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Abstract

Objective

ET-26 HCl is a promising sedative–hypnotic anesthetic with virtually no effect on adre-

nocortical steroid synthesis. However, whether or not ET-26 HCl also has a sufficiently

wide safety margin and hemodynamic stability similar to that of etomidate and related com-

pounds remains unknown. In this study, the effects of ET-26 HCl, etomidate and propofol

on therapeutic index, heart rate (HR), mean arterial pressure (MAP), maximal rate for left

ventricular pressure rise (Dmax/t), and maximal rate for left ventricular pressure decline

(Dmin/t) were investigated in healthy rats and a rat model of uncontrolled hemorrhagic shock

(UHS).

Methods

50% effective dose (ED50) and 50% lethal dose (LD50) were determined after single bolus

doses of propofol, etomidate, or ET-26 HCl using the Bliss method and the up and down

method, respectively. All rats were divided into either the normal group and received either

etomidate, ET-26 HCl or propofol, (n = 6 per group) or the UHS group and received either

etomidate, ET-26 HCl or propofol, (n = 6 per group). In the normal group, after preparation

for hemodynamic and heart-function monitoring, rats were administered a dose of one of the

test agents twofold-higher than the established ED50, followed by hemodynamic and heart-

function monitoring. Rats in the UHS group underwent experimentally induced UHS with a

target arterial pressure of 40 mmHg for 1 hour, followed by administration of an ED50 dose

of one of the experimental agents. Blood-gas analysis was conducted on samples obtained

during equilibration with the experimental setup and at the end of the experiment.
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Results

In the normal group, no significant differences in HR, MAP, Dmax/t and Dmin/t (all P > 0.05)

were observed at any time point between the etomidate and ET-26 HCl groups, whereas

HR, MAP and Dmax/t decreased briefly and Dmin/t increased following propofol admini-

stration. In the UHS group, no significant differences in HR, MAP, Dmax/t and Dmin/t were

observed before and after administration of etomidate or ET-26 HCl at ED50 doses (all P >
0.05). Administration of propofol resulted in brief, statistically significant reductions in HR

and Dmax/t, with a brief increase in Dmin/t (P < 0.05), while no significant differences in MAP

were observed among the three groups. The blood-lactate concentrations of rats in the

ET-26 HCl group were significantly lower than those in etomidate and propofol groups

(P < 0.05).

Conclusions

ET-26 HCl provides a similar level of hemodynamic stability to that obtained with etomidate

in both healthy rats, and rat models of UHS. ET-26 HCl has the potential to be a novel induc-

tion anesthetic for use in critically ill patients.

1. Introduction

An abundance of evidence indicates that hypotension has an adverse effect on critically ill

patients during the perioperative period. Anesthesia-induced hemodynamic collapse, owing to

hypotension, is life-threatening in such patients [1,2], who have a higher mortality rate than

that of patients whose blood pressure remains stable during anesthesia [3]. Exposure to trauma

leads to hemorrhagic shock, which requires surgical intervention to control the bleeding.

Induction of anesthesia using the commonly used anesthetic propofol carries an increased risk

of hypotension, resulting in cardiovascular adverse effects [4]. Etomidate can be used as an

alternative to propofol in order to prevent, or reduce the risk of hemodynamic instability dur-

ing the induction of anesthesia. The incidence of hypotension is substantially lower among

patients in critical care who are anesthetized using etomidate compared with those whose

anesthesia is induced using propofol or midazolam. Furthermore, etomidate-induced hypo-

tension is less severe, and easier to ameliorate than that induced by propofol or midazolam

[5–7]. Although etomidate has virtually no effect on hemodynamic stability [8,9], the suppres-

sion of corticosteroid synthesis associated with this agent limits its use; however, whether or

not etomidate-induced suppression of adrenal gland function affects mortality remains con-

troversial [10–14]. Therefore, the development of a novel anesthetic that has the hemodynamic

stability of etomidate without affecting corticosteroid synthesis is an important step in the

development of safer anesthetics.

ET-26 hydrochloride (ET-26 HCl) is an etomidate analogue with similar hypnotic pro-

perties to those of etomidate, which has been previously shown to have virtually no effect on

adrenocortical steroid synthesis [15,16]. These observations suggest that ET-26 HCl is a safer

anesthetic than propofol or etomidate, and could be used to anesthetize patients while preserv-

ing hemodynamic stability, even in patients undergoing hemorrhagic shock.

