of modular metabolites based on N-glucosylated indole (‘iglu’) were

selected for total synthesis. Synthetic standards for the non-phosphorylated parent compounds of

iglu#4 (19), iglu#6 (20), iglu#8 (21), and iglu#10 (22) matched HPLC retention times and MS2 spectra

of the corresponding natural compounds (Figure 2—figure supplement 6), confirming their struc-

tures and enabling tentative structural assignments for a large number of additional modular gluco-

sides, including their phosphorylated derivatives, e.g. iglu#12 (23), iglu#41 (24), angl#4 (cluster II,

25), and tyglu#4 (cluster III, 26) (Figure 2). The proposed structures include several glucosides of the

neurotransmitters tyramine and octopamine, whose incorporation could be verified by comparison

with data from a recently described feeding experiment with stable isotope-labeled tyrosine

(O’Donnell et al., 2020). Similar to ascaroside biosynthesis, the production of modular glucosides is

life stage dependent; for example, production of specific tyramine glucosides peaks at the L3 larval

stage, whereas production of angl#4 increases until the adult stage (Figure 2—figure supplement

8). Notably, modular glucosides were detected primarily as their phosphorylated derivatives, as

respective non-phosphorylated species were generally less abundant. In contrast to most ascaro-

sides, the phosphorylated glucosides are more abundant in the endo-metabolome than the exo-

metabolome, suggesting that phosphorylated glucosides may be specifically retained in the body

(Figure 2—figure supplement 7).
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Figure 2. Comparative metabolomic analysis ofglo-1mutants. (a) Partial MS2 network (positive ion mode) for C. elegans endo-metabolome highlighting

three clusters of modular glucosides that are down regulated in the glo-1 mutants (also see Figure 2—figure supplements 1–4). Red represents

downregulated and blue upregulated features compared to wildtype C. elegans. (b) Cluster I feature several modular indole glucoside derivatives.

Structures were proposed based on MS2 fragmentation patterns, also see Appendix 1—table 1. Compounds whose non-phosphorylated analogs were

synthesized are marked (*). Shown ion chromatograms demonstrate loss of iglu#4 in glo-1 mutants. (c,d) Examples for modular glucosides detected as

part of clusters II and III. Ion chromatograms show abolishment of angl#4 (25) (c) and tyglu#4 (26) (d) production in glo-1 mutants. (e) Modular

glucosides are derived from combinatorial assembly of a wide range of building blocks. Incorporation of moieties was confirmed via total synthesis of

example compounds (green) or stable isotope labeling (blue). For all compounds, 3-phosphorylation was proposed based on the established structures

of iglu#2 (16), angl#2 (18), and uglas#11 (3).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure 2 continued on next page
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As in the case of modular ascarosides, the abundances of putative building blocks of the newly

identified modular glucosides were not strongly perturbed in glo-1 mutants. For example, abundan-

ces of anthranilic acid, indole, octopamine, and tyramine were not significantly affected in glo-1 null

animals (Figure 2—figure supplement 9). Notably, abundances of the glucosides scaffold, e.g.

iglu#1 and angl#1, were also largely unaltered or even slightly increased in glo-1 mutants (Figure 2—

figure supplement 9). In addition, production of some of the identified modular glucosides, e.g.

iglu#5, is reduced but not fully abolished in glo-1 worms (Figure 2—figure supplement 6).

To confirm our results, we additionally compared the glo-1 metabolome with that of glo-4

mutants. glo-4 encodes a predicted guanyl-nucleotide exchange factor acting upstream of glo-1,

and like glo-1 mutants, glo-4 worms do not form LROs (Hermann et al., 2005). We found that the

glo-4 metabolome closely resembles that of glo-1 worms, lacking most of the modular ascarosides

and ascarosides detected in wildtype worms (Figure 2—figure supplement 5c). Correspondingly,

similar sets of compounds are upregulated in glo-1 and glo-4 mutants relative to wild type, including

ascarosyl glucosides and ascaroside phosphates. Compounds accumulating in glo-1 and glo-4

mutant worms further include a diverse array of small peptides (primarily three to six amino acids),

consistent with the proposed role of LROs in the breakdown of peptides derived from proteolysis

(Figure 2—figure supplement 10; Bird et al., 2009). Taken together, our results indicate that, in

addition to their roles in the degradation of metabolic waste, the LROs serve as hotspots of biosyn-

thetic activity, where building blocks from diverse metabolic pathways are attached to glucoside and

ascaroside scaffolds (Figure 1a).

Carboxylesterases are required for modular assembly
Comparing the relative abundances of different members of the identified families of modular gluco-

sides and ascarosides, it appears that combinations of different building blocks and scaffolds are

highly specific, suggesting the presence of dedicated biosynthetic pathways. For example, uric acid

glucoside, gluric#1 (6), is preferentially combined with an ascaroside bearing a seven-carbon side

chain (to form uglas#11, 3), whereas ascarosides bearing a nine-carbon side chain are preferentially

attached to the anomeric position of free glucose, as in glas#10 (14) (Artyukhin et al., 2018;

von Reuss et al., 2012). Similarly, tiglic acid is preferentially attached to indole and tyramine gluco-

sides but not to anthranilic acid glucosides (Appendix 1—table 1). Given that 40-modification of

ascarosides in P. pacificus and C. elegans require cest homologs, we hypothesized that the biosyn-

thesis of other modular ascarosides as well as the newly identified glucosides may be under the con-

trol of cest family enzymes (Falcke et al., 2018; Faghih et al., 2020). From a list of 44 uar-1

homologs from BLAST analysis (Appendix 1—table 2), we selected seven for further study

(Figure 3a, Appendix 1—table 3). The selected homologs are predicted to have intestinal expres-

sion, one primary site of small molecule biosynthesis in C. elegans (Artyukhin et al., 2018), and are

closely related to the UAR-1 gene, while representing different sub-branches of the phylogenetic

tree. Utilizing a recently optimized CRISPR/Cas9 method, we obtained two null mutant strains for

Figure 2 continued

Figure supplement 1. Full MS2 molecular network of endo-metabolome acquired in positive ion mode (left).

Figure supplement 2. Full MS2 molecular network of endo-metabolome acquired in negative ion mode.

Figure supplement 3. Full MS2 molecular network of exo-metabolome acquired in positive ion mode.

Figure supplement 4. Full MS2 molecular network of exo-metabolome acquired in negative ion mode.

Figure supplement 5. MS peak areas relative to wildtype (N2) of simple and modular ascarosides, glucosylated ascarosides, and phosphorylated

ascarosides in glo-1 (a, b, c) and glo-4 (d, e, f) mutant worms.

Figure supplement 5—source data 1. Source data for Figure 2—figure supplement 5a–f.

Figure supplement 6. Identification of iglu metabolites.

Figure supplement 7. Concentration of simple and modular glucosides in the endo- or exo-metabolomes wild-type C. elegans.

Figure supplement 7—source data 1. Source data for Figure 2—figure supplement 7.

Figure supplement 8. Production of modular glucosides is life-stage-dependent.

Figure supplement 8—source data 1. Source data for Figure 2—figure supplement 8a–d.

Figure supplement 9. Peak area relative to wildtype (N2) of building blocks of modular glucosides in glo-1 mutant worms.

Figure supplement 9—source data 1. Source data for Figure 2—figure supplement 9.

Figure supplement 10. Representative ion chromatograms and MS2 spectra of upregulated leucine- and proline-containing peptides.

Le, Wrobel, et al. eLife 2020;9:e61886. DOI: https://doi.org/10.7554/eLife.61886 6 of 42

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.61886


R = OH: ascr#8 (2)

R = Glu: ascr#81 (27)

R = Glu-Glu: ascr#82  (28)
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Figure 3. Carboxylesterases are required for modular assembly. (a) Serine hydrolase dendrogram relating P. pacificus uar-1 to homologous predicted

genes in C. elegans. Ppa-uar-1, cest-3, cest-8, cest-9.2 (green) mediate ester formation at the 40-position of ascarosides in P. pacificus and C. elegans.

Genes shown in red color were selected for the current study. (b,c) Production of ascr#8 (2), ascr#81 (27), and ascr#82 (28) is abolished in cest-2.2

mutants Isogenic revertant strains of the cest-2.2 null mutants in which the STOP-IN cassette was precisely excised, demonstrate wild-type-like recovery

of the associated metabolite. (d,e) Production of uglas#1 and uglas#11 is abolished in cest-1.1(null) mutants and recovered in genetic revertants. (f)

Biosynthesis of positional isomers uglas#14 (31) and uglas#15 (32) is unaltered or increased in cest-1.1 mutants (f). (g) Production of uglas#1 and

uglas#11, but not gluric#1, is abolished in cest-1.1(S213) mutants. (h,i) Production of the anthranilic-acid-modified glucoside iglu#4 is largely abolished

in cest-4 mutants and fully recovered in genetic revertants. (j) Production of iglu#6 (36) and iglu#8 (37), whose structures are closely related to that of

iglu#4, is not abolished in cest-4 mutants. Ion chromatograms in panels b, d, and g further demonstrate abolishment in glo-1 mutants. n.d., not

detected. Error bars are standard deviation of the mean, and p-values are depicted in the Figure.

Figure 3 continued on next page
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five of the selected genes (Wang et al., 2018). Mutants for the remaining two homologs, ges-1 and

cest-6, had been previously obtained (Appendix 1—table 3). We then analyzed the exo- and endo-

metabolomes of this set of mutant strains by HPLC-HRMS to identify features that are absent or

strongly downregulated in null mutants of a specific candidate gene compared to wildtype worms

and all other mutants in this study. We found that two of the seven tested homologs (cest-1.1, cest-

2.2) are defective in the production of two different families of modular ascarosides, whereas cest-4

mutants were defective in the biosynthesis of a specific subset of modular indole glucosides (Fig-

ure 3). The metabolomes of mutants for the remaining four cest homologs did not exhibit any signif-

icant differences compared to wild type under the tested conditions.

Analysis of the metabolomes of the two cest-2.2 null mutants revealed loss of dauer pheromone

component and male attractant ascr#8 (2) as well as of the closely related ascr#81 (27) and ascr#82

(28) (Figure 3b, Figure 3—figure supplements 1 and 2b). Biosynthetically, the ascr#8 family of

ascarosides are derived from amide formation between ascr#7 (DC7, 7) and folate-derived p-amino-

benzoic acid (PABA, 8), PABA-glutamate (29), or PABA-diglutamate, respectively. We did not detect

any significant reduction in the production of plausible ascr#8 precursors, including PABA and

PABA-glutamate, or ascr#7 (Figure 3b, Figure 3—figure supplement 2b). Biosynthesis of ascr#8,

ascr#81, and ascr#82 was recovered in cest-2.2 mutant worms in which the cest-2.2 sequence had

been restored to wild type using CRISPR/Cas9 (Figure 3c, Figure 3—figure supplement 3b). These

results indicate that CEST-2.2 is required specifically for biosynthesis of the amide linkage between

the carboxy terminus of ascr#7 and PABA derivatives, in contrast to the implied functions of UAR-1,

CEST-8, CEST-3, and CEST-9.2, which are involved in the formation of ester bonds between various

head groups and the 40-hydroxy group of ascarylose (Falcke et al., 2018; Faghih et al., 2020).

In cest-1.1 null mutants (cest-1.1(null)), biosynthesis of the nucleoside-like ascaroside uglas#1 (30)

and its phosphorylated derivative uglas#11 (3) was abolished (Figure 3d, Figure 3—figure supple-

ment 2a). uglas#1 and uglas#11 are derived from the attachment of ascr#1, bearing a seven carbon

(C7) side chain, to the uric acid gluconucleoside gluric#1 (6). Production of ascr#1 (5) and gluric#1

(6), representing plausible building blocks of uglas#1 (30), was not reduced (Figure 3—figure sup-

plement 2a). Furthermore, production of uglas#14 (31) and uglas#15 (32), isomers of uglas#1 and

uglas#11 bearing the ascarosyl moiety at the 60 position instead of the 20 position, was not abolished

but rather slightly increased in cest-1.1(null) (Figure 3d–e). These results indicate that CEST-1.1 is

required for the formation of the ester bond specifically between ascr#1 (5) and the 20-hydroxyl

group in gluric#1. As in the case of cest-2.2, biosynthesis of uglas#1 and uglas#11 was fully recov-

ered in cest-1.1 mutant worms in which the cest-1.1 sequence had been restored to wild type using

CRISPR/Cas9 (Figure 3f, Figure 3—figure supplement 3a).

