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Portal hypertension is a common clinical symptom of digestive disorders. With an increase in portal pressure, the portal vein will
continue to dilate. We aimed to determine whether continuous stretch induced by portal hypertension may impair the function of
endothelial cells (ECs) in the portal vein and aggravate the progress of portal hypertension and explore its mechanism. ECs were
cultured on an elastic silicone membrane and subjected to continuous uniaxial stretch. Apoptosis and expression of TGF-f in
ECs under stretch were measured. We found that sustained stretch induced the apoptosis of ECs in a stretch length-dependent
manner. Compared with the control, continuous stretch increased the nicotinamide adenine dinucleotide phosphate oxidase 2
(NOX2) expression and damaged the mitochondria, resulting in an evident increase in reactive oxygen species (ROS) levels;
pretreatment with gp91ds-tat or MitoTEMPO decreased the ROS level in the intracellular levels. N-acetyl-cysteine (NAC)
treatment before stretch not only reduced ROS levels but also mitigated the apoptosis of ECs; simvastatin had similar effects
through targeting NOX2 and mitochondria. During the stretch, the phosphorylation of p38 mitogen-activated protein kinase
(P38MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-xB) was obviously increased; pretreatment with
P38MAPK or JNK inhibitors decreased the phosphorylation of NF-«¥B and TGF-f expression. Pyrrolidine dithiocarbamate
(PDTC) treatment before stretch also reduced TGF-f expression. After pretreatment with NAC, the phosphorylation of
P38MAPK, JNK, and NF-«xB and TGF-f8 expressions in ECs under stretch was suppressed; similar results were observed in
simvastatin-treated ECs. This study demonstrated that simvastatin could mitigate EC apoptosis and TGF-f upregulation
induced by continuous stretch by reducing the level of ROS.

1. Introduction

The splenic vein and mesenteric vein are the main branches
of the portal vein, which transmits blood from the abdominal
organs to the hepatic sinusoids [1]. The normal mean portal
vein diameter has been reported about 11 mm among healthy
adults [2]; diameters of greater than 13 mm have the ten-
dency to be diagnosed with portal hypertension [3, 4]. Portal
hypertension is one of the complications of hepatic fibrosis
[5], when portal hypertension develops and fails to receive
timely treatment, the portal vein will continue to dilate [6].
The major hemodynamic forces associated with portal
hypertension can be divided into shear stress, transmural
pressure, and mechanical stretch [7, 8]. Among them, the
effect of shear stress and transmural pressure on the patho-
physiology of portal hypertension has been widely studied

[9, 10]. However, the roles of mechanical stretch in portal
hypertension remain unclear.

Previous study has reported that portal vein dilatation
induced by embolization contributed to uniaxial continuous
stretch in ECs [11]. To simulate the changes in ECs induced
by portal vein dilatation under portal hypertension, the
stretch apparatus reported in a previous study was applied
in our study [11]. It was reported that there was an increase
in the production of interleukin 6 (IL-6) in the human umbil-
ical vein endothelial cells exposed to stretch [11]. TGF-f
plays an important role in the development of liver fibrosis
[12]; in this study, we aimed to investigate the effect of stretch
on the expression of TGF- in ECs. In a rat model of portal
hypertension, the portal vein diameter was increased, the
endothelial cell degeneration was detected by electron
microscopy [13], and the apoptosis of epithelial cells has been
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reported to be induced by stretch [14]. In the present study,
we speculate that continuous stretch contributes to the
increase apoptosis of ECs. As an oral lipid-lowering drug,
simvastatin has anti-inflammatory and antioxidative effects
[15, 16]. Here, we hypothesize that apoptosis increase and
TGF- 8 overproduction in stretch-induced ECs may be allevi-
ated by simvastatin.

In the present study, elastic silicone chambers were used
to simulate the effects of continuous stretch on ECs under
portal hypertension; apoptosis increase and TGF-f3 overpro-
duction were found in stretch-induced ECs, and ROS was
involved in these pathophysiological changes. As a potential
candidate for pharmacotherapy of portal hypertension, sim-
vastatin may mitigate apoptosis, and TGF-f upregulation
of stretch-treated ECs through targeting ROS.