In this study, we investigated the ED50 and LD50 of ET-26 HCl, etomidate and propofol

in tracheally intubated rats. We also investigated the effects of ET-26 HCl, propofol and
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etomidate on hemodynamic stability in rats with blood pressures in the normal physiological

range, and in a rat model of uncontrolled hemorrhagic shock (UHS).

2. Methods

The present study adheres to the applicable EQUATOR guidelines on the reporting of health

research. All experiments were undertaken with the approval of the Committee of Scientific

Research and the Institutional Animal Experimental Ethics Committee of the West China

Hospital (Sichuan University, Chengdu, China) and all ethical approval decisions were based

on the recommendations in their guidelines (publication number 2015015A).

Adult Sprague–Dawley rats were purchased from Chengdu Dassy Biological Technology

Co. Ltd. (Chengdu, China). All animals were housed in the Animal Experimental Center of

Sichuan University at an ambient temperature of 25 ± 1˚C, with controlled humidity levels of

60% and a 12-h light–dark cycle (from 7 am to 7 pm). All rats had access to water and food ad
libitum. Rats were acclimatized for 1 week before experimentation.

Etomidate (2 mg/ml) and propofol (10 mg/ml) were purchased from Nhwa Pharma. Cor-

poration (Xuzhou, China) and Astra Zeneca (Caponago Milano, Italy), respectively. ET-26

HCl (10 mg/ml) was synthesized in our laboratory as described in previous article[15].

2.1. Determination of ED50 for loss of righting reflex (LORR) and LD50

The Bliss method was used to measure the ED50 of each agent. A total of 50 rats received each

drug in order to determine ED50. Doses of ET-26 of 1.33, 1.64, 2, 2.48, and 3 mg/kg were used

to generate data for measurements. For etomidate, the doses used were 0.48, 0.58, 0.69, 0.83,

and 1.0 mg/kg. The doses of propofol used were 4.1, 4.77, 5.55, 6.45, and 7.5 mg/kg of body

weight. After injection, rats were monitored for signs of LORR. A period >30 s was considered

to indicate the induction of anesthesia.

The up and down method was used to determine LD50[17]. Rats received a range of doses

of ET-26 HCl (33.8 mg/kg, 27 mg/kg, 21.6 mg/kg or 17.3 mg/kg), propofol (31.6 mg/kg, 25.3

mg/kg, 20.2 mg/kg, or 16.2 mg/kg.) and etomidate (16 mg/kg, 12.8 mg/kg, 10.2 mg/kg, or 8.2

mg/kg). When the animals stopped breathing, electrocardiogram (ECG) waveforms were

attached and observed. The complete disappearance of the ECG waveform was regarded as

death [18].

2.2. Surgery

All rats were anesthetized using a pentobarbital sodium solution (40 mg/kg, intraperitoneally)

and mechanically ventilated with a fraction of inspired oxygen of 21%, which was controlled

using a rodent ventilator (Chengdu Techman Software Co. Ltd, Chengdu, China). The respira-

tory parameters were set at 80 breaths per minute, with an inspiration to expiration ratio of

5:4, and a tidal volume of 5 mL. Each rat was placed on a warming pad. The body temperature

of each rat was monitored using a rectal probe. For measurements of hemodynamic and heart-

function parameters, the femoral artery was isolated and cannulated using a polyethylene cath-

eter fitted with an angiographic needle (18G, BD, Melsungen, German), following a sterile

downward incision in the right groin and right neck region. To enable blood pressure moni-

toring, a catheter was inserted into the common carotid artery and inserted as far as the left

ventricle of the heart. A tail-vein catheter (18 G) was inserted to enable drug administration. A

BL-420F data acquisition and analysis system was connected to the pressure channel and ECG

channel in order to collect data on blood pressure and ECG parameters. After preparation,

each rat was allowed 30 minutes to become used to the presence of the measuring devices, and

data on MAP, HR, Dmax/t, and Dmin/t were collected every 5 minutes as baseline readings.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0183439 August 15, 2017 3 / 10

https://doi.org/10.1371/journal.pone.0183439


2.3. Rat models of UHS

After a 30-minute equilibration period, UHS was created using a modified method originally

developed by Peter Safer [19]. An initial volume-controlled hemorrhage, resulting in blood

loss of 2.5 mL/100g was induced surgically over a 15-minute period, followed by a 15-minute

equilibration period. UHS was followed by tail amputation over a 60-minute period. Data on

the previously described physiological parameters were collected every 5 minutes during the

UHS procedure. The UHS model was considered to be established when MAP was below 40

mmHg.