Sequence alignment with human AChE suggested that serine 213 is part of the conserved cata-

lytic serine-histidine-glutamate triad of CEST-1.1 (Figure 4—figure supplement 1). To test whether

disruption of the catalytic triad would affect production of cest-1.1-dependent metabolites, we gen-

erated a point mutant, cest-1.1(S213A). As in cest-1.1(null), production of uglas#1 (30) and uglas#11

(3) was fully abolished in cest-1.1(S213A), whereas production of gluric#1 was not affected

(Figure 3g).

Previous work implicated cest-1.1 with longevity phenotypes associated with argonaute-like gene

2 (alg-2) (Aalto et al., 2018). alg-2 mutant worms are long lived compared to wild type and their

Figure 3 continued

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3c,e,f,g,I,j.

Figure supplement 1. Relative abundances of ascr#8 (2) and related metabolites in cest-1.1, cest-2.2, cest-4 mutants, and wild type (N2).

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1.

Figure supplement 2. Ion chromatograms demonstrating that abundances of potential precursors of (a) cest-1.1-dependent, (b) cest-2.2-dependent,

and (c) cest-4-dependent metabolites is large unchanged in the corresponding mutants.

Figure supplement 3. Ion chromatograms demonstrating recovery of (a) cest-1.1-dependent, (b) cest-8-dependent, (c) cest-2.2-dependent, (d) cest-4-

dependent metabolites from CRISPR/Cas9 reversions of the corresponding null mutants.

Figure supplement 4. Relative abundance of other indole containing glucosides in cest-4 mutants, demonstrating that cest-4 is specifically required for

the production of iglu#3 (34) and #4 (19).

Figure supplement 4—source data 1. Source data for Figure 3—figure supplement 4.
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long lifespan was further shown to require daf-16, the sole ortholog of the FOXO family of transcrip-

tion factors in C. elegans, as well as cest-1.1. Moreover, uglas#11 biosynthesis is significantly

increased in mutants of the insulin receptor homolog daf-2, a central regulator of lifespan in C. ele-

gans upstream of daf-16 (Curtis et al., 2020). These findings suggest the possibility that the produc-

tion of uglas ascarosides underlies the cest-1.1-dependent extension of adult lifespan in C. elegans.

In contrast to our results for cest-1.1 and cest-2.2 mutants, comparative metabolomic analysis of

the cest-4 mutant strains did not reveal any defects in the biosynthesis of known ascarosides.

Instead, we found that the levels of a specific subset of modular anthranilic acid (33) bearing indole

glucosides, including iglu#3 (34) and its phosphorylated derivative iglu#4 (35) were abolished in the

cest-4 mutant worms (Figure 3h). Abundances of the putative precursor glucosides, iglu#1 (15) and

iglu#2 (16), were not significantly changed in cest-4 (Figure 3i, Figure 3—figure supplement 2c).

Notably, production of other indole glucosides, e.g. iglu#6 (36) and iglu#8 (37), was not significantly

reduced in cest-4 worms (Figure 3j, Figure 3—figure supplement 4). Biosynthesis of iglu#3 and

iglu#4 was restored to wild-type levels in genetic revertant strains for cest-4 (Figure 3i, Figure 3—

figure supplement 3c). Therefore, it appears that cest-4 is specifically required for attachment of

anthranilic acid to the 60 position of glucosyl indole precursors, whereas attachment of tiglic acid,

nicotinic acid, and other moieties is cest-4-independent (Figure 3j, Figure 3—figure supplement 4).

The role of cest-4 in the biosynthesis of the iglu family of modular glucosides thus parallels that of

cest-1.1 in the biosynthesis of the uglas ascarosides: whereas cest-4 appears to be required for the

attachment of anthranilic acid (33) to the 6’ position of a range of indole glucosides, cest-1.1

appears to be required for attaching the ascr#1 side chain to the 20 position in uric acid glucosides.

CEST-2.2 localizes to intestinal granules
All cest homologs selected for this study exhibit domain architectures typical of the a/ß-hydrolase

superfamily of proteins, including a conserved catalytic triad, and further contain a predicted disul-

fide bridge, as in mammalian AChE (Soreq and Seidman, 2001; Figure 4—figure supplement 1).

The cest genes also share homology with neuroligin, a membrane bound member of the a/ß-hydro-

lase fold family, that mediates the formation and maintenance of synapses between neurons

(Bemben et al., 2015). Sequence analysis suggests that five of the seven CEST homologs studied

here are membrane anchored, given the presence of a predicted C-terminal transmembrane domain

(Krogh et al., 2001) (consisting of ~20 residues), with the N terminus on the luminal side of a vesicle

or organelle (Figure 4—figure supplement 2). Since the production of all so far identified cest-

dependent metabolites is abolished in glo-1 mutants, it seemed likely that the CEST proteins localize

to intestinal granules. To test this idea, we created a mutant strain that express cest-2.2 C-terminally

tagged with mCherry at the native genomic locus to avoid potentially confounding effects of overex-

pression. The red fluorescent mCherry was chosen because of the strong green autofluorescence of

the LROs (Coburn and Gems, 2013). We confirmed that production of all cest-2.2-dependent

metabolites, including ascr#8 (2), ascr#81 (27), and ascr#82 (28) was not significantly altered in cest-

2.2-mCherry mutants (Figure 4a), indicating that CEST-2.2 remained functional. Imaging of wild-

type adult worms revealed strong green and weaker red autofluorescence in circular features in

intestinal cells, consistent with LROs. In addition, cest-2.2-mCherry-tagged worms showed red fluo-

rescence in a distinct set of intestinal granules that showed little if any autofluorescence (Figure 4b,

Figure 4—figure supplements 3–4). It is unclear whether mCherry also localizes to the strongly

autofluorescent granules, as we cannot distinguish the mCherry signal from the red component of

the autofluorescence, given relatively low CEST-2.2-mCherry expression in this non-overexpressing

strain. Taken together, it appears that CEST-2.2-mCherry localizes to a subset of intestinal organelles

that is partly distinct from the autofluorescent LROs. Further studies are required to determine if

CEST-2.2-mCherry co-localizes with other intestinal granule markers, specifically GLO-1 and the lyso-

somal marker LMP-1.

Glo-1-dependent metabolites in C. briggsae
In addition to C. elegans and P. pacificus, modular ascarosides have been reported from several

other Caenorhabditis species (Dong et al., 2020; Kanzaki et al., 2018), including C. briggsae

(Dong et al., 2016; von Reuss, 2018). To assess whether the role of LROs in the biosynthesis of

modular metabolites is conserved across species, we created two Cbr-glo-1 (CBG01912.1) knock-
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out strains using CRISPR/Cas9. As in C. elegans, Cbr-glo-1 mutant worms lacked autofluorescent

LROs, which are prominently visible in wild-type C. briggsae (Figure 5—figure supplement 1). Com-

parative metabolomic analysis of the endo- and exo-metabolomes of wild-type C. briggsae and the

Cbr-glo-1 mutant strains revealed that biosynthesis of all known modular ascarosides is abolished in

Cbr-glo-1 worms, including the indole carboxy derivatives icas#2 (35) and icas#6.2 (36), which are

highly abundant in wild-type C. briggsae (Figure 5a; Dong et al., 2016). In addition, the C. briggsae

MS2 networks included several large Cbr-glo-1-dependent clusters representing modular glucosides,
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Figure 4. CEST-2.2 localizes to intestinal granules. (a) Relative amounts of cest-2.2-dependent metabolites in

worms expressing C-terminally mCherry-tagged CEST-2.2. (b) Red fluorescence in intestinal granules in wild-type

and cest-2.2-mCherry gravid adults. Top, wild-type (N2) control; bottom, cest-2.2-mCherry worms.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4a.

Figure supplement 1. Amino acid sequence alignments of human acetyl cholinesterase (hAChE), P. pacificus

UAR-1, and C. elegans CEST-1.1, CEST-2.2, and CEST-4.

Figure supplement 2. Transmembrane domain prediction for CEST proteins in this study (cest-1.1, cest-2.2, cest-

4, cest-6, cest-19, cest-33, ges-1).

Figure supplement 3. Red fluorescence in intestinal granules in gravid adults, expressing C-terminally mCherry-

tagged CEST-2.2.

Figure supplement 4. Co-localization of green and red autofluorescence in wild-type (N2) gravid adults.
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including many of the compounds also detected in C. elegans, for example iglu#4 and angl#4. As in

C. elegans, production of unmodified glucoside scaffolds, e.g. iglu#1 (15) and angl#1 (17), was not

reduced or increased in Cbr-glo-1 mutants, whereas biosynthesis of most modular glucosides

derived from attachment of additional moieties to these scaffolds was abolished (Figure 5b). Taken

together, these results indicate that the role of LROs as a central hub for the assembly of diverse

small molecule architectures, including modular glucosides and ascarosides, may be widely con-

served among nematodes (Figure 5c).
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Figure 5. Relative abundance of (a) simple and modular ascarosides and (b) simple and modular glucosides in the endo-metabolome of Cbr-glo-1

mutants relative to wild-type C. briggsae. n.d., not detected. (c) Model for modular metabolite assembly. CEST proteins (membrane-bound in the

LROs, red) mediate attachment of building blocks from diverse metabolic pathways to glucose scaffolds and peroxisomal b-oxidation-derived

ascarosides via ester and amide bonds. Some of the resulting modular ascarosides may undergo additional peroxisomal b-oxidation following

activation by acs-7 (Dolke et al., 2019).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5a–b.

Figure supplement 1. Gut granules in C. briggsae.
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Discussion
Our results indicate that in C. elegans the Rab-GTPase glo-1, which is required for formation of

intestinal LROs, plays a central role in the biosynthesis of several large compound families derived

from modular assembly via cest homologs. Formation of the autofluorescent LROs via glo-1 is remi-

niscent of the roles of its human orthologs RAB32 and RAB38, which are required for the formation

of melanosomes, and perhaps other LROs (Wasmeier et al., 2006; Marks et al., 2013). Lysosomes

and LROs are generally presumed to function in autophagy, phagocytosis, and the hydrolytic degra-

dation of proteins, and Rab32 family GTPases have been shown to be required for these processes

in diverse organisms (Morris et al., 2018). Consistent with the notion that lysosomes and LROs are

degradation hotspots, many of the building blocks of the identified modular ascarosides and gluco-

sides are derived from catabolic pathways, for example, anthranilic acid is derived from tryptophan

catabolism, uric acid stems from purine metabolism, and the short chain ascarosides are the end

products of peroxisomal b-oxidation of very long-chain precursors. Importantly, although our results

indicate that carboxylesterases participate in glo-1-dependent modular metabolite assembly, addi-

tional studies are required to clarify whether the intestinal compartments that carboxylesterases

localize to also contain GLO-1 and the lysosomal marker LMP-1, as is the case for the autofluores-

cent LROs (Tanji et al., 2016).

Further, our results demonstrate that the modular assembly paradigm extends beyond ascaro-

sides. The modular glucosides represent a previously unknown family of nematode metabolites. In

contrast to the well-established role of modular ascarosides as pheromones, it is unknown whether

modular glycosides serve specific biological functions, for example as signaling molecules; however,

their specific biosynthesis via cest-4 as well as their life-stage-dependent production strongly sup-

ports this hypothesis (Figure 2—figure supplement 8). Like the ascaroside pheromones, some mod-

ular glucosides are excreted into the media, suggesting that they could be involved in inter-

organismal communication. Identifying developmental and environmental conditions that affect

modular glucoside production, as well as a more comprehensive understanding of their biosynthe-

ses, may help uncover potential signaling and other biological roles. In particular, the apparent per-

oxisomal origin of the ascaroside scaffolds suggests a link between peroxisome and gut granule

activity, perhaps via pexophagy (Sakai et al., 2006), and characterization of the role of autophagy

for gut granule-dependent metabolism may contribute to uncovering the functions of modular glu-

coside and ascarosides. A connection to autophagy is also suggested by our previous finding

(Panda et al., 2017) that production of modular ascarosides is reduced in mutants of atg-18

(Palmisano and Meléndez, 2019), which is essential for autophagy.

