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Introduction: Previous studies have demonstrated that exposed to the initial

suboptimal intrauterine environment of gestational diabetes mellitus (GDM)

may increase risk of cardiovascular disease in adulthood.

Methods: In order to investigate the underlying mechanisms involved in the

increased risk of cardiovascular diseases (CVDs) in the offspring of GDM, we

applied a high-throughput proteomics approach to compare the proteomic

expression profile of human umbilical vessels of normal and GDM offspring.

Results: A total of significantly different 100 proteins were identified in

umbilical vessels from GDM group compared with normal controls, among

which 31 proteins were up-regulated, while 69 proteins were down-regulated.

Differentially expressed proteins (DEPs) are validated using Western blotting

analysis. The analysis of these differently expressed proteins (DEPs) related

diseases and functions results, performed by Ingenuity Pathway Analysis (IPA)

software. Based on “Diseases and Disorders” analysis, 17 proteins (ACTA2,

ADAR, CBFB, DDAH1, FBN1, FGA, FGB, FGG, GLS, GSTM1, HBB, PGM3,

PPP1R13L, S100A8, SLC12A4, TPP2, VCAN) were described to be associated

with CVD, especially in Anemia, Thrombus and Myocardial infarction.

Functional analysis indicated that DEPs involved in many cardiovascular

functions, especially in “vasoconstriction of blood vessel” (related DEPs:

ACTA2, DDAH1, FBN1, FGA, FGB, and FGG). Upstream regulator analyses of

DEPs identifies STAT3 as inhibitor of ACTA2, FGA, FGB, and FGG.

Conclusion: The results of this study indicate that intrauterine hyperglycemia

is associated with an elevated risk of cardiovascular risk in the offspring.

KEYWORDS

Gamete and Embryo-Fetal Origins of Adult Diseases, gestational diabetes mellitus
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Introduction

A growing number of epidemiological and experimental
studies suggest that exposure to adverse intrauterine
environment during fetal development can be associated
with chronic disease in later life, such as CVD, obesity, type 2
diabetes and cognitive disorder (1–6). The theory of Gamete and
Embryo-Fetal Origins of Adult Diseases is used preferentially
to describe these associations. Gestational diabetes mellitus
(GDM) is defined as any degree of glucose intolerance with
onset or first diagnosis during gestation. The prevalence of
GDM ranged from 9.3 to 25.5% among 15 collaborating
centers using the International Association of the Diabetes
and Pregnancy Study Group (IADPSG) criteria (7). GDM is a
serious health risk for both pregnant women and their offspring.

Emerging evidence suggests that the vasculature of women
with a prior case of GDM is permanently altered, predisposing
them to CVD. GDM also increases the offspring’s risk of
developing hypertension and CVD. Elevated systolic blood
pressure (SBP) and diastolic blood pressure (DBP) (4, 8–11),
increased intima-media thickness (IMT) (12), increased cardiac
septal hypertrophy (13), and vascular endothelial dysfunctions
were observed in the offspring of GDM mother (14, 15).
Consistent with epidemiological results, studies in animal
models also showed that diabetes during pregnancy affected the
development of fetal cardiovascular system (16, 17). In one of
our previous works, we also have indicated that intrauterine
hyperglycemia could induce IGT (impaired glucose tolerance)
and abnormal blood insulin levels in both F1 and F2 offspring
(18). In studies of the mechanisms of cardiovascular dysfunction
caused by GDM, numbers of potential pathways have been
implicated in endothelial cell, including reduced adenosine
transport (14), impaired angiogenesis (15) and redox signaling
(19). Although many previous studies have been conducted,
its precise mechanism involved in the association between
intrauterine hyperglycemia and a higher risk of cardiovascular
anomalies has yet to be established.