2.4. Drug administration and monitoring

After equilibration for 30 minutes, or establishment of experimentally induced UHS, a single

bolus dose of one of the test drugs (either etomidate, propofol, or ET-26 HCl) was given intra-

venously over a 15-second period. Data on physiological parameters were recorded once every

15 seconds over the 2-minute period immediately after the injection, followed by once every

minute until 5 minutes after administration of all drugs. Following this, data were collected at

5-minute intervals.

2.5. Blood-gas analysis of UHS rats

The arterial blood samples were collected after establishment of UHS model and at the end of

observe period of experiment. The partial pressure of oxygen (pO2), carbon dioxide (pCO2),

the oxygen saturation level of hemoglobin (sO2), concentration of hemoglobin, potassium ion

(K+), sodium ion (Na+), calcium ion (Ca2+) and lactic acid (LAC) were analyzed using blood

gas analyzer (Mindray, Shenzhen, China).

2.6. Data and statistical analyses

Based on preliminary experiments, sample sizes were set at a minimum of six rats in present

study. All data presented are the mean ± standard deviation of the mean (SD) unless indicated

otherwise. Data for body weight and loss of blood volume were compared using one-way anal-

ysis of variance (ANOVA) followed by Tukey’s test. Data on HR, MAP, Dmax/t and Dmin/t

were analyzed using repeated-measures two-way ANOVA tests. The statistical significance of

pairwise comparisons was investigated using Tukey’s post-hoc test. Differences yielding a

P-value of< 0.05 were considered statistically significant.

All analyses were performed using SPSS v21.0 statistical analysis software (IBM, Armonk,

NY, USA). All figures and dose-response curves were generated using Prism v5.0 analysis soft-

ware (GraphPad, San Diego, CA, USA) and Photoshop CS5 software (Adobe, San Jose, CA,

USA).

3. Results

3.1 Determination of ED50 for LORR and LD50

The potency of ET-26 HCl (ED50 = 2.1 mg/kg), defined by the dose required to induce LORR

in 50% of rats, was lower than that of propofol (ED50 = 5.4 mg/kg), but greater than that of eto-

midate (ED50 = 0.66 mg/kg). Dose-response curves depicting the effects of these agents are

presented in Fig 1. Furthermore, the LD50 value of ET-26 (24.1 mg/kg) was greater than that of

propofol (22.6 mg/kg) and etomidate (11.9 mg/kg). Therapeutic index values were 11 for ET-

26, 4.2 for propofol and 18 for etomidate (Table 1).

Hemodynamic stability of ET-26 in rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0183439 August 15, 2017 4 / 10

https://doi.org/10.1371/journal.pone.0183439


3.2 HR, MAP, Dmax/t and Dmin/t of rats under normal conditions

Administration of either etomidate, ET-26 HCl or propofol resulted in reductions in HR,

MAP and Dmax/t, with a notable increase in Dmin/t (Fig 2). MAP decreased by a mean maxi-

mum of 47.0 ± 9.3 mmHg in the propofol group, by 20.3 ± 7.7 mmHg in the etomidate group

and by 24.3 ± 9.6 mmHg in the ET-26 HCl group. No significant differences in MAP were

observed between rats in the etomidate and ET-26 HCl groups at any point in the experiment

(all P> 0.05).

Administration of the three drugs resulted in a notable decrease in HR at 15 seconds after

injection. The maximum mean decreases in HR was 77.6 ± 23.0 beats per minute (bpm) in the

propofol group, 29.1 ± 11.5 bpm in the etomidate group and 41.0 ± 29.3 bpm in the ET-26

HCl group. No significant differences in HR were observed among rats receiving etomidate or

those receiving ET-26 HCl; however, the HR of rats in the propofol group was kept lower than

that of rats in the other two groups from the first timepoint to the final timepoint (P< 0.01).