The high degree of selectivity in which different building blocks are combined in the modular

ascarosides and glucosides strongly suggests that these compounds, despite their numbers and

diversity, represent products of dedicated enzymatic pathways, as has recently been established for

40-acylated ascarosides. Our results revealed a wider range of biosynthetic functions associated with

cest homologs, including esterification and amide formation at the carboxy terminus of ascarosides

and acylation of glucosides (Figure 5c). Notably, all cest null mutants whose metabolomes have

been characterized so far are defective in the biosynthesis of one or a few compounds sharing a spe-

cific structural feature, further supporting the view that these selectively assembled molecular archi-

tectures serve dedicated functions.

All CEST proteins that so far have been associated with modular metabolite assembly contain

membrane-anchors and exhibit domain architectures typical of serine hydrolases of the AChE family,

including an a/b-hydrolase fold, a conserved catalytic serine-histidine-glutamate triad, and bridging

disulfide cysteines (Figure 4—figure supplement 1; Soreq and Seidman, 2001). While our efforts

at heterologous expression of CEST proteins were unsuccessful, the finding that mutation of the cat-

alytic serine in cest-1.1(S213A) abolished production of all cest-1.1-dependent compounds suggests

that CEST enzymes directly participate in the biosynthesis of modular metabolites. Therefore, we

hypothesize that CEST proteins, after translating from the endomembrane system to glo-1-depen-

dent intestinal organelles, partake in the assembly of diverse ascaroside or glucoside-based architec-

tures via acyl transfer from corresponding activated intermediates, e.g. CoA or phosphate esters

(Soreq and Seidman, 2001; Vaz and Wanders, 2002). a/b-hydrolase fold enzymes are functionally

highly diverse (Rauwerdink and Kazlauskas, 2015) and include esterases, peptidases, oxidoreduc-

tases, and lyases, serving diverse biosynthetic roles in animals, plants (Mindrebo et al., 2016), and
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bacteria (Zheng et al., 2016). While acyltransferase activity is often observed as a side reaction for

esterases and lipases, a/b-hydrolase fold enzymes can function as dedicated acyltransferases,

for example in microbial natural product biosyntheses (Rauwerdink and Kazlauskas, 2015;

Lejon et al., 2008). Additional biochemical studies will be required to delineate the exact mecha-

nisms by which cest homologs contribute to modular metabolite assembly in nematodes.

Finally, although our results indicate that glo-1 is required for the biosynthesis of most modular

metabolites we have detected so far, it is notable that some modular ascarosides, e.g. iglas#1 (13),

and modular glucosides, e.g. iglu#6 (20) and iglu#8 (21), do not appear to be glo-1-dependent (Fig-

ure 2—figure supplement 7). This suggests that diverse cell compartments contribute to modular

metabolite biosynthesis and may also indicate that not all CEST proteins are delivered to the same

cellular compartment. Similarly, glo-1 mutants continue to generate the simple glucosides and

ascarosides that serve as scaffolds for further elaboration via CEST proteins, which may be derived

from UDP-glycosyltransferases (Mackenzie et al., 2005).

Reminiscent of the role of AChE for neuronal signal transduction in animals, it appears that, in C.

elegans, carboxylesterases with homology to AChE have been co-opted to establish additional sig-

nal transduction pathways that are based on a modular chemical language, for inter-organismal com-

munication, and perhaps also intra-organismal signaling. The biosynthetic functions of most of the

200 serine hydrolases in C. elegans, including more than 30 additional cest homologs, remain to be

assessed, and it seems likely that this enzyme family contributes to the biosynthesis of a large num-

ber of additional, yet unidentified compounds. Similarly, the exact enzymatic roles of many families

of mammalian serine hydrolases have not been investigated using HRMS-based untargeted metabo-

lomics. Our results may motivate a systematic characterization of metazoan cest homologs and other

serine hydrolases, with regard to their roles in metabolism and small molecule signaling, associated

enzymatic mechanisms, and cellular localization.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
Caenorhabditis elegans

N2 Caenorhabditis Genetics Center (CGC) Wild type

Strain, strain background
Caenorhabditis elegans

GH10 David Gems glo-1(zu437)

Strain, strain background
Caenorhabditis elegans

RB811 Caenorhabditis Genetics Center (CGC) glo-4(ok623)

Strain, strain background
Caenorhabditis elegans

RB2053 Caenorhabditis Genetics Center (CGC) ges-1(ok2716)

Strain, strain background
Caenorhabditis elegans

PS8031 This work cest-1.1(sy1180)

Strain, strain background
Caenorhabditis elegans

PS8032 This work cest-1.1(sy1181)

Strain, strain background
Caenorhabditis elegans

DP683 This work cest-1.1(dp683) (S213A)

Strain, strain background
Caenorhabditis elegans

PS8259 This work cest-1.1(sy1180 sy1250)

Strain, strain background
Caenorhabditis elegans

PS8260 This work cest-1.1(sy1180 sy1251)

Strain, strain background
Caenorhabditis elegans

PS8261 This work cest-1.1(sy1181 sy1252)

Strain, strain background
Caenorhabditis elegans

PS8262 This work cest-1.1(sy1181 sy1253)

Strain, strain background
Caenorhabditis elegans

PS8008 This work cest-2.2(sy1170)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
Caenorhabditis elegans

PS8009 This work cest-2.2 (sy1171)

Strain, strain background
Caenorhabditis elegans

PS8236 This work cest-2.2(sy1170 sy1236)

Strain, strain background
Caenorhabditis elegans

PS8238 This work cest-2.2(sy1171 sy1238)

Strain, strain background
Caenorhabditis elegans

FCS02 SunyBiotech cest-2.2-mCherry

Strain, strain background
Caenorhabditis elegans

PS8116 This work cest-4(sy1192)

Strain, strain background
Caenorhabditis elegans

PS8117 This work cest-4(sy1193)

Strain, strain background
Caenorhabditis elegans

PS8781 This work cest-4(sy1192)

Strain, strain background
Caenorhabditis elegans

PS8782 This work cest-4(sy1193)

Strain, strain background
Caenorhabditis elegans

PS8783 This work cest-4(sy1194)

Strain, strain background
Caenorhabditis elegans

PS8784 This work cest-4(sy1195)

Strain, strain background
Caenorhabditis elegans

RB1804 Caenorhabditis Genetics Center (CGC) cest-6(ok2338)

Strain, strain background
Caenorhabditis elegans

PS8029 This work cest-19(sy1178)

Strain, strain background
Caenorhabditis elegans

PS8030 This work cest-19(sy1179)

Strain, strain background
Caenorhabditis elegans

PS8033 This work cest-33(sy1182)

Strain, strain background
Caenorhabditis elegans

PS8034 This work cest-33(sy1183)

Strain (Caenorhabditis briggsae) PS8515 This work CBR-glo-1(sy1382)

Strain (Caenorhabditis briggsae) PS8516 This work CBR-glo-1(sy1383)

Peptide, recombinant protein Proteinase K New England Biolabs New England Biolabs: P8107S

Software, algorithm Metaboseek Metaboseek (metaboseek.com) Version 0.9.6

Software, algorithm GraphPad Prism GraphPad Prism (graphpad.com) Version 8.4.3

General information
Unless noted otherwise, all reagents were purchased from Sigma-Aldrich. All newly identified com-

pounds were assigned four letter ’SMID’s (a search-compatible, Small Molecule IDentifier)

for example ‘icas#3’ or ‘ascr#10’. For a list of all compounds referred to in the text and figures, see

Appendix 1—table 9. The SMID database (www.smid-db.org) is an electronic resource maintained

in collaboration with WormBase (www.wormbase.org). A complete list of SMIDs can be found at

www.smid-db.org/browse, and example structures for different SMIDs at www.smid-db.org/

smidclasses.

BLAST analysis of uar-1
Amino acid sequence of Ppa-UAR-1 was used as previously published (Falcke et al., 2018). BLASTp

was run from the WormBase engine at (https://wormbase.org/tools/blast_blat). E-value threshold

was set to 1E0. Database was set to WS269 and species was set to C. elegans. Results of BLASTp

search are listed in Appendix 1—table 2.

Le, Wrobel, et al. eLife 2020;9:e61886. DOI: https://doi.org/10.7554/eLife.61886 14 of 42

Research article Biochemistry and Chemical Biology

http://metaboseek.com/
https://graphpad.com/
http://www.smid-db.org
http://www.wormbase.org
http://www.smid-db.org/browse
http://www.smid-db.org/smidclasses
http://www.smid-db.org/smidclasses
https://wormbase.org/tools/blast_blat
https://doi.org/10.7554/eLife.61886


Amino acid sequence alignment
hAChE was aligned with Ppa-UAR-1, CEST-1.1, CEST-2.2, and CEST-4 was done using T-Coffee Mul-

tiple Sequence alignment (Notredame et al., 2000). Protein sequences for C. elegans CEST proteins

are from WormBase. The AChE sequence was obtained from NCBI (accession number P22303).

Amino acids were colored based on chemical properties: AVFPMILW = red (small + hydrophobic),

DE = blue (acidic), RHK = magenta (basic), STYHCNGQ = green (hydroxyl + sulfhydryl + amine +

glycine). See Figure 4—figure supplement 1 for results.

Phylogenetic tree
The protein sequence of Ppa-UAR1 was submitted to an NCBI BLASTp search (Altschul et al., 2005)

(restricted to species C. elegans, conditional compositional BLOSUM62, gap open cost:11, gap

extension cost: 1, word size: 6) using Geneious software (Biomatters Inc). The top BLAST hits by

E-value up to and including ace-3 were selected, and only the best scoring transcript variant was

kept for each protein sequence hit. A total of 28 sequences were then imported into MEGA7

(Kumar et al., 2016) and aligned using MUSCLE (Edgar, 2004) (settings: gap open penalty: �2.9,

gap extend 0, hydrophobicity multiplier 1.2, max. iterations 8, clustering method for all iterations:

UPGMB, minimal diagonal length: 24). From this alignment, an Maximum Likelihood tree was built

based on the JTT matrix-based model (Jones et al., 1992). Initial trees were built by applying

Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model

assuming uniform substitution rates across positions. Phylogeny confidence was tested using 200

bootstrap replications. The tree with the highest log likelihood (�22299.9282) is shown. At each

branch, the percentage of bootstrap replicates containing the same branching event is denoted. The

tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The

evolutionary history was inferred by using the Maximum Likelihood method based on the JTT

matrix-based model (Jones et al., 1992). The tree with the highest log likelihood (�22299.9282) is

shown. The percentage of trees in which the associated taxa clustered together is shown next to the

branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-

Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then

selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch

lengths measured in the number of substitutions per site. The analysis involved 28 amino acid

sequences. All positions containing gaps and missing data were eliminated. There were a total of

427 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al.,

2016; Felsenstein, 1985).

Nematode strains
Wild-type (N2) and glo-1(zu437) null animals were provided by the Caenorhabditis Genetics Center

(CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). cest-2.2

mutant strains integrating N-terminal (mCherry-cest-2.2) or C-terminal mCherry (cest-2.2-mCherry)

were generated by SunyBiotech. Generation of C. elegans and C. briggsae null mutants and rever-

tants as well as generation of the cest-1.1 point mutant is described below. See Appendix 1—table

3 for a complete list of strains used in this study.

C. elegans CRISPR mutagenesis for generation of cest null mutants
CRISPR/Cas9 mutagenesis was performed as in Wang et al., 2018. Briefly, C. elegans strain N2

was gene-edited by insertion of a 43-base-pair insertion that disrupts translation Appendix 1—table

8. Independent homozygous mutants were picked among the progeny of heterozygous F1 progeny

of injected hermaphrodites and given distinct unique allele names. Reversion of mutants was accom-

plished in the same way.