In the present study, we aimed to investigate the
cardiovascular risk proteins in offspring exposed to GDM.
A proteomics analysis was conducted in umbilical vessels from
newborns of mothers with GDM and normal controls using
the isobaric tag for relative and absolute quantitation (iTRAQ)-
labeling technique to compare the proteomic expression profile.
We analyzed the related diseases and functions using ingenuity
pathway analysis (IPA) software. The results of the present study
may provide valuable information for further investigation

Abbreviations: GDM, Gestational Diabetes Mellitus; DEPs, Differentially
Expressed Proteins; FDR, False Discovery Rate; IPA, Ingenuity Pathway
Analysis; SCX, Strong Cationic-exchange Chromatography; SBP,
Systolic Blood Pressure; IMT, Intima-Media Thickness; FGA, Fibrinogen
Alpha Chain; ACTA2, Actin, aortic smooth muscle; IDH3A, Isocitrate
dehydrogenase (NAD) subunit alpha, mitochondrial.

of the mechanisms underlying the cardiovascular dysfunction
induced by intrauterine hyperglycemia.

Materials and methods

Patients and umbilical cords

Umbilical cords from newborns of 25 mothers with mild
GDM and 25 controls were collected by obstetricians in
Shaoxing Maternity and Child Health Care Hospital, China.
The Ethics Committee of Shaoxing Maternity and Child
Health Care Hospital approved the study. All the participants
enrolled in this study were with singleton pregnancy and
ceased pregnancies with Cesarean section at full term. Tissue
samples were stored snap frozen at−80◦Cuntil use. The clinical
characteristics of the proteomic participants included in this
study are outlined in Table 1.

GDM were diagnosed between gestational weeks 24 and
28 after overnight fasting (for 8–12 h) by an oral glucose
tolerance test (OGTT). According to the IADPSG diagnostic
criteria, GDM was defined as fasting venous plasma glucose
concentration ≥ 5.1 mM and ≥ 10.0 mM at 1-hand/
or ≥ 8.5 mM at 2-h after drinking a solution with 75 g glucose.
All women with GDM enrolled in the present study experienced
dietary management without insulin treatment. Participants
with maternal obesity factor (high pre-pregnancy BMI, excessive
weight gain during pregnancy, abnormal lipid level in first-
trimester) and macrosomia were excluded. The work described
in the present study has been carried out in accordance with The
Code of Ethics of the World Medical Association (Declaration of
Helsinki). The study protocols were reviewed and approved by
the Research and Ethics Committee of the Women’s Hospital,
School of Medicine, Zhejiang University, China, and informed
consents were provided by all participants.

Isobaric tag for relative and absolute
quantitation analysis

iTRAQ analysis was performed as previously described
(20). Briefly, protein was extracted from umbilical artery and
measured by BCA assay (Pierce, Rockford, IL, USA) according
to the manufacturer’s protocol. Protein digestion was performed
according to the FASP procedure, as described by Wisniewski
et al. (21). Briefly, 200 µg of total-protein samples were diluted
in 30 µL of solution including 4% SDS, 100 mM Tris-HCl pH
8.0 and 100 mM dithiotreitol, and were heated at 95◦C for
5 min. After each sample was cooled to room temperature, the
sample was loaded onto an ultrafiltration filter (cutoff 10 kDa,
Sartorius, Goettingen, Germany). We added 200 µL UT buffer
(8 M Urea and 150 mM Tris-HCl, pH 8.0) to the filter and
centrifuged it at 14,000 g at 20◦C for 30 min. Subsequently,
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TABLE 1 Clinical characteristic of the participants.

Characteristics Control GDM P-value

Cases 25 25

Gestational age, wk 39.06± 0.52 38.85± 0.62 0.108

Birth weight, g 3439.57± 421.29 3468± 456.14 0.241

Maternal age, y 30.21± 3.51 31.42± 3.11 0.071

BMI of pre-pregnancy, kg/m2 22.12± 2.74 22.79± 4.12 0.058

Glycated hemoglobin, % 4.94± 0.27 5.10± 0.41 0.041*

Pregnancy weight gain, kg 15.65± 5.15 14.10± 8.59 0.187

OGTT 75 g, 0 h, mmol/L 4.47± 0.36 5.02± 0.68 < 0.001**

OGTT 75 g, 1 h, mmol/L 8.01± 0.93 10.92± 1.68 < 0.001**

OGTT 75 g, 2 h, mmol/L 6.56± 1.02 9.38± 1.60 < 0.001**

Placenta weight,g 598.35± 89.92 603.28± 116.46 0.097

TC in first-trimester, mmol/L 4.84± 0.87 4.78± 0.72 0.765

TG in first-trimester, mmol/L 1.23± 0.41 1.11± 0.14 0.108

HDL in first-trimester, mmol/L 1.67± 0.34 1.61± 1.48 0.772

LDL in first-trimester, mmol/L 3.12± 0.41 3.271± 0.37 0.692

Diagnosis NS GDM

Presence of other major cardiovascular risk factor(s) in the mothers None None

Data are showed as means± SD, *P < 0.05, **P < 0.001 compared with control.