Dmax/t decreased in the propofol group immediately after injection and did not recover to

baseline levels until 3 minutes after injection. Dmax/t values in the etomidate group differed

significantly from those of the ET-26 HCl group during the entire observation period, with the

exception of the third minute after injection (P = 0.037), whereas Dmax/t in the propofol group

was lower than that of the etomidate and ET-26 HCl groups.

Dmin/t increased immediately after injection of propofol and recovered at 4 minutes after

injection. Dmin/t in the propofol group was significantly higher than that of the ET-26 HCl

group at 5 minutes after administration, but not at other timepoints.

Fig 1. 50% median effective dose (ED50) for Loss of righting reflex (LORR) of A: ET-26 HCl; B: Propofol; C:

Etomidate. Each symbol represents data from one rat. The curve is a fit of the data set using non-linear

regression.

https://doi.org/10.1371/journal.pone.0183439.g001

Table 1. Indexes calculated during the ED50 and LD50 studies for ET-26 HCl, propofol, and etomidate

in the rats.

ET-26HCl Propofol Etomidate

ED50 (mg/kg) 2.1 5.4 0.66

With 95% CI 1.9–2.4 5.0–5.8 0.59–0.74

LD50 (mg/kg) 24.1 22.6 11.9

With 95% CI 23.4–24.9 20.9–25.9 11.5–12.3

TI 11 4.2 18

https://doi.org/10.1371/journal.pone.0183439.t001
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3.3 HR, MAP, Dmax/t and Dmin/t of rats in UHS rats

No significant differences were observed in body weight and volume of blood loss among

UHS rats receiving either of the three test drugs (Table 2, Fig 3). During both the operative

period and hemorrhagic phase, no notable differences were observed between rats scheduled

to receive either etomidate, ET-26 HCl or propofol. However, after injection with propofol at

an ED50 dose, three of the six rats died under assisted ventilation (at 8, 15, and 19 minutes after

administration of propofol) while rats in the ET-26 HCl and etomidate groups all survived.

Similar to observations from non-UHS rats, HR and Dmax/t of rats in the propofol group

decreased markedly compared with the ET-26 HCl and etomidate groups, with an increase in

Fig 2. Each data were represented as mean ± SD (n = 6 for each group). Results of hemodynamic parameters (MAP: mean arterial pressure;

HR: heart rate; Dmax/t; Dmin/t) on Non-UHS rats after dosed with two folds ED50 of ET-26 HCl, propofol and etomidate. * P < 0.05 versus propofol

group.

https://doi.org/10.1371/journal.pone.0183439.g002

Table 2. The body weight and loss volume of blood (n = 6 for each group).

Etomidate ET-26 HCl Propofol P value

Weight(g) 292.1±20.4 272.3±16.9 267.5±23.7 NS

Loss volume(mL) 7.7±0.8 7.4±0.4 7.1±0.8 NS

Loss volume(mL/100g) 2.6±0.3 2.6±0.2 2.7±0.1 NS

NS means no significant differences were observed among three groups.

https://doi.org/10.1371/journal.pone.0183439.t002
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Dmin/t also observed. Unexpectedly, no statistically significant differences in MAP were

observed between the three groups.

3.4 Blood-gas analysis of UHS rats

No statistically significant differences were detected on blood-gas analysis among the three

groups following establishment of UHS. Blood lactate acid concentrations in the ET-26 HCl

group were significantly lower than those of the etomidate or propofol groups (P< 0.01) at

the end of experiment (Table 3). No significant differences were observed in comparisons of

other blood-gas parameters.

4. Discussion

In this study, ET-26 HCl was found to preserve hemodynamic stability, as indicated by a wide

range of physiological parameters in both healthy rats and in a rat model of UHS. In addition,

lactic acid levels in rats receiving ET-26 HCl were significantly lower than those receiving eto-

midate or propofol.

Fig 3. Each data were represented as mean ± SD. Changes of hemodynamic parameters on UHS rats after injection with ED50 of ET-26 HCl

(n = 6), propofol (n = 6 for each time point except: n = 4 at 15 min and n = 3 at 20 min after administration of propofol) and etomidate (n = 6). * P <
0.05 versus propofol group.

https://doi.org/10.1371/journal.pone.0183439.g003
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The results, following tracheal intubation, indicate that ET-26 HCl, similar to etomidate has

a wide safety margin. In healthy, hemodynamically stable rats, ET-26 HCl had virtually no

effect on blood pressure or cardiac function. To further evaluate the hemodynamic stability of

the test compounds, a rat UHS model, which closely imitates the effects of trauma and major

bleeding experienced by patients was selected. A volume of blood loss of 3.5 mL/100 g has

previously been reported in rat models of UHS [19]. However, based on the findings of our

previous preliminary experiments, this volume of blood loss leads to high levels of mortality.