C. briggsae CRISPR mutagenesis for generation of glo-1 null mutants
The C. briggsae glo-1 mutants sy1382 and sy1383 were both created using the briggsae adaptation

of the STOP-IN cassette method as described in Cohen and Sternberg, 2019 and Wang et al.,

2018. Both strains were made using a successful insertion of the STOP-IN cassette into the middle

of the first exon using the guide AACAAATCTCCGGATGATTG. To detect the insertion, we used

forward primer GGGTGACCGCCCATTTATTG and reverse primer AAAGGCGCACATCTTGCTTC.
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C. elegans CRISPR mutagenesis for generation of the cest-1.1(dp683)
allele encoding the S213A catalytic mutant
cest-1(dp683) was generated as previously described (Paix et al., 2015). Briefly, daf-2(e1368) mutant

animals were injected with in-vitro-assembled Cas9-crRNA-tracrRNA complexes targeting cest-1.1

and the dpy-10 co-CRISPR gene and two 100 bp repair oligonucleotides containing the desired

cest-1.1 mutation and the dpy-10(cn64) co-CRISPR mutation (Arribere et al., 2014). Sequences of

the cest-1.1 crRNA and repair oligonucleotide are 5’ acctacCGCTACTATCATAC 3’ and 5’ GAAA

TTGAAAACTTTGGAGGAAATAAAAACAGAATTACATTGGCAGGGCATGCCGCTGGAGCAAGTA

TGATAGTAGCGgtaggtcacataaatgatacatttttg 3’, respectively. F1 Rol progeny of injected animals

were picked and screened for the presence of the cest-1.1(dp683) mutation after egglay. F2 broods

of F1 Rol animals that were heterozygous for cest-1.1(dp683) were screened for animals that were

homozygous for cest-1.1(dp683) and either wild-type or heterozygous for cn64 at the dpy-10 locus.

Subsequent broods were screened for wild-type dpy-10 animals to remove the co-CRISPR mutation.

Nematode imaging
To image, gravid adult C. elegans were transferred to an agarose pad on a glass slide with 10 mM of

levamisole to immobilize the worms. Microscopic analysis was performed using a Leica TCS SP5

Laser Scanning Confocal Microscope. Green autofluorescence was excited at 488 nm and the emis-

sion detector was set to 490–540 nm. mCherry was excited with 561 nm and the emission detector

was set to 590–650 nm. Worms were imaged using the 100x objective.

C. briggsae imaging
0.5 mL of 2 mM Lysotracker Deep Red (Thermo Fisher 1 mM stock in DMSO) was added to a 6 cm

NGM plate seeded with 0.1 mL of E. coli OP50 and incubated in the dark for 24 hr at 20˚C. L4 larvae

of C. briggsae were added to the plate and allowed to grow in the dark for 24 hr at 20˚C. To image,

C. briggsae were transferred to an agarose pad on a glass slide with 10 mM of levamisole to immobi-

lize the worms. Microscopic analysis was performed using a Zeiss Axio Imager Z2 florescence micro-

scope with Apotome.

Nematode cultures, mixed stage
Culturing began by chunking C. elegans or C. briggsae onto 10 cm NGM plates (each seeded with

800 mL of OP50 E. coli grown to stationary phase in Lennox Broth) and incubated at 22˚C. Once the

food was consumed, the cultures were incubated for an additional 24 hr. Each plate was then

washed with 25 mL of S-complete medium into a 125 mL Erlenmeyer flask, and 1 mL of OP50 E. coli

was added (E. coli cultures were grown to stationary phase in Terrific Broth, pelleted and resus-

pended at 1 g wet mass per 1 mL M9 buffer), shaking at 220 RPM and 22˚C. After 70 hr, cultures

were centrifuged at 5000 G for 1 min. After discarding supernatant, 24 mL H2O was added, along

with 6 mL bleach, 900 mL 10 M NaOH and the mixture was shaken for 3 min to prepare eggs. Eggs

were centrifuged at 5000 G, the supernatant was removed, and the egg pellet washed with 35 mL

M9 buffer twice and then suspended in a final volume of 5 mL M9 buffer in a 50 mL centrifuge tube.

Eggs were counted and placed on a rocker and allowed to hatch as L1 larvae for 24 hr at 22˚C.

70,000 L1 larvae were seeded in 25 mL cultures of S-complete with 1 mL of OP50 and incubated at

220 RPM and 22˚C in a 125 mL Erlenmeyer flask. After 72 hr, cultures were fed an additional 1 mL of

OP50 and incubation continued. After an additional 48 hr, worms were spun at 1000 G 5 min and

spent medium was separated from worm body pellet. Separated medium and worm pellet were

flash frozen over liquid nitrogen until further processing. At least three biological replicates were

grown for all mutant strains. Mutants were grown with parallel wildtype controls, and biological rep-

licates were started on different days.

Metabolite extraction
Lyophilized pellet and media samples were crushed and homogenized by shaking with 2.5 mm steel

balls at 1300 rpm for 3 min in 30 s pulses while chilled with liquid nitrogen (SPEX sample prep miniG

1600). Thus powdered media and pellet samples were extracted with 15 mL methanol in 50 mL cen-

trifuge tubes, rocking overnight at 22˚C. Extractions were pelleted at 5000 g for 10 min at 4˚C, and

supernatants were transferred to 20 mL glass scintillation vials. Samples were then dried in a
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SpeedVac (Thermo Fisher Scientific) vacuum concentrator. Dried materials were resuspended in 1

mL methanol and vortexed for 1 min. Samples were pelleted at 5000 g for 5 min and 22˚C, and

supernatants were transferred to 2 mL HPLC vials and dried in a SpeedVac vacuum concentrator.

Samples were then resuspended in 200 mL of methanol, transferred into 1.7 mL Eppendorf tubes,

and centrifuged at 18,000 G for 20 min at 4˚C. Clarified extracts were transferred to fresh HPLC vials

and stored at �20˚C until analysis.

Preparation of exo-metabolome samples from staged starved and fed
cultures
40,000 synchronized L1 larvae were added to 125 mL Erlenmeyer flasks containing 30 mL of S-com-

plete medium. Worms were fed with 4 mL of concentrated OP-50 and incubated at 20˚C with shak-

ing at 160 RPM for: 12 hr (L1), 24 hr (L2), 32 hr (L3), 40 hr (L4) and 58 hr (gravid adults). For

preparation of starved samples, each of the stages was starved for 24 hr after reaching their desired

developmental stage in S-complete without OP-50. After incubation for the desired time, liquid cul-

tures were centrifuged (1000 x g, 22˚C, 1 min) and supernatants were collected. Supernatant was

separated from intact OP-50 cells by centrifuging (3000 x g, 22˚C, 5 min) and the resulting superna-

tants (exo-metabolome) were lyophilized. Lyophilized samples were homogenized with a dounce

homogenizer in 10 mL methanol and extracted on a stirring plate (22˚C, 12 hr). The resulting suspen-

sion was centrifuged (4000 g, 22˚C, 5 min) to remove any precipitate before carefully transferring to

an LC-MS sample vial. Three biological replicates were started on different days.

Mass spectrometric analysis
High resolution LC-MS analysis was performed on a Thermo Fisher Scientific Vanquish Horizon

UHPLC System coupled with a Thermo Q Exactive HF hybrid quadrupole-orbitrap high-resolution

mass spectrometer equipped with a HESI ion source. 1 mL of extract was injected and separated

using at water-acetonitrile gradient on a Thermo Scientific Hypersil GOLD C18 column (150 mm x

2.1 mm 1.9 um particle size 175 Å pore size, Thermo Scientific) and maintained at 40˚C. Solvents

were all purchased from Fisher Scientific as HPLC grade. Solvent A: 0.1% formic acid in water; sol-

vent B: 0.1% formic acid in acetonitrile. A/B gradient started at 1% B for 5 min, then from 1% to

100% B over 20 min, 100% for 5 min, then down to 1% B for 3 min. Mass spectrometer parameters:

3.5 kV spray voltage, 380˚C capillary temperature, 300˚C probe heater temperature, 60 sheath flow

rate, 20 auxiliary flow rate, one spare gas; S-lens RF level 50.0, resolution 240,000, m/z range 100–

1200 m/z, AGC target 3e6. Instrument was calibrated with positive and negative ion calibration solu-

tions (Thermo-Fisher) Pierce LTQ Velos ESI pos/neg calibration solutions.

Feature detection and characterization
LC�MS RAW files from each sample were converted to mzXML (centroid mode) using MSConvert

(ProteoWizard), followed by analysis using the XCMS (Smith et al., 2006) analysis feature in METAB-

Oseek (metaboseek.com). Peak detection was carried out with the centWave algorithm

(Tautenhahn et al., 2008), values set as: 4 ppm, 320 peakwidth, 3 snthresh, 3100 prefilter, FALSE fit-

gauss, 1 integrate, TRUE firstBaselineCheck, 0 noise, wMean mzCenterFun, �0.005 mzdiff. XCMS

feature grouping values were set as: 0.2 minfrac, 2 bw, 0.002 mzwid, 500 max, 1 minsamp, FALSE

usegroup. METABOseek peak filling values set as: 5 ppm_m, 5 rtw, TRUE rtrange. Resulting tables

were then processed with the METABOseek Data Explorer. Molecular features were filtered for each

particular null mutant against all other mutants. Filter values were set as: 10 to max minFoldOverCtrl,

15000 to max meanInt, 120 to 1500 rt, 0.95 to max Peak Quality as calculated by METABOseek. Fea-

tures were then manually curated by removing isotopic and adducted redundancies. Remaining

masses were put on the inclusion list for MS/MS (ddMS2) characterization. Positive and negative

mode data were processed separately. In both cases we checked if a feature had a corresponding

peak in the opposite ionization mode, since fragmentation spectra in different modes often provide

complementary structural information. To acquire MS2 spectra, we ran a top-10 data dependent

MS2 method on a Thermo QExactive-HF mass spectrometer with MS1 resolution 60,000, AGC tar-

get 1 � 10̂6, maximum IT (injection time) 50 ms, MS2 resolution 45,000, AGC target 5 � 10̂5, maxi-

mum IT 80 ms, isolation window 1.0 m/z, stepped NCE (normalized collision energy) 25, 50, dynamic

exclusion 3 s.
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Statistical analysis
Peak integration data from HPLC-MS analysis were log-transformed (Karpievitch et al., 2012) prior

to statistical analysis. Significance of differences between average peak areas were then assessed

using unpaired t-tests.

MS2-based molecular networking
For the differential featuresidentified above, MS2 data was acquired. To generate the MS2 molecular

network, Metaboseek version 0.9.6 was used. Using the MS2scans function, differential features

were matched with their respective MS2 scan, using an m/z window of 5 ppm, and a retention time

window of 15 s. To construct the molecular network, tolerance of the fragment peaks was set to m/z

of 0.002 or 5 ppm, minimum number of peaks was set to 5, with a 2% noise level. Once the network

was constructed, a cosine value of 0.8 was used, and the number of possible connections was con-

strained to 5.

Serine hydrolase dendrogram
The serine hydrolase list was reported previously (Chen et al., 2019). From this list, sequences were

inputted into Geneious Prime (version 2020.1.2 Biomatters). Sequences were aligned using Clustal

Omega, neighbor joining alignment. Dendrogram tree was generated using the Geneious Tree

Builder; Genetic distance model Jukes-Cantor, Tree build method UPGMA, no outgroup, Bootstrap

resampling, random seed 508,949, 300 interactions, support threshold of 1. CEST enzymes were col-

ored red and PPA-UAR-1 was colored blue (Figure 1—figure supplement 1).

Synthetic procedures

Synthesis of iglu#1 (15). iglu#1 was synthesized as described previously (Messaoudi et al.,
2004).
Synthesis of angl#1 (17). angl#1 was synthesized as described previously (Coburn et al.,
2013).

Scheme 1. Synthesis of 2-((tert-butoxycarbonyl)amino)benzoic acid (Boc-AA, SI-1).