100 µL of iodoacetamide solution (50 mM iodoacetamide in
UT buffer) was added for blocking reduced cysteines, and, the
samples were incubated for 20 min in darkness. Then the filters
were centrifuged at 14,000 g at 20◦C for 20 min. The filters
were washed with 100 µL UT buffer at 14,000 g for 20 min.
This step was repeated 2 times. Then, 100 µL dissolution buffer
(AB Sciex, Framingham, MA, USA) was added to the filter, and
it was centrifuged at 14,000 g at 20◦C for 30 min, and, this
step was repeated twice. Finally, 40 µL of trypsin (Promega,
Madison, WI, USA) buffer (2 µg trypsin in 40 µL dissolution
buffer) were added, and, the samples were digested overnight
at 37◦C. Each filter unit was transferred to a new tube and
centrifuged at 14,000 g at 20◦C for 30 min. The concentration of
resulting peptides was determined by UV light spectral density
at OD280 (22).

The iTRAQ labeling of digested peptide samples was
performed following the manufacturers protocol with 8-plex
isobaric tags for relative and absolute quantitation (iTRAQ)
labeling kit (AB Sciex, Framingham, MA, USA). Three umbilical
arteries from the control group (C) were labeled with mass 114,
115 and 116 isobaric iTRAQ tags, the other three umbilical
arteries from the GDM group were labeled with mass 117,
118, and 119 isobaric iTRAQ tags. Identical quantities of
peptide mixtures from the 6 peptides mentioned above were
labeled with reagent 113 and served as sample IS (internal
standard). According to the manufacturers protocol, The
labeling reactions were incubated for 2 h at room temperature
before further analysis.

After iTRAQ-labeling the peptide samples were combined
and subsequently purified using a strong cation exchange

(SCX)-cartridge: Polysulfoethyl 4.6 × 100 mm column (5 µm,
200 Å, Poly LC Inc., Columbia, MD, USA). For LC-MS/MS
analysis of the resulting peptides, we followed a previously
described method (20). Protein identification and quantification
for iTRAQ analysis data was carried out using the MASCOT
search engine (version 2.2.1; Matrix Science, London, UK)
embedded into Proteome Discoverer 1.3 (Thermo Electron,
San Jose, CA, USA), searching against the Uniport database of
human protein sequences (03-2013, 133549 entries, downloaded
from: http://www.uniprot.org/) and the concatenated target-
decoy database. The parameters were set as follows: Trypsin
as digestion enzyme, cysteine carbamidomethylation as a fixed
modification, Oxidation (M), Gln→Pyro-Glu (N-term Q),
iTRAQ 8 plex (K), iTRAQ 8 plex (Y), and iTRAQ 8 plex
(N-term) as the variable modification.

Western blotting analysis

Human umbilical arteries were lysed in 1 × RIPA buffer
with 1µg/mL leupeptin and 1µg/mL phenylmethylsulfonyl
fluoride. Aliquots containing 30 µg of protein samples were
separated by 12% SDS-PAGE and transferred electrophoretically
to a nitrocellulose transfer membrane (Bio-Rad, Hercules, CA,
USA). After blocked with 5% BSA in TBS containing 0.01%
Tween 20 (TBST) for 1 h at room temperature, the membrane
was incubated overnight at 4◦C with primary antibodies against
FGA (1:1,000, Abcam, Cambridge, MA, USA), ACTA2 (1:1,000,
Abcam, Cambridge, MA, USA), IDH3A (1:1,000, Abcam,
Cambridge, MA, USA), GAPDH (1:1,000, Abcam, Cambridge,
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FIGURE 1

iTRAQ analysis results for the GDM umbilical vessels. (A) Hierarchical clustering of DEPs. (B) The statistic of the proteins identified in umbilical
vessels. (C) Validation of the differential expression of the selected proteins in umbilical vessels by western blotting: FGA, ACTA2, IDH3A. Data
are presented as mean ± SE (n = 3). *p < 0.01.