2. Materials and Methods

2.1. Antibodies and Reagents. Anti-$-actin antibody (cat. no.
ab8224; Abcam), anti-Akt antibody (cat. no. ab8805;
Abcam), anti-p-Akt antibody (cat. no. ab38449; Abcam),
anti-human JNK antibody (cat. no. ab179461; Abcam),
anti-human P-JNK antibody (cat. no. ab124956; Abcam),
anti-p38 mitogen-activated protein kinase (MAPK) antibody
(cat. no. ab31828; Abcam), anti-phosphorylated (p-)p38
mitogen-activated protein kinase (P38MAPK) antibody
(cat. no. ab4822; Abcam), monoclonal, anti-Bax antibody
(cat. no.ab32503; Abcam), anti-Bcl-xL antibody (cat. no.
ab32370; Abcam), anti-transforming growth factor beta
(TGF-p) antibody (cat. no. ab92486; Abcam), anti-nuclear
factor-kappa B (NF-xB) antibody (cat. no. ab16502; Abcam),
anti-caspase-3 antibody (cat. no. 9662S; Cell Signaling Tech-
nology), anti-cleaved caspase-3 antibody (cat. no. 9661S;
Cell Signaling Technology), anti-p-NF-xB antibody (cat.
no. 3033S; Cell Signaling Technology), anti-p-extracellular
signal-regulated kinase (ERK) 1/2 antibody (cat. no. 44-
680G; Thermo Fisher Scientific, Inc.), and anti-ERK1/2 anti-
body (cat. no. 13-6200; Thermo Fisher Scientific, Inc.) were
used for Western blot. Ammonium pyrrolidine dithiocar-
bamate (PDTC), reactive oxygen species (ROS) assay, N-
acetyl-cysteine (NAC), One Step TUNEL Apoptosis Assay
Kit, and JC-1-Mitochondrial Membrane Potential Assay
Kit were purchased from Beyotime Institute of Biotechnol-
ogy (Jiangsu, China). Simvastatin and MitoTEMPO were
obtained from Sigma-Aldrich (St. Louis, MO). gp91ds-tat
(sequence: H-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-
Arg-Cys-Ser-Thr-Arg-Ile-Arg-Arg-Gln-Leu-NH2) was obtained
from AnaSpec (Fremont, USA). Collagen type I was bought
from Advanced BioMatrix (San Diego, CA).

2.2. Cell Culture and Mechanical Stretch. Endothelial cells,
EAhy926 (ATCC, Manassas, VA, USA), were cultured in
the Dulbecco’s modified Eagle’s medium (DMEM; Gibco;
Thermo Fisher Scientific, Inc.) supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin and incubated
in humidified atmosphere of 5% CO, at 37°C.

Uniaxial continuous mechanical stretch was used to sim-
ulate the dilation of blood vessels. As previously described
[11], ECs were seeded on an elastic silicone chamber (this

Oxidative Medicine and Cellular Longevity

device is 40 x 20 x 10 millimeters and can be stretched to
varying degrees) precoated with collagen type I (50 ug/ml);
the medium was changed before initiating the stretch. Two
ends of the chamber were fixed to a metal frame with a level
of distension increase (15% or 20%); the entire chamber with
the metal frame was then placed in an incubator.

2.3. TUNEL. One Step TUNEL Apoptosis Assay Kit was used
to detect the presence of apoptotic cells according to the
manufacturer’s instructions. Briefly, ECs were fixed in 4%
paraformaldehyde before rinsing with PBS and then perme-
abilized with 0.1% Triton X-100 followed by FITC-labeled
TUNEL. Positive cells with green fluorescence were captured
under an Olympus fluorescent microscope using 488 nm
excitation and 530 nm emission.

2.4. Mitochondrial Membrane Potentials Assay. The JC-1
probe was applied to measure the mitochondrial membrane
potential (Aym) in ECs according to the manufacturer’s
instructions. Cells were incubated with JC-1 staining solution
(5 ug/mL) for 20 min at 37°C and were rinsed twice with JC-1
staining buffer. The fluorescence intensity of both mitochon-
drial JC-1 monomers (green fluorescence) and aggregates
(red fluorescence) was monitored under an Olympus fluores-
cent microscope. The Aym was indicated by the ratio of red
fluorescence to green fluorescence.