To a solution of anthranilic acid (33, 300 mg, 2.18 mmol) in 4 mL of THF and H2O (1:1), Boc-anhy-

dride (521 mg, 2.39 mmol) was added, and 2 M NaOH was added to the mixture until pH 10 was

reached. The reaction mixture was stirred at room temperature. After 23 hr, the solution was con-

centrated in vacuo, and 15% citric acid aqueous solution was added until pH 4 was reached. The

white precipitate was filtered off and dried under vacuum to provide 2-((tert-butoxycarbonyl)amino)

benzoic acid (SI-1, 497 mg, 96%) as a white solid. 1H NMR, 600 MHz, chloroform-d: d (ppm) 10.06

(s, 1H), 8.47 (dd, J = 8.7, 0.9 Hz, 1H), 8.08 (dd, J = 7.9, 1.5 Hz, 1H), 7.57 (dt, J = 7.9, 1.5 Hz, 1H),

7.03 (dt, J = 7.2, 1.2 Hz, 1H), 1.55 (s, 9H).

Scheme 2. Synthesis of N-b-(6-(2’-aminobenzoyl)-glucopyranosyl) indole (iglu#3, 34).

To a stirred solution of N-(tert-butoxycarbonyl)anthranilic acid (Krueger et al., 2008) (SI-1, 10

mg, 0.042 mmol) in dimethylformamide, 1-(3-dimethylaminopropyl)�3-ethylcarbodiimide
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hydrochloride (EDC�HCl, 20.1 mg, 0.105 mmol) was added. The mixture was stirred at room temper-

ature for 5 min, and 4-dimethylaminopyridine (DMAP, 18.1 mg, 0.105 mmol) and N-b-glucopyranosyl

indole (iglu#1, 15, 9.8 mg, 0.0351 mmol) were added. The reaction mixture was stirred at room tem-

perature. After 5 hr, the mixture was concentrated in vacuo to yield a viscous oil, which was dis-

solved in 1.4 mL of a 5:2 mixture of dichloromethane and methanol. Trifluoroacetic acid (TFA, 0.5

mL) was added slowly and the reaction mixture was stirred at room temperature. After 3 hr, the mix-

ture was concentrated in vacuo. Preparative HPLC provided a pure sample of iglu#3 (34, 0.8 mg,

5.7%). See Appendix 1—table 4 for NMR spectroscopic data of iglu#3.

HRMS (ESI) m/z: [M - H]- calcd for C21H21N2O6
- 397.13938; found 397.14017.

Scheme 3. Synthesis of N-b-(6-nicotinoylglucopyranosyl) indole (iglu#5, SI-2).

To a stirred solution of nicotinic acid (7.3 mg, 0.059 mmol) in a mixture of dimethylformamide

and dichloromethane (1:1), EDC�HCl (28.4 mg, 0.148 mmol) was added. The mixture was stirred at

room temperature for 30 min, before DMAP (18.1 mg, 0.148 mmol) and N-b-glucopyranosyl indole

(iglu#1, 15, 13.8 mg, 0.0494 mmol) were added. The reaction mixture was stirred at room tempera-

ture for 20 hr, the mixture was concentrated in vacuo, and flash column chromatography on silica

using a gradient of 0–25% methanol in dichloromethane afforded iglu#5 (SI-2, 2.5 mg, 13.9%) as a

colorless oil. See Appendix 1—table 5 for NMR spectroscopic data of iglu#5.

HRMS (ESI) m/z: [M + H]+ calcd for C20H21N2O6
+ 385.13941; found 385.14038.

Scheme 4. Synthesis of N-b-(6-(2’-methylbut-2’E-enoyl)-glucopyranosyl) indole (iglu#7, SI-3).

To a stirred solution of tiglic acid (5.0 mg, 0.050 mmol) in a 1:1 mixture of dimethylformamide

and dichloromethane, EDC�HCl (23.9 mg, 0.125 mmol) was added. The mixture was stirred at room

temperature for 30 min, and DMAP (15.2 mg, 0.125 mmol) and N-b-glucopyranosyl indole (iglu#1,

15, 11.6 mg, 0.0416 mmol) were added. The reaction mixture was stirred at room temperature for

22 hr and then concentrated in vacuo. Flash column chromatography on silica using a gradient of 0–

30% methanol in dichloromethane afforded iglu#7 (SI-3, 2.5 mg, 11.3%) as a colorless oil. See

Appendix 1—table 6 for NMR spectroscopic data of iglu#7.

HRMS (ESI) m/z: [M + H]+ calcd for C19H24NO6
+ 362.15981; found 362.16025.
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Scheme 5. Synthesis of N-b-(6-(pyrrole-2’-carbonyl)-glucopyranosyl) indole (iglu#9, SI-4).

To a suspension of pyrrole-2-carboxylic acid (6.0 mg, 0.054 mmol) in dichloromethane, oxalyl

chloride (14 mL, 0.163 mmol) was added slowly, followed by dimethylformamide (1 mL, 0.0129

mmol). The mixture was stirred at room temperature for 18 hr and then concentrated to dryness

in vacuo. The residue was re-dissolved in dimethylformamide (2 mL) containing N-b-glucopyranosyl

indole (iglu#1, 15, 10.8 mg, 0.0387 mmol). Triethylamine (45 mL, 0.324 mmol) was added, and the

reaction was stirred at 35˚C for 7 days. Subsequently the mixture was concentrated in vacuo, and

flash column chromatography on silica using a gradient of 0–30% methanol in dimethylformamide

afforded iglu#9 (SI-4, 1.5 mg, 10.4%) as a colorless oil. See Appendix 1—table 7 for NMR spectro-

scopic data of iglu#9.

HRMS (ESI) m/z: [M + H]+ calcd for C19H21N2O6
+ 373.13941; found 373.14026.

Scheme 6. Synthesis of an HPLC standard of ((2R,3S,4S,5R,6S)�6-((2-aminobenzoyl)oxy)�3,4,5-

trihydroxytetrahydro-2H-pyran-2-yl)methyl 2-aminobenzoate (angl#3, SI-5).

To a stirred solution of Boc-AA (2 mg, 0.00 84 mmol) in dimethylformamide, 1-(3-

dimethylaminopropyl)�3-ethylcarbodiimide hydrochloride (3.9 mg, 0.0203 mmol) was added. The

mixture was stirred at room temperature for 5 min, and 4-dimethylaminopyridine (2.5 mg, 0.0203

mmol) and angl#1 (17, 2 mg, 0.0068 mmol) were added. The reaction mixture was stirred at room

temperature. After 5 hr, the mixture was concentrated in vacuo. The crude product was dissolved in

0.55 mL dichloromethane and methanol (10:1), and trifluoroacetic acid (500 mL) was added slowly.

The reaction mixture was stirred at room temperature for 3 hr and then was concentrated in vacuo,

affording angl#3 (SI-5).

HRMS (ESI) m/z: [M + H]+ calcd for C20H23N2O7
+ 403.14998; found 403.15100.
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Scheme 7. Synthesis of an HPLC standard of N-(p-aminobenzoyl)glutamate (PABA-glutamate) (29).

p-Aminobenzoic acid (Chem-Impex) (8) was dissolved in warm dichloromethane (DCM) containing

triethylamine (0.1 eq). EDC�HCl (Amresco Biochemicals) (1 eq), and di-tert-butyl glutamate (1 eq)

was added to the reaction mixture. N,N-Dimethylaminopyridine (1.1 eq) was then added and the

resulting mixture was stirred at room temperature for 24 hr and then extracted with ethyl acetate.

The combined extractswere dried with sodium sulfate and evaporated to dryness in vacuo. The

crude product was dissolved in DCM, and trifluoroacetic acid was added (100 eq). The reaction was

then stirred for 6 hr at room temperature. TFA and DCM were evaporated off to yield crude PABA-

glutamate (29). 1H NMR, 600 MHz, methanol-d4: d (ppm) 7.93 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.5

Hz, 2H), 4.61 (dd, J = 5.0, 9.3 Hz, 1H), 2.09–2.28 (m, 4H).

NMR spectra appendix. NMR spectra of synthetic intermediates and newly identified

metabolites.

Acknowledgements
This research was funded by an NIH Chemical Biology Interface (CBI) Training Grant 5T32GM008500

(to B.C.), National Institutes of Health grants R35 GM131877 (to F.C.S.), and R24OD023041 (to P.W.

S.). F.C.S. is a Faculty Scholar of the Howard Hughes Medical Institute. We thank WormBase for

sequences, Tsui-Fen Chou for Cas9 protein, Ying (Kitty) Zhang for assistance with NMR spectros-

copy, and Navid Movahed for assistance with mass spectrometry.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health R35 GM131877 Frank C Schroeder

National Institutes of Health R24 OD023041 Paul W Sternberg

National Institutes of Health 5T32GM008500 Brian J Curtis

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Henry H Le, Chester JJ Wrobel, Conceptualization, Data curation, Formal analysis, Investigation,

Writing - original draft, Writing - review and editing; Sarah M Cohen, Conceptualization, Resources,

Methodology; Jingfang Yu, Resources, Formal analysis; Heenam Park, Resources, Methodology;

Maximilian J Helf, Software, Methodology; Brian J Curtis, Resources, Investigation; Joseph C Kruem-

pel, Patrick J Hu, Resources; Pedro Reis Rodrigues, Data curation, Investigation; Paul W Sternberg,

Conceptualization, Funding acquisition, Writing - original draft, Project administration, Writing -

review and editing; Frank C Schroeder, Conceptualization, Formal analysis, Supervision, Funding

acquisition, Writing - original draft, Project administration, Writing - review and editing

Le, Wrobel, et al. eLife 2020;9:e61886. DOI: https://doi.org/10.7554/eLife.61886 21 of 42

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.61886


Author ORCIDs

Henry H Le http://orcid.org/0000-0003-2942-2357

Jingfang Yu http://orcid.org/0000-0003-1770-5368

Paul W Sternberg https://orcid.org/0000-0002-7699-0173

Frank C Schroeder https://orcid.org/0000-0002-4420-0237

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.61886.sa1

Author response https://doi.org/10.7554/eLife.61886.sa2

Additional files
Supplementary files
. Supplementary file 1. NMR spectra appendix. NMR spectra of synthetic intermediates and newly

identified metabolites.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

MS/MS data is available via MassIVE under accession number: MSV000086293.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Le HH, Wrobel CJJ,
Cohen SM, Yu J,
Park H, Helf MJ,
Curtis BJ, Kruempel
JC, Rodrigues PR,
Hu PJ, Sternberg
PW, Schroeder FC

2020 Modular metabolite assembly in C.
elegans depends on
carboxylesterases and formation of
lysosome-related organelles

https://massive.ucsd.
edu/ProteoSAFe/data-
set.jsp?task=
715e60ce44ae4ecea2-
b84e28dd336c01

MassIVE, MSV0000
86293

References
Aalto AP, Nicastro IA, Broughton JP, Chipman LB, Schreiner WP, Chen JS, Pasquinelli AE. 2018. Opposing roles
of microRNA argonautes during Caenorhabditis elegans aging. PLOS Genetics 14:e1007379. DOI: https://doi.
org/10.1371/journal.pgen.1007379, PMID: 29927939

Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK. 2005. Protein database
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Appendix 1

Supporting tables

Appendix 1—table 1. MS2 data of glo-1-dependent features presented in this manuscript.

Representative MS/MS spectra of modular glucosides.

Formula

RT

[min.]