MA, USA). Subsequently, membranes were washed 10 min for
three times with TBST, then each membrane was incubated
for 1 h at room temperature with the appropriate secondary
antibody (anti-rabbit IgG, anti-mouse IgG; 1:5,000; Abcam).
The protein intensities were determined and analyzed using
Odyssey R© Imager (LI-COR Biosciences, Lincoln, NE, USA).

Bioinformatics analysis of differentially
expressed proteins

Proteins exhibiting at least a ± 20% fold change in
expression were determined as significantly different. The
Cluster 3.01 and Java Tree view software2 were further used
to evaluate the capability of the resulting feature proteins
in differentiating the two groups of samples. IPA software
(QIAGEN, Redwood 185 City, CA) was employed for functional
analysis of the identified DEPs between the two groups. In

1 http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

2 http://jtreeview.sourceforge.net

the functional network analysis, the DEPs were represented as
nodes, and the biological relationship between two proteins
was represented as an edge (line), which was supported by the
published articles or the canonical information embedded in
the IPA database. Downstream biological processes analysis,
which was used to predict the downstream effects of the DEPs
based on the observed gene expression changes, was also on
the strength of the canonical information embedded in the
IPA database. The calculated z-score can be used to infer
the activation states (“increased” or “decreased”) of implicated
biological processes. Fisher’s exact test was used to calculate
a p-value to determine the probability that the association
between proteins in the dataset, and the biological process could
be explained by chance alone.

Statistical analysis

All analysis was performed with the software Statistical
Analysis Software (SPSS 17.0 software, SPSS Inc., USA). Data are
displayed as means± SEM. Statistical evaluation was conducted
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FIGURE 2

Visual representation of the principal network generated by ingenuity pathway analysis (IPA). (A) Principal network generated by IPA.
(B) Developmental Disorder associated network. (C) Cardiovascular Disease associated network.

using an unpaired Student’s t-test, and P < 0.05 was considered
statistically significant.

Results

The clinical characteristics of the
participants

Twenty five pregnancies with GDM and 25 normal controls
were enrolled in the present study, and the specific clinical
characteristics of the participants and delivery data were shown
in Table 1. None of them experienced major cardiovascular risk
factors, such as cardiovascular system diseases, history of type
2 diabetes, hyperthyroidism, assisted reproductive technology
treatment, smoking, congenital defect, and any other pregnancy
complications. There was no significant difference between
GDM group and the controls about the maternal age, gestational
weeks, pre-pregnancy BMI, weight gain during pregnancy, lipid
level in first-trimester, birth weight and gender distribution of
newborns (all P> 0.05). The serum glucose concentration at 0,1,
and 2 h of OGTT in the GDM group were significantly higher
than that in the normal pregnancies (p < 0.001, respectively).

Three pairs of the collected umbilical vessels were selected to
compare the proteome profiles between GDM and controls by
iTRAQ-LC-MS/MS.

Overview of the proteomics analysis

To identify the differentially expressed proteins (DEPs) in
the umbilical arteries between GDM and controls in genome-
wide level, iTRAQ-LC-MS/MS was performed in 3 GDM
samples and 3 control samples. In the present study, a total
of 1,653 proteins were quantified in the umbilical arteries
from both GDM and the controls (Supplementary Table 1).
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the iProX partner repository (23)
with the dataset identifier PXD024892. Using the screening
criteria of fold change over ± 1.2, 100 proteins were regarded
as differentially expressed in umbilical arteries from GDM
group, of which, 31 proteins were up-regulated and 69 proteins
were down-regulated (Supplementary Table 2 and Figure 1B).
Hierarchical clustering analysis was further performed with
the identified 100 DEPs mentioned above. After unsupervised
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FIGURE 3

Cardiovascular Disease analysis of differentially expressed proteins between normal and GDM umbilical vessels. For this developmental disease
network, genes or gene products are represented as nodes, and the biological relationship between two nodes is represented as an edge. All
edges are supported by at least one publication as stored in the Ingenuity Knowledge database. The intensity of the node color indicates the
degree of up- (red) or down- (green) regulation.

clustering, the GDM group were significantly distinguished
from the controls (Figure 1A), indicating the significant effect
of intrauterine hyperglycemia on the expression of proteins in
umbilical vessels of newborn.