2.5. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR) Analysis. Total cellular RNA extracted
by TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) was
reverse-transcribed into ¢cDNA using a RevertAid First
Strand cDNA Synthesis kit (Thermo Fisher Scientific, Inc.)
[17]. The primers used were as follows: NADPH oxidase 2
(NOX2): 5'-TTCCAGTGCGTGCTGCTCAAC-3" (sense)
and 5 -TGGTGTGAATCGCAGAGTGAAGTG-3' (anti-
sense); NOX4: 5'-GTGTCTAAGCAGAGCCTCAGCATC-
3" (sense) and 5'-CGGAGGTAAGCCAAGAGTGTTCG-3'
(antisense); TGF-p: 5 -GTACCTGAACCCGTGTTGCT-3'
(sense) and 5'-GTATCGCCAGGAATTGTTGC-3' (anti-
sense); and Bax: 5'-GATGCGTCCACCAAGAAGCTG
AG-3' (sense) and 5 -CACGGCGGCAATCATCCTCTG-
3’ (antisense). The resultant cDNA was amplified using the
FastStart Universal Probe Master (Roche Diagnostics) in
accordance with the manufacturer’s protocol. Target genes
were quantified using the 27244 method and normalization
with the expression of -actin.

2.6. Western Blot. Radioimmunoprecipitation assay buffer
(RIPA) containing phenylmethylsulfonyl fluoride (PMSEF)
and phosphatase inhibitor (Beyotime Institute of Biotechnol-
ogy) were used to lyse cells on ice. A bicinchoninic acid
(BCA) protein assay (Pierce; Thermo Fisher Scientific, Inc.)
was used to measure protein concentration. Protein samples
(20 ug/well) were separated by sodium dodecyl sulphate
(SDS) polyacrylamide gel electrophoresis and transferred to
a polyvinylidene difluoride (PVDF) membrane (Millipore);
approximately 5% low fat milk was used to block the PVDF
membrane for 1 h, and primary antibodies were used to incu-
bate it at 4°C overnight. The next day, the PVDF membrane
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FIGURE 1: Stretch-induced apoptosis of endothelial cells (ECs). (a) Apoptosis of ECs under nonstretch, 15% stretch, and 20% stretch
conditions were measured by TUNEL assay. TUNEL-positive cells were stained into green, while nuclei were counterstained into blue. (b)
Proteins associated with proapoptosis and antiapoptosis were detected by Western blot. The target protein was normalized to that of -actin.

was incubated with secondary antibodies (Beyotime Institute
of Biotechnology) for 1h and then developed by enhanced
chemiluminescence (Pierce; Thermo Fisher Scientific, Inc.).
The target protein level was normalized to that of f-actin,
and the phosphorylated protein level was normalized to the
corresponding total protein.

2.7. ROS Measurement. 2'7'-Dichlorodihydrofluorescein
diacetate (DCFH-DA) (Beyotime Institute of Biotechnology)
was used to measure ROS. Following stretch, ECs were
incubated with 10 yM DCFH-DA for 30 min at 37°C and
rinsed with serum-free media. The fluorescence of DCFH-
DA-labeled cells was monitored under an Olympus fluores-
cent microscope.

2.8. Statistical Analysis. All data were analyzed using the SPSS
13.0 software (SPSS, Inc.) and expressed as means + SD. Stu-
dent’s unpaired t test was used to compare between two sam-
ples. P < 0.05 was considered significant.

3. Results

3.1. Stretch-Induced Apoptosis of ECs. ECs were exposed to
nonstretch, 15% stretch, and 20% stretch conditions. As
shown using TUNEL analysis (Figure 1(a)), ECs when
exposed to 15% stretch and 20% stretch had increased apopto-
tic activity than ECs that were not exposed to stretch. How-
ever, the apoptotic activity of ECs exposed to 20% stretch
was markedly increased compared with that of ECs exposed
to 15% stretch. The results above were further confirmed by

Western blot (Figure 1(b)); with an increase in the length of
stretch, proteins associated with proapoptosis were induced,
and antiapoptotic proteins were correspondingly reduced.
These data suggest that sustained stretch can induce apopto-
sis of ECs in a stretch length-dependent manner; moreover,
20% stretch strikingly increased their apoptotic activity.