Compound

number SMID

m/z (M

+H)

m/z (M-

H)

ms/ms

fragments,

positive

ionization mode

ms/ms

fragments,

negative

ionization mode

Substituents on

glucose

Stable

isotope

labeling

C26H26N3O12P 9.30 angl#10 604.13381 602.11813 105.03366 (C7 H5

O+) 120.04469 (C7

H6 O N+)

96.96870 (H2 O4

P-) 121.02911 (C7

H5 O2-) 136.03983

(C7 H6 O2 N-)

anthranilic acid,

nicotinic acid

C20H22N2O7 8.67 SI-5 angl#3 403.14998 401.13542 120.04459 (C7 H6

O N+) 138.05496

(C7 H8 O2 N+)

anthranilic acid,

anthranilic acid

C20H23N2O11P 9.26 25 angl#4 499.11235 497.09667 120.04463

(C7H6ON+)

96.96868 (H2 O4

P-) 78.95800 (O3

P-) 136.03999 (C7

H6 O2 N-)

223.00078 (C6 H8

O7 P-)

anthranilic acid,

anthranilic acid

C19H21N2O9P 9.59 22 iglu#10 453.10574 451.09119 94.02916 (C5 H4 O

N+) 118.06535 (C8

H8 N+) C14 H12

O2 N (C14 H12 O2

N+)

78.95802 (O3 P-)

96.96867 (H2 O4

P-) 110.02444 (C5

H4 O2 N-)

116.05042 (C8 H6

N-)

indole, nicotinic

acid

C21H22NO9P 10.79 23 iglu#12 464.11049 462.09594 105.03382 (C7 H5

O+) 118.06538 (C8

H8 N+) 226.08620

(C14 H12 O2 N+)

348.12271 (C21

H18 O4 N+)

78.95801 (O3 P-)

96.96865 (H2 O4

P-)

indole, benzoic

acid

C14H18NO8P 6.05 16 iglu#2 360.08541 358.06973 98.98453 (H4 O4 P

+) 118.06536 (C8

H8 N+) 244.09660

(C14 H14 O3 N+)

78.95802 (O3 P-)

96.96869 (H2 O4

P-)

indole

C21H22N2O6 10.69 34 iglu#3 399.15506 397.13938 116.05032 (C8 H6

N-) 136.04002 (C7

H6 O2 N-)

215.09431 (C13

H13 O2 N-)

indole,

anthranilic acid

C21H23N2O9P 10.29 19 iglu#4 479.12252 477.10684 118.06536 (C8 H8

N+) 120.04456 (C7

H6 O N+)

138.05490 (C7 H8

O2 N+) 226.08612

(C14 H12 O2 N+)

78.95801 (O3 P-)

96.96867 (H2 O4

P-) 116.05042 (C8

H6 N-) 136.03970

(C7 H6 O2 N-)

358.06805 (C14

H17 O8 N P-)

indole,

anthranilic acid

C27H26N3O10P 10.49 41 iglu#41 584.14398 582.1283 96.04494 (C5 H6 O

N+) 120.04456 (C7

H6 O N+)

124.03937 (C6 H6

O2 N+) 166.04985

(C8 H8 O3 N+)

228.06477 (C13

H10 O3 N+)

330.03705 (C12

H13 O8 N P+)

78.95801 (O3 P-)

96.96867 (H2 O4

P-) 122.02431 (C6

H4 O2 N-)

136.04013 (C7 H6

O2 N-)

indole,

anthranilic acid,

nicotinic acid

Continued on next page
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Appendix 1—table 1 continued

Representative MS/MS spectra of modular glucosides.

Formula

RT

[min.]

Compound

number SMID

m/z (M

+H)

m/z (M-

H)

ms/ms

fragments,

positive

ionization mode

ms/ms

fragments,

negative

ionization mode

Substituents on

glucose

Stable

isotope

labeling

C26H29N2O10P 10.48 20 iglu#42 561.16439 559.14871 83.04974 (C5 H7 O

+) 118.06553 (C8

H8 N+) 120.04465

(C7 H6 O N+)

202.08635 (C12

H12 O2 N+)

78.95805 (O3 P-)

96.96868 (H2 O4

P-)136.03995 (C7

H6 O2 N-)

indole, antranilic

acid, tiglic acid

C20H20N2O6 8.93 SI-2 iglu#5 385.13941 383.12373 106.02911 (C6 H4 O N+) 118.06535 (C8

H8 N+) 124.03936 (C6 H6 O2 N+)

268.08124 (C12 H14 O6 N+)

indole, nicotinic

acid

C20H21N2O9P 8.29 20 iglu#6 465.10687 463.09119 106.02907 (C6 H4

O N+) 118.06532

(C8 H8 N+)

124.03942 (C6 H6

O2 N+) 226.08630

(C14 H12 O2 N+)

250.07079 (C12

H12 O5 N+)

78.95802 (O3 P-)

96.96868 (H2 O4

P-) 122.02421 (C6

H4 O2 N-)

340.05878 (C14

H15 O7 N P-)

indole, nicotinic

acid

C19H23NO6 11.24 SI-3 iglu#7 362.15981 360.14413 83.04967 (C5 H7 O+) 101.06001 (C5 H9

O2+) 118.06536 (C8 H8 N+) 198.09097

(C13 H12 O N+) 226.08626 (C14 H12 O2

N+)

indole, tiglic

acid

C19H24NO9P 10.48 21 iglu#8 442.12727 440.11159 83.04967 (C5 H7 O

+) 101.06020 (C5

H9 O2+)

118.06538 (C8 H8

N+) 226.08621

(C14 H12 O2 N+)

78.95798 (O3 P-)

96.96864 (H2 O4

P-) 116.05011 (C8

H6 N-)

indole, tiglic

acid

C19H20N2O6 6.33 SI-4 iglu#9 373.13941 371.12486 110.02437 (C5 H4

O2 N-) 116.05027

(C8 H6 N-)

indole, nicotinic

acid

C21H27N2O11P 4.31 oglu#4 515.14365 513.12797 120.04459 (C7 H6

O N+) 136.07550

(C8 H10 O N+)

138.05511 (C7 H8

O2 N+) 216.06795

(C12 H10 O3 N+)

78.95781 (O3 P-)

96.96854 (H2 O4

P-) 136.03995 (C7

H6 O2 N-)

223.00067 (C6 H8

O7 P-) 376.07953

(C14 H19 O9 N P-)

octopamine,

anthranilic acid

d1 from

d2-L-

Tyrosine

C18H24N2O7 4.79 sgnl#1 381.16563 379.14995 217.09767 (C12

H13 O2 N2-)

n-

acetylserotonin

C25H29N3O8 7.34 sgnl#3 500.20274 498.18706 120.04427

(C7H6NO+)

160.07555

(C10H10NO+)

n-

acetylserotonin,

anthranilic acid

C25H30N3O11P 7.89 sgnl#4 580.1702 578.15452 120.04459 (C7 H6

O N+) 138.05498

(C7 H8 O2 N+)

160.07590 (C10

H10 O N+)

219.11266 (C12

H15 O2 N2+)

(O3 P-) 96.96865

(H2 O4 P-)

136.04048 (C7 H6

O2 N-) 223.00072

(C6 H8 O7 P-)

n-

acetylserotonin,

anthranilic acid

Continued on next page
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Appendix 1—table 1 continued

Representative MS/MS spectra of modular glucosides.

Formula

RT

[min.]

Compound

number SMID

m/z (M

+H)

m/z (M-

H)

ms/ms

fragments,

positive

ionization mode

ms/ms

fragments,

negative

ionization mode

Substituents on

glucose

Stable

isotope

labeling

C29H33N2O11P 8.22 tyglu#12 617.1906 615.17492 120.04458 (C7 H6

O N+) 238.08728

(C15 H12 O2 N+)

78.95803 (O3 P-)

96.96867 (H2 O4

P-) 136.04008 (C7

H6 O2 N-)

135.04503 (C8 H7

O2-) 360.08469

(C14 H19 O8 N P-)

478.12738 (C29

H20 O6 N-)

tyramine,

anthranilic acid,

phenylacetic

acid

d2 from

d2-L-

Tyrosine

C26H35N2O11P 7.92 tyglu#14 583.20625 581.19057 109.02870 (C6 H5

O2+) 120.04459

(C7 H6 O N+)

138.05489 (C7 H8

O2 N+) 204.10226

(C12 H14 O2 N+)

257.12808 (C15

H17 O2 N2+)

348.14429 (C18

H22 O6 N+)

78.95802 (O3 P-)

96.96866 (H2 O4

P-) 101.05991 (C5

H9 O2-) 136.04047

(C7 H6 O2 N-)

444.14252 (C19

H27 O9 N P-)

tyramine,

anthranilic acid,

(iso)valeric acid

C28H31N2O11P 7.97 tyglu#16 603.17495 601.15927 105.03380 (C7 H5

O+) 120.04455 (C7

H6 O N+)

138.05487 (C7 H8

O2 N+) 224.07047

(C14 H10 O2 N+)

257.12775 (C15

H17 O2 N2+)

368.11160 (C20

H18 O6 N+)

78.95805 (O3 P-)

96.96869 (H2 O4

P-) 121.02914 (C7

H5 O2-) 136.03978

(C7 H6 O2 N-)

464.11099 (C21

H23 O9 N P-)

tyramine,

anthranilic acid,

carboxy-benzyl

d2 from

d2-L-

Tyrosine

C21H27N2O10P 5.40 tyglu#2 499.14874 497.13306 120.04459 (C7 H6

O N+) 138.05487

(C7 H8 O2 N+)

138.09137 (C8 H12

O N+) 257.12814

(C15 H17 O2 N2+)

264.08633 (C13

H14 O5 N+)

78.95802 (O3 P-)

96.96870 (H2 O4

P-) 136.04005 (C7

H6 O2 N-)

223.00053 (C6 H8

O7 P-) 360.08472

(C14 H19 O8 N P-)

tyramine,

anthranilic acid

d2 from

d2-L-

Tyrosine

C28H32N3O11P 7.65 26 tyglu#4 618.18585 616.17017 120.04459 (C7 H6

O N+) 138.09137

(C8 H12 O N+)

78.95802 (O3 P-)

96.96867 (H2 O4

P-) 136.03989 (C7

H6 O2 N-)

479.12198 (C21

H24 O9 N2 P-)

tyramine,

anthranilic acid

(x2)

C27H30N3O11P 6.55 tyglu#6 604.1702 602.15452 106.02901 (C6 H4

O N+) 120.04460

(C7 H6 O N+)

124.03939 (C6 H6

O2 N+) 138.05513

(C7 H8 O2 N+)

166.04988 (C8 H8

O3 N+) 257.12781

(C15 H17 O2 N2+)

78.95781 (O3 P-)

96.96851 (H2 O4

P-) 223.00017 (C6

H8 O7 P-)

381.09375 (C16

H17 O9 N2-)

534.17279 (C22

H33 O12 N P-)

tyramine,

anthranilic acid,

nicotinic acid

d2 from

d2-L-

Tyrosine

C26H33N2O11P 7.67 tyglu#8 581.1906 579.17492 83.04968 (C5 H7 O

+) 120.04460 (C7

H6 O N+)

138.05479 (C7 H8

O2 N+) 257.12848

(C15 H17 O2 N2+)

78.95779 (O3 P-)

96.96852 (H2 O4

P-) 99.04408 (C5

H7 O2-) 136.03972

(C7 H6 O2 N-)

442.12637 (C19

H25 O9 N P-)

tyramine,

anthranilic acid,

tiglic acid

d2 from

d2-L-

Tyrosine
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Appendix 1—table 2. BLASTp results from the WormBase BLAST engine when searching against

the amino acid sequence of UAR-1 and CRISPR/Cas9 targets for this study (red).

Sequence Score E-value

C01B10.10 280 2e-75

C01B10.4a 260 2e-69

T22D1.11 248 7e-66

C42D4.2 233 4e-61

C17H12.4 231 1e-60

C23H4.4a 225 8e-59

C23H4.7 199 6e-51

C23H4.3 194 1e-49

E01G6.3 193 3e-49

C23H4.2 168 1e-41

T02B5.1 157 2e-38

F15A8.6a 154 1e-37

F15A8.6b 154 1e-37

ZC376.3 153 3e-37

T02B5.3 150 2e-36

ZC376.2b 148 1e-35

ZC376.2a 147 2e-35

F56C11.6b 141 1e-33

F56C11.6a 137 2e-32

Y71H2AM.13 136 5e-32

ZC376.1 135 1e-31

R173.3 r 129 6e-30

T07H6.1a 127 2e-29

T28C12.4a 124 1e-28

T28C12.4b 124 2e-28

K07C11.4 119 6e-27

R12A1.4 118 1e-26

K11G9.2 116 4e-26

02B12.4 115 8e-26

Y75B8A.3 114 3e-25

Y48B6A.8 113 4e-25

F13H6.3 111 2e-24

Y48B6A.7 109 5e-24

09B12.1 108 9e-24

K11G9.1 108 2e-23

ZC376.2c 105 7e-23

F07C4.12b 105 7e-23

C52A10.1 101 1e-21

Y44E3A.2 101 2e-21

K11G9.3 99 1e-20

C52A10.2 97 3e-20
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Appendix 1—table 2 continued

Sequence Score E-value

C40C9.5d 96 6e-20

C40C9.5b 96 6e-20

C40C9.5a 96 6e-20

F55D10.3 96 1e-19

C40C9.5f 94 2e-19

C01B10.4b 94 2e-19

C40C9.5g 94 2e-19

C40C9.5c 94 3e-19

C40C9.5e 94 3e-19

B0238.7 93 4e-19

B0238.1 92 1e-18

F55F3.2b 83 6e-16

F55F3.2a 83 7e-16

C23H4.4b 50 5e-06

Y43F8A.3a 42 0.002

Y43F8A.3b 35 0.18

Appendix 1—table 3. List of C. elegans strains used in this study.