Western blotting validation

To validate the results carried out by iTRAQ-LC-
MS/MS, Western blotting was conducted in additional three
umbilical vessels from GDM and three normal umbilical
vessels. Based on the significant expression difference
and the biological function in the cardiovascular system,
three proteins, including FGA, ACTA2, and IDH3A, were
selected for further investigation. As shown in Figure 1C,
the change trends of these three proteins within Western
blotting analysis were in accordance with iTRAQ analysis
results.

Bioinformatics analysis of differentially
expressed proteins

To assist functional interpretation of the DEPs, the
bioinformatics analysis was performed based on the 100 DEPs.
These genes were loaded into IPA database (IPA R©, QIAGEN)3

for pathway, disease and function, and network analysis. Three
cardiovascular signaling pathways identified by IPA software
(Supplementary Table 3 and Supplementary Figure 1)
including “Atherosclerosis Signaling” (related gene: ORM1,
ORM2, and S100A8). According to overlapping p-values,
these 73 subcategories showed in “Disease and Disorder”
analysis, including “Developmental Disorder” and “CVD”
(Supplementary Table 4 and Supplementary Figure 2). In
addition to the gene ontology enrichment, 22 subcategories

3 www.qiagen.com/ingenuity
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FIGURE 4

Cardiovascular Functional analysis of differentially expressed proteins between normal and GDM umbilical vessels. For this cardiovascular
function network, genes or gene products are represented as nodes, and the biological relationship between two nodes is represented as an
edge. All edges are supported by at least one publication as stored in the Ingenuity Knowledge database. The intensity of the node color
indicates the degree of up- (red) or down- (green) regulation.

involed in “Physiological System Development and Function,”
especially in “Cardiovascular System Development and
Function” (Supplementary Table 5 and Supplementary
Figure 3). Network analysis identified five biological networks
(Figure 2A), which included developmental network
(Figure 2B) and cardiovascular network (Figure 2C). The
most related network emerged comprising 20 of those DEPs. It
is associated with the IPA functions “Developmental Disorder”
(Figure 2B).

Cardiovascular risk proteins analysis

To better understand cardiovascular risk proteins in
offspring exposed to GDM, these DEPs were further analyzed
in CVDs and functions. Based on “Diseases and Disorders”
analysis, 17 proteins (ACTA2, ADAR, CBFB, DDAH1, FBN1,
FGA, FGB, FGG, GLS, GSTM1, HBB, PGM3, PPP1R13L,
S100A8, SLC12A4, TPP2, VCAN) were described to be
associated with CVD, especially in Anemia, Thrombus and

Myocardial infarction (Figure 3). Based on “Physiological
System Development and Functions” analysis, 11 proteins
(ACTA2, DDAH1, FBN1, FGA, FGB, FGG, GSTM1, IDH3A,
NSF, ORM1, PPP1R13L) were described to be associated with
Cardiovascular System Development and Function, especially in
the function of “vasoconstriction of blood vessel” (Figure 4).

The term “upstream regulator” as used in IPA refers to any
molecule that can affect the expression of another molecule. In
upstream regulator analysis, STAT3 was predicted in inhibited
state (z-score = −2.196) and regulated ACTA2, FBN1, FGA,
FGB, and FGG (Figure 5).

Discussion

Cardiovascular and metabolic disorders often present
in adult life, but may have their origins in changes to
the intrauterine environment during fetal development.
Previous studies including epidemiological investigations and
experimental projects have demonstrated the alteration of
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FIGURE 5

Upstream analysis of DEPs. Colorized nodes represented our input proteins. Green, down-regulated proteins. Red, up-regulated proteins.

vascular function and cardiovascular system in the offspring of
GDM (8, 24). The current study firstly focus on the proteomics
of umbilical vessels from GDM and normal controls, of
normal birth weights, which excluded maternal obesity factors
(high pre-pregnancy BMI, excessive weight gain during
pregnancy, abnormal lipid level in first-trimester). Our results
demonstrated that the intrauterine hyperglycemia indeed
individually affected the expression patterns of proteins and
vessel function.