3.2. Apoptosis of ECs Induced by Stretch via ROS. Stretch
increased the ROS production in the central nervous sys-
tem injury [18]. Therefore, we investigated whether oxida-
tive stress induced by stretch can trigger the apoptosis of
ECs. As shown in Figure 2(a), compared with the control,
20% stretch significantly increased the intracellular levels
of ROS, whereas ROS production was markedly decreased
by N-acetyl-cysteine (NAC; a ROS scavenger) pretreat-
ment. Mitochondria and nicotinamide adenine dinucleotide
phosphate oxidase (NOX) were the major sources of ROS
[19]; the mitochondrial membrane potential decreased,
and the NOX2 expression of ECs increased under 20%
stretch (Figures 2(b), 2(c), and 2(e)). Considering that
NOX2 and NOX4 of ECs equally contributed to ROS gen-
eration [20], there was no significant difference in the
expression of NOX4 before and after exposure to 20% stretch
(Figure 2(d)); we chose a selective NOX2 inhibitor (gp91ds-
tat) and a mitochondria-targeted antioxidant (MitoTEMPO)
to further explore the source of ROS level of ECs exposed
to 20% stretch. ROS production was lowered at different
levels after pretreatment with gp91ds-tat or MitoTEMPO
(Figure 2(a)). To determine whether apoptosis of 20%
stretch-treated ECs was induced by ROS, we used NAC
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FI1GURE 2: Apoptosis of ECs induced by stretch via reactive oxygen species (ROS). (a) Intracellular ROS in ECs treated by nonstretch, 20%
stretch, 20% stretch+N-acetyl-cysteine (5mM), 20% stretch+gp91lds-tat (5uM), 20% stretch+MitoTEMPO (10 yuM), and 20% stretch
+simvastatin (1 #M) and measured by 2',7'-dichlorodihydrofluorescein diacetate. (b) Mitochondrial membrane potential was detected by
a JC-1 probe; the ratio of red to green fluorescence decreased in ECs under 20% stretch. (c-e) The mRNA expression levels of
nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and NOX4 were measured using quantitative reverse-transcription
polymerase chain reaction (QRT-PCR) analysis in ECs under 20% stretch; the protein level of NOX2 was detected by performing Western
blot. (f) Antiapoptotic and proapoptotic proteins of ECs pretreated with or without NAC under 20% stretch were evaluated by performing

Western blot. **P < 0.01.

to scavenge ROS from different sources; pretreatment with
NAC markedly increased the expression of antiapoptotic
proteins and decreased the expression of proteins associated
with proapoptosis (Figure 2(f)). These data suggest that ROS
from NOX2 and the mitochondria increased the apoptosis of
ECs under 20% stretch.

3.3. Effects of Simvastatin against Endothelial Cell Apoptosis
Induced by Stretch. Simvastatin prevents inflammatory
cytokines from injuring endothelial cells [21]. In this study,
ECs were pretreated with different concentrations of simva-
statin before exposure to 20% stretch (Figure 3(a)). Approx-
imately 1 uM of simvastatin could significantly reduce the
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FIGURE 3: Simvastatin protected ECs from apoptosis induced by stretch. (a) Bax mRNA of ECs under 20% stretch with different
concentrations of simvastatin was measured by qRT-PCR analysis. (b) Antiapoptotic and proapoptotic proteins of ECs under 20% stretch
with simvastatin or not were detected by Western blot. (c) Reduced mitochondrial membrane potential of ECs under 20% stretch was
reversed by simvastatin. (d-f) NOX2 upregulation induced by stretch was inhibited by simvastatin, and even NOX4 expression was

reduced. *P < 0.05, **P < 0.01.
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F1GURE 4: Transforming growth factor beta (TGF-f) increased in ECs exposed to stretch. (a, b) TGF-$ mRNA in ECs under 15% and 20%
stretch for 24h or 15% stretch for 12h was evaluated by qRT-PCR analysis. (c) TGF-f protein in ECs under 15% stretch for 12h was

detected by Western blot. *P < 0.05, **P < 0.01.
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FIGURE 5: NF-«B mediates TGF-f increase in ECs exposed to stretch induced by p38 mitogen-activated protein kinase/N-terminal kinase
(P38MAPK/JNK). (a) Stretch activated the P38MAPK and JNK pathways and inactivated the Akt and ERK1/2 pathways in ECs, which
was evaluated by Western blot analysis. (b) Stretch-treated ECs were pretreated with SB203580 (a P38MAPK inhibitor) or SP600125
(a JNK inhibitor), the expression of TGF-f was significantly decreased. (c) The nuclear factor-kappa B (NF-«B) activity in stretch-treated
ECs was evaluated by Western blot analysis. (d) Stretch-treated ECs were pretreated with SB203580 or SP600125, the phosphorylation of
NEF-xB was significantly inhibited. (e) The phosphorylation of NF-«B and TGF-f expression in stretch-treated ECs pretreated with PDTC

was remarkably suppressed.