Strain
name Identifier Description Associated metabolites

PS8031 cest-1.1(sy1180) cest-1.1 null uglas#1 uglas#11

PS8032 cest-1.1(sy1181) cest-1.1 null uglas#1 uglas#11

PS8259 cest-1.1(sy1180
sy1250)

cest-1.1 null reverted to WT
sequence

uglas#1 uglas#11

PS8260 cest-1.1(sy1180
sy1251)

cest-1.1 null reverted to WT
sequence

uglas#1 uglas#11

PS8261 cest-1.1(sy1181
sy1252)

cest-1.1 null reverted to WT
sequence

uglas#1 uglas#11

PS8262 cest-1.1(sy1181
sy1253)

cest-1.1 null reverted to WT
sequence

uglas#1 uglas#11

PS8008 cest-2.2(sy1170) cest-2.2 null ascr#8, ascr#81, ascr#82

PS8009 cest-2.2(sy1171) cest-2.2 null ascr#8, ascr#81, ascr#82

PS8236 cest-2.2(sy1170
sy1236)

cest-2.2 null reverted to WT
sequence

ascr#8, ascr#81, ascr#82

PS8238 cest-2.2(sy1171
sy1238)

cest-2.2 null reverted to WT
sequence

ascr#8, ascr#81, ascr#82

PS8116 cest-4(sy1192) cest-4 null iglu class modular glucosides

PS8117 cest-4(sy1193) cest-4 null iglu class modular glucosides

JJ1271 glo-1(zu437) glo-1 null Most known modular ascarosides/
glucosides

PS8781 cest-4(sy1192) cest-4 null reverted to WT sequence iglu class modular glucosides

PS8782 cest-4(sy1193) cest-4 null reverted to WT sequence iglu class modular glucosides

PS8783 cest-4(sy1194) cest-4 null reverted to WT sequence iglu class modular glucosides

PS8784 cest-4(sy1195) cest-4 null reverted to WT sequence iglu class modular glucosides

PS8515 CBR-glo-1-A (sy1382) C. briggsae glo-1 null Most known modular ascarosides/
glucosides
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Appendix 1—table 3 continued

Strain
name Identifier Description Associated metabolites

PS8516 CBR-glo-1-B (sy1383) C. briggsae glo-1 null Most known modular ascarosides/
glucosides

PS8029 cest-19(sy1178) cest-19 null Undetermined

PS8030 cest-19(sy1179) cest-19 null Undetermined

PS8033 cest-33(sy1182) cest-33 null Undetermined

PS8034 cest-33(sy1183) cest-33 null Undetermined

RB2053 ges-1 (ok2716) ges-1 null Undetermined

RB1804 cest-6(ok2338) cest-6 null Undetermined

DP683 cest-1.1(dp683) cest-1.1 (S213A) point mutant uglas#1 uglas#11

FCS02 cest-2.2-mCherry cest-2.2 C-terminal mCherry ascr#8, ascr#81, ascr#82

Appendix 1—table 4. NMR spectroscopic data for iglu#3 (34).
1H (600 MHz), HSQC, and HMBC NMR spectroscopic data were acquired in methanol-d4. Chemical

shifts were referenced to d(CHD2OD)=3.31 ppm and d(13CHD2OD)=49.00 ppm.

Position d
13C [ppm] d

1H ([ppm] JHH[Hz]) HMBC

1 86.9 5.51 (J1,2 = 9.3) C-2, C-3, C-5, C-2’, C-9’

2 73.0 3.99 (J2,3 = 9.0) C-1, C-3

3 78.7 3.65 (J3,4 = 9.0) C-4

4 71.3 3.64 (J4,5 = 9.1) C-3

5 77.5 3.91 (J5,6a = 5.5) C-4

6a 64.1 4.43 (J6a,6b = 12.1) C-5, C-10 0

6b 4.67 (J5,6b = 2.2) C-4, C-10 0

20 126.3 7.37 (J2’,3’=3.3) C-1 (weak), C-3’, C-4’, C-8’ (weak), C-9’

30 102.9 6.48

40 130.4

50 121.4 7.52 (J5’,6’=8.0) C-3’, C-7’, C-9’

60 120.8 7.03 (J6’,7’=7.4,
J3’,6’=1.1)

C-4’, C-8’

70 122.4 7.06 C-5’, C-9’

80 111.5 7.53 C-4’, C-6’
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90 137.5

10 0 168.6

20 0 112.8

30 0 132.1 7.90 (J3’’,4’’=8.2,
J3’’,5’’=1.4)

C-1’’, C-5’’, C-7’’

40 0 118.2 6.73 (J4’’,5’’=7.6) C-2’’, C-6’’

50 0 135.0 7.32 (J5’’,6’’=7.8) C-3’’, C-7’’

60 0 118.6 6.84 C-2’’, C-4’’

70 0 149.9

Appendix 1—table 5. NMR spectroscopic data for iglu#5 (SI-2).
1H (600 MHz), HSQC, and HMBC NMR spectroscopic data were acquired in methanol-d4. Chemical

shifts were referenced to d(CHD2OD)=3.31 ppm and d(13CHD2OD)=49.00 ppm.

Position d
13C [ppm] d

1H ([ppm] JHH[Hz]) HMBC

1 86.9 5.51 (J1,2 = 9.2) C-2, C-3, C-5, C-2’, C-9’

2 73.0 4.00 (J2,3 = 9.0) C-1, C-3

3 78.7 3.65 (J3,4 = 9.0) C-4

4 71.4 3.63 (J4,5 = 8.9) C-3

5 77.4 3.95 (J5,6a = 5.8) C-4

6a 65.3 4.51 (J6a,6b = 12.1) C-4, C-5, C-10 0

6b 4.75 (J5,6b = 2.3) C-4, C-5, C-10 0

20 126.4 7.37 (J2’,3’=3.5) C-3’, C-4’, C-9’

30 103.1 6.47 C-2’, C-4’, C-9’

40 130.5

50 121.4 7.51 (J5’,6’=7.9) C-4’, C-6’, C-9’

60 120.8 7.01 (J6’,7’=7.5,
J3’,6’=1.2)

C-4’, C-8’

70 122.5 7.05 C-4’, C-5’, C-8’, C-9’

80 111.4 7.49 C-4’, C-6’

90 137.6

10 0 165.8

20 0 127.7

30 0 150.8 9.12 (J3’’,6’’=0.5,
J3’’,7’’=2.0)

C-2’’, C-5’’, C-7’’
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50 0 153.7 8.74 (J5’’,6’’=4.9,
J5’’’,7’’=1.7)

C-3’’, C-6’’, C-7’’

60 0 125.1 7.54 (J6’’’,7’’=8.0) C-2’’, C-5’’

70 0 138.9 8.37 C-1’’, C-2’’, C-5’’

Appendix 1—table 6. NMR spectroscopic data for iglu#7 (SI-3).
1H (600 MHz), HSQC, and HMBC NMR spectroscopic data were acquired in methanol-d4. Chemical

shifts were referenced to d(CHD2OD)=3.31 ppm and d(13CHD2OD)=49.00 ppm.

Position d
13C [ppm] d

1H ([ppm] JHH[Hz]) HMBC

1 86.9 5.46 (J1,2 = 9.1) C-2, C-3, C-5, C-2’, C-9’

2 73.2 3.96 (J2,3 = 9.0) C-1, C-3

3 78.9 3.61 (J3,4 = 9.0) C-2, C-4

4 71.4 3.55 (J4,5 = 9.6) C-3, C-5, C-6

5 77.6 3.81 (J5,6a = 5.6) C-1 (weak), C-3, C-4

6a 64.5 4.27 (J6a,6b = 11.9) C-4, C-5, C-10 0

6b 4.49 (J5,6b = 2.2) C-4, C-5, C-10 0

20 126.6 7.35 (J2’,3’=3.5) C-1 (weak), C-3’, C-4’, C-5’ (weak), C-8’ (weak), C-9’

30 103.2 6.48

40 130.6

50 121.6 7.53 (J5’,6’=7.9) C-3’, C-7’, C-9’

60 120.9 7.05 (J6’,7’=7.5, J3’,6’=1.1) C-4’, C-8’, C-9’ (weak)

70 122.5 7.11 C-5’, C-8’ (weak), C-9’

80 111.7 7.50 C-4’, C-6’

90 137.6

10 0 169.2

20 0 129.3

30 0 138.9 6.87 (J3’’,4’’=6.8) C-1’’, C-4’’, C-5’’

40 0 14.2 1.79 C-2’’, C-3’’

50 0 11.9 1.81 C-1’’, C-2’’, C-3’’

Appendix 1—table 7. NMR spectroscopic data for iglu#9 (SI-4).
1H (600 MHz), HSQC, and HMBC NMR spectroscopic data were acquired in methanol-d4. Chemical

shifts were referenced to d(CHD2OD)=3.31 ppm and d(13CHD2OD)=49.00 ppm.
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Position d
13C [ppm] d

1H ([ppm] JHH[Hz]) HMBC

1 86.9 5.47 (J1,2 = 9.1) C-2, C-3, C-5, C-2’, C-9’

2 73.2 3.96 (J2,3 = 9.0) C-1, C-3

3 78.7 3.62 (J3,4 = 9.8) C-4

4 71.3 3.61 (J4,5 = 9.7) C-3

5 77.9 3.86 (J5,6a = 5.7)

6a 63.9 4.38 (J6a,6b = 11.9) C-5, C-10 0

6b 4.68 (J5,6b = 2.1) C-4, C-10 0

20 126.6 7.36 (J2’,3’=3.4) C-3’, C-4’, C-9’

30 103.1 6.47 C-2’, C-4’, C-9’

40 130.6

50 121.4 7.52 (J5’,6’=7.8) C-7’, C-9’

60 120.8 7.02 (J6’,7’=7.3, J3’,6’=1.2) C-4’, C-8’

70 122.4 7.05 C-5’, C-9’

80 111.6 7.50 C-4’, C-6’

90 137.4

10 0 162.4

20 0 123.0

40 0 124.7 6.96 (J4’’,5’’=2.5, J4’’,6’’=1.4) C-2’’, C-5’’, C-6’’

50 0 110.6 6.20 (J5’’,6’’=3.8) C-2’’(weak), C-4’’(weak)

60 0 116.8 6.90 C-2’’, C-4’’, C-5’’

Appendix 1—table 8. DNA oligonucleotides used for this study.

Target
gene

Sequence
name Strain Allelle Guide sequence ssDNA repair oligonucleotide sequence

cest-1.1 T02B5.1 PS8031,
PS8032

sy1180,
sy1181

ACTCCTTCCCATGA
TTTCGG

TATTCATTTGTTACCAAAACTCCTTCCCA
TGATTTG
CTAGCTTATCACTTAGTCACCTCTGCTC
TGGACAAA
CTTCCCCGGTGGACGGGGTTTTCGATA
TCGAAGGTCTCCAATTG

cest-2.2 ZC376.2 PS8008,
PS8009

sy1170,
sy1171

GGAGGCGAAGGAG
TATAAAG

CCCTGGGACGGAG
TTTTGGAGGCGAAGGAGTATA
GGGAAGTTTGTCCAGAGCAGAGGTGAC
TAAGTGATAA
GCTAGCAAGCGGCTTGTATGAGTGATCA-
GAAGTAAGAGATA
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Appendix 1—table 8 continued

Target
gene

Sequence
name Strain Allelle Guide sequence ssDNA repair oligonucleotide sequence

cest-4 C17H12.4 PS8116,
PS8117

sy1192,
sy1193

ACTCCGGTCCA
TTTCTCAGG

CATACCTTTTGCATTTCTCACTCCGGTCCA
TTTCTCGCTAGC
TTATCACTTAGTCACCTCTGCTCTGGA-
CAAACTTCCCAGGCGG
TTCTGGTTTTTGAAATCTTAATTTTCCAA
TTG

Appendix 1—table 9. List of all modular metabolites referred to in the text and Figures.