Several studies implicated that the association between
maternal hyperglycemia and childhood metabolic outcomes was
attenuated after adjusting for covariates including maternal
BMI and weight gain during pregnancy (11), overall, existing
evidence suggested gestational diabetes as an independent
element. To date, intensified treatment during pregnancy of
maternal hyperglycemia reduce maternal weight gain and
macrosomia at birth, whether similar associations still exist
between maternal hyperglycemia and offspring cardiovascular

outcomes is few studied. In the current study, participants with
no maternal obesity factors (high pre-pregnancy BMI, excessive
weight gain during pregnancy, abnormal lipid level in first-
trimester) were recruited, and macrosomia was excluded.

The physiological and pathological regulation of
cardiovascular function derives mainly from the collaboration
between vascular endothelial cells and VSMCs (Vascular smooth
muscle cells). Previous studies stated that characteristics and
alterations of umbilical vessels could offer valuable information
since umbilical vessel cells experienced the effect of same
intrauterine environment (20, 25–27). In consideration of the
ethics limited, umbilical vessels is thought to be the best tissue
that could be collected in clinical.

Based on the identified DEPs in umbilical arteries between
GDM and normal controls, our results suggested that the
“Cardiovascular System Development and Function” was
impaired exposure to intrauterine hyperglycemia. In this
content, the top related function was “Vasoconstriction of blood
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vessel,” this is consistent with a large number of epidemiological
results. These suppressed physiological processes in the
umbilical vessels from GDM might lead to impaired vascular
repair under stress or diabetic vessel pathological damage.

In this study, we found 20 DEPs (ACTA2, ADAR, CBFB,
DDAH1, FBN1, FGA, FGB, FGG, GLS, GSTM1, HBB, PGM3,
PPP1R13L, S100A8, SLC12A4, TPP2, VCAN, IDH3A, NSF,
ORM1) related with Cardiovascular system. ACTA2 gene
mutations in adults associated with thoracic aortic aneurysm
and dissection (TAAD) (28). Transgenetic mouse model study
proposes that sufficient ADAR2 enzyme activity might play
a vital role in preventing cardiovascular defects (29). CBFB
may impair the primitive hematopoiesis (30). FBN1 is a gene
with a well characterized role in the pathogenesis of thoracic
aortic aneurysm (TAA) in the context of Marfan syndrome
(31). Inferring that variation in genomic sequences that regulate
the fibrinogen genes (FGA, FGB, and FGG) may affect hepatic
fibrinogen production and perhaps CVD risk (32). MicroRNA-
200c exacerbates the ischemia/reperfusion injury of heart
through targeting the glutaminase (GLS)-mediated glutamine
metabolism (33). Combined GSTM1∗0/GSTA1∗A genotypes
might be considered as genetic markers for cardiovascular
death risk in ESRD patients, which may permit targeting of
preventive and early intervention (34). HBB identified to be
related to Abdominal aortic aneurysm (AAA) (35). PPP1R13L
affecting NFkB activity may be candidate genes in the study
of human CVD (36). Levels of S100A8/A9, a proinflammatory
and prothrombotic protein complex, are increased in several
diseases, and high levels predispose to CVD (37). Total absence
of the VCAN gene halts heart development at a stage prior to the
heart’s pulmonary/aortic outlet segment growth (38).

In summary, in the present study, we discovered that
the expression profile of proteins in umbilical vessels of
newborns from GDM group was different from that in
normal controls. The bio-informatics analysis suggested that
some DEPs might play important roles in cardiovascular
dysfunction of GDM children. Our findings would contribute
to the exploration of the potential mechanism underlying the
dysregulated balance of apoptosis and autophagy in vessels,
angiogenesis and endothelial cell dysfunction in the offspring
of GDM pregnancies. However, deeper analyses will still
mostly need to be performed to explore the key factors and
potential preventive and therapeutic strategies of cardiovascular
dysfunction in GDM offspring.
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