Bax (apoptosis-associated gene) expression of ECs induced
by stretch, which was further confirmed by Western blot
(Figure 3(b)). Next, we investigated whether treatment with
simvastatin mitigated EC apoptosis by targeting ROS. As
shown in Figure 2(a), treatment with simvastatin markedly
reduced the ROS production compared with nontreatment.
With regard to the source of ROS, simvastatin pretreatment
could not only inhibit NOX2 expression, it could also decrease
the expression of NOX4 (Figures 3(d)-3(f)) and restore the
mitochondrial membrane potential (Figure 3(c)). These data
suggest that simvastatin mitigates ROS-induced apoptosis of
ECs under 20% stretch by repression of NOX2 expression
and restoration of mitochondrial membrane potential.

3.4. Effects of NF-«B in the TGF-f3 Expression of ECs Exposed
to Stretch Induced by P38MAPK/JNK. Mechanical stretch has
been reported to increase IL-8 secretion [22]; in this study,
we explored whether continuous stretch contributes to an

increase in TGF-f3 expression. As is shown in Figure 4, both
15% stretch and 20% stretch could upregulate TGEF- 3 expres-
sion within 24 h compared with the control, especially under
15% stretch within 12h. Next, the mechanism of TGF-
increase induced by stretch was investigated. During stretch,
the phosphorylation level of Akt and ERK was decreased;
conversely, P38MAPK phosphorylation and JNK phosphor-
ylation were significantly increased (Figure 5(a)). TGF-f
upregulation induced by stretch was reversed using selective
inhibitors of P38MAPK or JNK (Figure 5B). NF-xB was
involved in the secretion of IL-8 induced by stretch [23]. As
is shown in Figure 5(c), the phosphorylation level of NF-«B
increased under stretch, which was inhibited using selective
inhibitors of P38MAPK or JNK (Figure 5(d)). The upregula-
tion of TGF-f induced by stretch was also suppressed by
PDTC (NF-«B inhibitor) (Figure 5(e)). These data show that
NF-xB mediates the increase of TGF-f3 expression of ECs
under stretch induced by P38MAPK/JNK.
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inhibiting ROS production.

3.5. ROS Involved in Stretch-Induced TGF-3 Increase, which
Is Suppressed by Simvastatin. We have confirmed that stretch
increased the ROS level; here, we investigated whether ROS
was responsible for stretch-induced TGF-f increase. As
shown in Figure 6(a), NAC decreased the phosphorylation
level of P38MAPK, JNK, and NF-«B by scavenging ROS and
correspondingly reversed TGF-f3 upregulation. We have veri-
fied that simvastatin was effective in decreasing the level of
ROS (Figure 2(a)); treatment with NAC downregulated the
level of TGF-p expression, which was also observed in simva-
statin (Figure 6(b)). These data suggest that ROS increased the
TGEF-f8 expression of ECs under stretch, while simvastatin
inhibited the upregulation of TGF-p3 by targeting ROS.

4. Discussion

This study mainly explored the mechanism of EC apoptosis
and TGF-f upregulation induced by stretch; sustained

stretch induced apoptosis of ECs in a ROS-dependent man-
ner. Mitochondria and NOX2 were the major sources of
ROS; scavenging ROS reduced apoptosis of ECs treated by
stretch. NF-«B mediated the increase of TGF-f expression
of ECs induced by P38MAPK/JNK, which were downstream
targets of ROS, and TGF-p increase could be suppressed by
ROS scavenger. Stretch-induced EC apoptosis and TGF-f3
upregulation could be inhibited by simvastatin pretreatment
through targeting ROS.