Compound

number SMID ID IUPAC Name Evidence Structure

1 icas#3 (R)�8-(((2R,3R,5R,6S)�5-

((1H-indole-3-carbonyl)

oxy)�3-hydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)nonanoic

acid

Previously identified via

synthesis

(Srinivasan et al., 2012)

2 ascr#8 4-((R,E)�6-

(((2R,3R,5R,6S)�3,5-

dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)hept-2-

enamido)benzoic acid

Previously identified via

synthesis

(Pungaliya et al., 2009)

3 uglas#11 (2R,3R,4S,5R,6R)�5-

hydroxy-6-

(hydroxymethyl)�4-

(phosphonooxy)�2-

(2,6,8-trioxo-1,2,6,7,8,9-

hexahydro-3H-purin-3-yl)

tetrahydro-2H-pyran-3-yl

(R)�6-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

heptanoate

Previously identified via

synthesis (Curtis et al.,

2020)

4 ubas#3 (R)�4-(((2R,3R,5R,6S)�3-

hydroxy-6-methyl-5-

(((R)�2-methyl-3-

ureidopropanoyl)oxy)

tetrahydro-2H-pyran-2-

yl)oxy)pentanoic acid

Previously inferred via

tandem mass

spectrometry

(Falcke et al., 2018)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

5 ascr#1 (R)�6-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)heptanoic

acid

Previously identified via

NMR and synthesis

(Jeong et al., 2005)

6 gluric#1 3-((2R,3R,4S,5S,6R)�

3,4,5-trihydroxy-6-

(hydroxymethyl)

tetrahydro-2H-pyran-2-

yl)�7,9-dihydro-1H-

purine-2,6,8 (3H)-trione

Previously identified via

synthesis (Curtis et al.,

2020)

7 ascr#7 (R,E)�6-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)hept-2-

enoic acid

Previously identified via

synthesis

(Pungaliya et al., 2009)

8 PABA 4-Aminobenzoic acid Commercial product

(Sigma-Aldrich)

9 ascr#3 (R,E)�8-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)non-2-

enoic acid

Previously identified via

synthesis (Butcher et al.,

2007)

10 ascr#10 (R)�8-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)nonanoic

acid

Previously identified via

synthesis

(Srinivasan et al., 2012)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

11 1H-indole-3-carboxylic

acid

Commercial product

(Sigma-Aldrich)

12 (R)�4-((2-hydroxy-2-(4-

hydroxyphenyl)ethyl)

amino)�4-oxobutanoic

acid

Identified via synthesis

(This manuscript)

13 iglas#1 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(1H-indol-1-

yl)tetrahydro-2H-pyran-

2-yl)methyl (R)�6-

(((2R,3R,5R,6S)�3,5-

dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

heptanoate

Previously identified via

synthesis

(Artyukhin et al., 2018)

14 glas#10 (2S,3R,4S,5S,6R)�3,4,5-

trihydroxy-6-

(hydroxymethyl)

tetrahydro-2H-pyran-2-yl

(R)�8-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

nonanoate

Previously identified via

NMR and synthesis

(Coburn et al., 2013)

15 iglu#1 (2R,3S,4S,5R,6R)�2-

(hydroxymethyl)�6-(1H-

indol-1-yl)tetrahydro-2H-

pyran-3,4,5-triol

Previously identified via

NMR and synthesis

(Coburn et al., 2013)

16 iglu#2 (2R,3R,4S,5R,6R)�3,5-

dihydroxy-2-

(hydroxymethyl)�6-(1H-

indol-1-yl)tetrahydro-2H-

pyran-4-yl dihydrogen

phosphate

Previously identified via

NMR (Coburn et al.,

2013)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

17 angl#1 (2S,3R,4S,5S,6R)�3,4,5-

trihydroxy-6-

(hydroxymethyl)

tetrahydro-2H-pyran-2-yl

2-aminobenzoate

Previously identified via

NMR and synthesis

(Coburn et al., 2013)

18 angl#2 (2S,3R,4S,5R,6R)�3,5-

dihydroxy-6-

(hydroxymethyl)�4-

(phosphonooxy)

tetrahydro-2H-pyran-2-yl

2-aminobenzoate

Previously identified via

NMR (Coburn et al.,

2013)

19 iglu#4 (2R,3R,4S,5R,6R)�3,5-

dihydroxy-6-(1H-indol-1-

yl)�4-(phosphonooxy)

tetrahydro-2H-(pyran-2-

yl)methyl 2-

aminobenzoate

Proposed structure,

based on identification

of non-phosphorylated

derivative (34) via

synthesis (This

manuscript)

20 iglu#6 ((2R,3R,4S,5R,6R)�3,5-

dihydroxy-6-(1H-indol-1-

yl)�4-(phosphonooxy)

tetrahydro-2H-pyran-2-

yl)methyl nicotinate

Proposed structure,

based on identification

of non-phosphorylated

derivative (SI-2) via

synthesis (This

manuscript)

21 iglu#8 ((2R,3R,4S,5R,6R)�3,5-

dihydroxy-6-(1H-indol-1-

yl)�4-(phosphonooxy)

tetrahydro-2H-pyran-2-

yl)methyl (E)�2-

methylbut-2-enoate

Proposed structure,

based on identification

of non-phosphorylated

derivative (SI-3) via

synthesis (This

manuscript)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

22 iglu#10 ((2R,3R,4S,5R,6R)�3,5-

dihydroxy-6-(1H-indol-1-

yl)�4-(phosphonooxy)

tetrahydro-2H-pyran-2-

yl)methyl 1H-pyrrole-2-

carboxylate

Proposed structure,

based on identification

of non-phosphorylated

derivative (SI-4) via

synthesis (This

manuscript)

23 iglu#12 ((2R,3R,4S,5R,6R)�3,5-

dihydroxy-6-(1H-indol-1-

yl)�4-(phosphonooxy)

tetrahydro-2H-pyran-2-

yl)methyl benzoate

Proposed structure.

Inferred via tandem mass

spectrometry (This

manuscript)

24 iglu#41 (2R,3R,4S,5R,6R)�6-(((2-

aminobenzoyl)oxy)

methyl)�5-hydroxy-2-

(1H-indol-1-yl)�4-

(phosphonooxy)

tetrahydro-2H-pyran-3-yl

1H-pyrrole-2-carboxylate

Proposed structure.

Inferred from iglu#3 (34)

via tandem mass

spectrometry (This

manuscript)

25 angl#4 ((2R,3R,4S,5R,6S)�6-((2-

aminobenzoyl)oxy)�3,5-

dihydroxy-4-

(phosphonooxy)

tetrahydro-2H-pyran-2-

yl)methyl 2-

aminobenzoate

Proposed structure.

Inferred from angl#3 (SI

5) via tandem mass

spectrometry (This

manuscript)

26 tyglu#4 ((2R,3R,4S,5R,6R)�5-((2-

aminobenzoyl)oxy)�3-

hydroxy-6-((4-(2-

aminoethyl)phenoxy)�4-

(phosphonooxy)

tetrahydro-2H-pyran-2-

yl))methyl 2-

aminobenzoate

Proposed structure.

Initially described

(O’Donnell et al., 2020)

and further inferred via

tandem mass

spectrometry (This

manuscript)

27 ascr#81 (4-((R,E)�6-

(((2R,3R,5R,6S)�3,5-

dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)hept-2-

enamido)benzoyl)-L-

glutamic acid

Identified via synthesis

(Artyukhin et al., 2018)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

28 ascr#82 ((S)�4-carboxy-4-(4-((R,

E)�6-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)hept-2-

enamido)benzamido)

butanoyl)-L-glutamic

acid

Previously inferred via

tandem mass

spectrometry

(Artyukhin et al., 2018)

29 PABA-glu (4-aminobenzoyl)-L-

glutamic acid

Identified via synthesis

(This manuscript)

30 uglas#1 (2R,3R,4S,5S,6R)�4,5-

dihydroxy-6-

(hydroxymethyl)�2-

(2,6,8-trioxo-1,2,6,7,8,9-

hexahydro-3H-purin-3-yl)

tetrahydro-2H-pyran-3-yl

(R)�6-(((2R,3R,5R,6S)�

3,5-dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

heptanoate

Identified via synthesis

(Curtis et al., 2020)

31 uglas#14 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(2,6,8-

trioxo-1,2,6,7,8,9-

hexahydro-3H-purin-3-yl)

tetrahydro-2H-pyran-2-

yl)methyl (R)�6-

(((2R,3R,5R,6S)�3,5-

dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

heptanoate

Identified via synthesis

(Curtis et al., 2020)

32 uglas#15 ((2R,3R,4S,5R,6R)�3,5-

dihydroxy-4-

(phosphonooxy)�6-

(2,6,8-trioxo-1,2,6,7,8,9-

hexahydro-3H-purin-3-yl)

tetrahydro-2H-pyran-2-

yl)methyl (R)�6-

(((2R,3R,5R,6S)�3,5-

dihydroxy-6-

methyltetrahydro-2H-

pyran-2-yl)oxy)

heptanoate

Previously inferred via

tandem mass

spectrometry

(Artyukhin et al., 2018;

Curtis et al., 2020)

33 2-Aminobenzoic acid Commercial product

(Sigma-Aldrich)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

34 iglu#3 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(1H-indol-1-

yl)tetrahydro-2H-pyran-

2-yl)methyl 2-

aminobenzoate

Identified via synthesis

(This manuscript)

35 icas#2 (2S,3R,5R,6R)�5-

hydroxy-2-methyl-6-

(((R)�5-oxohexan-2-yl)

oxy)tetrahydro-2H-

pyran-3-yl 1H-indole-3-

carboxylate

Identified via synthesis

(Dong et al., 2016)

36 icas#6.2 (2S,3R,5R,6R)�5-

hydroxy-6-(((2R,5S)�5-

hydroxyhexan-2-yl)oxy)�

2-methyltetrahydro-2H-

pyran-3-yl 1H-indole-3-

carboxylate

Identified via synthesis

(Dong et al., 2016)

SI 1 2-((tert-butoxycarbonyl)-

amino)benzoic acid

Characterized via

synthesis (This

manuscript)

SI 2 iglu#5 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(1H-indol-1-

yl)tetrahydro-2H-pyran-

2-yl)methyl nicotinate

Identified via synthesis

(This manuscript)
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Appendix 1—table 9 continued

Compound

number SMID ID IUPAC Name Evidence Structure

SI 3 iglu#7 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(1H-indol-1-

yl)tetrahydro-2H-pyran-

2-yl)methyl (E)�2-

methylbut-2-enoate

Identified via synthesis

(This manuscript)

SI 4 iglu#9 ((2R,3S,4S,5R,6R)�3,4,5-

trihydroxy-6-(1H-indol-1-

yl)tetrahydro-2H-pyran-

2-yl)methyl 1H-pyrrole-2-

carboxylate

Identified via synthesis

(This manuscript)

SI 5 angl#3 ((2R,3S,4S,5R,6S)�6-((2-

aminobenzoyl)oxy)�

3,4,5-

trihydroxytetrahydro-2H-

pyran-2-yl)methyl 2-

aminobenzoate

Proposed structure

based on synthesis of a

reference sample for MS

(This manuscript)

SI 6 tyglu#6 (2R,3R,4S,5S,6R)�6-(((2-

aminobenzoyl)oxy)

methyl)�2-((4-(2-

aminoethyl)-phenoxy))�

5-hydroxy-4-

(phosphonooxy)-

tetrahydro-2H-pyran-3-yl

nicotinate

Proposed structure.

Initially described

(O’Donnell et al., 2020)

and further inferred via

tandem mass

spectrometry (This

manuscript)
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