Therefore, according to preliminary experimental data, we modified our method of UHS

induction, and reduced the volume of blood loss to 2.5 mL/100g. Under these conditions, a

higher rate of successful UHS was achieved.

In this study, we used test doses to determine the ED50 for LORR. According to clinical

experience, the dose used for induction of anesthesia in patients at risk of hemodynamic insta-

bility is usually lower than that administered to hemodynamically stable patients. In addition,

some researchers report that propofol has a more potent anesthetic effect in experimental ani-

mals with a reduced, or low blood volume [20–22]. In previous experiments, six UHS rats all

died soon after receiving a dose of propofol twofold higher than the ED50 dose. Therefore, in

this study, we selected a dose equivalent to the ED50 dose, defined by LORR. However, this

observation was made in the presence of a basic level of anesthesia with pentobarbital and we

did not monitor the depth of anesthesia, therefore, whether or not the ED50 dose would

achieve a suitable depth of anesthesia during intubation remains unclear. We suggest that

investigations involving telemetry techniques should be applied in order to further define the

hemodynamic parameters relating to a response to propofol.

In order to establish uniform baseline parameters, we obtained samples for arterial blood-

gas analysis of all rats during the establishment of the UHS model. In a state of low blood vol-

ume, the oxygen-carrying capacity of the blood is decreased substantially, with a resultant

increase in blood-lactate concentration, which is associated with disease severity, and lower

levels of lactic acid are associated with a more favorable prognosis in patients [23,24]. At the

end of the experiment, arterial blood-lactate concentrations in the etomidate group were sig-

nificantly higher than those of the ET-26 HCl group. Therefore, we speculate that ET-26 HCl

provides certain advantages over etomidate, such as improved microcirculation and tissue

Table 3. The arterial blood gas analysis results of rats before administration of test drugs (n = 6 for each group respectively) and 20 min after injec-

tion of ED50 of etomidate (n = 6), ET-26 HCl (n = 6) and propofol (n = 3) in a rat model of UHS (uncontrolled hemorrhagic shock).

baseline Etomidate ET-26 HCl Propofol

PH 7.35±0.1 7.17±0.1a 7.22±0.1a,d 7.08±0.1a,c

PCO2(mmHg) 34.3±8.5 16.2±9.8a 20.6±11.6 a 28.6±12.3 a

PO2(mmHg) 91.6±12.2 127.3±17.2 a 117.6±7.9 a 119.4±23.4 a

Hb(g/dL) 14.1±0.9 12.9±0.9 a 12.5±0.9 a 11.9±1.2 a

SO2(%) 89.6±3.9 87.7±10.2 83.3±16.5 83.3±12.3

Na+(mmol/L) 140.5±1.4 138.8±0.8 141.1±1.1 139.8±1.4

Ca2+(mmol/L) 1.2±0.0 1.3±0.1 1.3±0.1 1.3±0.1

Cl-(mmol/L) 109.8±1.8 112.3±1.1 115.1±2.5 112.2±1.9

Lac(mmol/L) 2.9±1.8 12.8±1.8 a,c 9.3±1.82 a,b,d 10.8±1.9 a,c

K+(mmol/L) 3.8±0.4 5.6±1.3 a 6.3±1.2 a 6.1±1.1 a

aP < 0.05 versus baseline
bP < 0.05 versus etomidate
cP < 0.05 versus ET-26 HCl
dP < 0.05 versus propofol.

https://doi.org/10.1371/journal.pone.0183439.t003
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oxygen supply. However, further experiments are required to fully explore the possibility of

such effects.

In addition, there are some limitations in this study. We adopted a single blinded inves-

tigation instead of a double-blinded one. The propofol group would be easy to identify poten-

tially introducing bias. Besides, there was no control group, so the actual effects of each of the

sedatives remain unknown. In summary, ET-26 HCl seems to be a suitable anesthetic for criti-

cally ill patients, especially those at risk of hemodynamic instability following induction of

anesthesia.
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