Portal hypertension is a common clinical syndrome in
patients with digestive disorders [24]. With the increase of
portal pressure, the portal vein will continue to dilate. To sim-
ulate stretch of ECs during portal vein dilation, we used the
model of uniaxial continuous stretch in the previous study
to investigate the pathophysiological changes of ECs in the
portal vein in patients with portal hypertension [11]. Stretch
increased the apoptotic activity of epithelial cells [14]; in this
study, the apoptotic activity of ECs was increased under



stretch (Figure 1). Akt and ERK pathways were closely asso-
ciated with EC proliferation [25], and their phosphorylation
level was significantly inhibited in our study (Figure 5(a)),
which further confirmed the results above. ROS plays an
important role in the progress of portal hypertension.
Decreasing the level of ROS has been reported to improve
the endothelial dysfunction and reduce portal pressure in
cirrhotic rats with portal hypertension [26]. Inhibition of
NOX1/4 with GKT137831 significantly increased portal flow
resistance and reduced the portal pressure in rats with partial
portal vein ligation [27]. ROS overproduction was reported
to be induced by mechanical stretch [28], and this finding
is consistent with our data (Figure 2(a)); however, ROS
generated during stretch is seldom reported. Mitochondria
and NADPH oxidase (NOX) were the major sources of
ROS [19]; in the present study, the decrease in mitochon-
drial membrane potential and increase in NOX2 expression
of ECs under stretch were reported (Figures 2(b) and 2(c));
after pretreatment with gp9lds-tat or MitoTEMPO, the
level of ROS was decreased (Figure 2(a)), which suggested
that ROS might originate from the mitochondria and
NOX2 of ECs treated by stretch. As the chief source of
free radicals, ROS participates in cell damage and apopto-
sis [29]; in this study, NAC pretreatment not only reduced
the level of ROS but also mitigated the apoptosis of ECs
under stretch.

Recent studies have reported that mechanical stretch
increased the secretion of inflammatory cytokines such as
IL-8 and IL-1f [30]. TGF- is closely associated with the
occurrence and development of liver fibrosis [12]. In the
present study, TGF-f upregulation was induced by contin-
uous stretch, especially under 15% stretch at 12hour
(Figure 4). Next, the mechanism of TGF-p increase induced
by stretch was investigated; P38MAPK-TGF-f signaling
axis was reported to regulate tumor cell proliferation and
Kras-induced senescence [31]. Furthermore, the activation
of cardiac f3-adrenergic receptors in the cardiomyocytes
increases the expression of TGF-f via the JNK/c-Jun path-
way [32]; in our study, the phosphorylation of P38MAPK
and JNK was significantly increased during the stretch.
After pretreatment with selective inhibitors of P38MAPK
or JNK, TGF-f upregulation was reversed (Figures 5(a)
and 5(b)), which suggested that P38MAPK/JNK mediated
TGF-f increase in stretch-induced ECs. NF-xB pathway
was activated by mechanical stretch [23], and this finding
coincides with our results (Figure 5(c)); however, the level
of NF-«B phosphorylation was suppressed after pretreatment
with inhibitors of P38MAPK or JNK (Figure 5(d)). As a tran-
scription factor, NF-xB has also been verified to mediate
TGF-f production regulated by HCV [33]. In addition, inhi-
bition of NF-«B reduced TGF-f expression during the reso-
lution of inflammation in vivo [34]. In our study, after
pretreatment with PDTC, TGEF-f increase was obviously
inhibited (Figure 5(e)); this finding demonstrates that
P38MAPK/JNK-induced NF-«B regulates TGF-f3 expression
in stretch-treated ECs. P38MAPK and JNK were activated by
ROS; as a ROS scavenger, NAC suppressed the phosphoryla-
tion of P38MAPK, JNK, and NF-«xB. TGF-f3 expression was
also inhibited (Figure 6(a)).
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In addition to improving hyperlipidemia syndrome, sim-
vastatin reduced the spinal cord neuronal death through
decreasing oxidative stress [35]. Additionally, simvastatin
prevented the occurrence of several acute or chronic liver
failure-derived complications and increased the survival
times of rats with cirrhosis and portal hypertension by
increasing hepatic sinusoidal function and reducing portal
pressure [36]. In our study, we confirmed that simvastatin
could reduce ROS levels induced by continuous stretch by
downregulating NOX2 and restoring mitochondrial mem-
brane potential. EC apoptosis and TGF-f overexpression
were then mitigated.

5. Conclusions

In conclusion, as presented in Figure 6(c), the present study
demonstrated that simvastatin could mitigate EC apoptosis
and TGF-f upregulation induced by continuous stretch by
reducing the ROS level.
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