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Abstract: This paper introduces a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber
(CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging.
Most commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmission rate
(OTR) of <1 cc/m2/day in highly controlled conditions. A CNF film typically fabricated by the air
drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m2/day. The addition of 0–5 wt %
BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR
of 4.7 cc/m2/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial
increases the pathway of oxygen gas and reduces the chances of pinhole formation during film
fabrication involving water drying. In addition, BNNS improves the mechanical properties of the
CNF films (Young’s modulus and tensile strength) without significant elongation reductions, probably
due to the good miscibility of CNF and BNNS in the aqueous solution. Addition of BNNS also
produces negligible color change, which is important for film aesthetics. An in vitro cell experiment
was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has
great potential as a sustainable high-performance food-packaging material.

Keywords: cellulose nanofiber; boron nitride nanosheet; oxygen barrier; food packaging

1. Introduction

Synthetic polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate
(PET) have been widely used as food- and medicine-packaging materials owing to their high strength,
low cost, viscoelastic properties and chemical resistance. The oxygen barrier properties of food
and medicine packaging films are vital to prevent the oxidation of food and medicine. However,
most polymeric films are oxygen permeable and exhibit a high oxygen transmission rate (OTR) of
40–1000 cc/m2/day [1–5].

Halogenated and metalized polymeric films can achieve an OTR of 0.1–10 cc/m2/day [6–9].
However, these polymer films pose many environmental and health threats [6–9]. For example,
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the incineration of aluminum-coated PET films and polyvinylidene chloride (PVDC) produces fine
dust and dioxins, respectively. In general, metalized polymeric films are not recyclable.

Cellulose nanofiber (CNF) is a sustainable and biocompatible nanomaterial [10] and is a potential
food- and medicine-packaging material [11–19]. It is produced by mechanically disintegrating highly
crystalline nanofibrils in cellulose bulk, the most abundant biomass [10,20]. Coatings and films
composed of CNF can achieve an OTR of less than 1 cc/m2/day, which is suitable for the packaging of
most foods and medicines [11–19].

It is questionable whether the oxygen barrier performance of CNFs can be reproduced in an
industrial setting. CNF films are typically produced from aqueous dispersion by air drying, and the
resultant films often exhibit high OTR values (19.08 cc/m2/day, by our measurement), because the
capillary force during drying results in a heterogeneous surface [20]. The OTR value is as high as that
of bare PET.

Two-dimensional (2D) nanomaterials, including graphene and MoS2, have been introduced in
polymeric films and shown to improve the oxygen barrier properties of the resulting matrix films,
because the layered structure increases the pathway distance for oxygen gas [21–24]. Graphene
and MoS2 are colored and have high optical absorption coefficients [25,26]. Their addition to
milky or transparent CNF films decreases the esthetic value of the packaging material produced.
In addition, graphene is cytotoxic [27]; these disadvantages limit the food-packaging applications of
2D nanomaterials.

Boron nitride nanosheet (BNNS) is a 2D nanomaterial having several advantages as a filler for
food-packaging films. It can be produced on a larger scale with lower costs than graphene [28,29].
In addition, it is white-colored and known to be less cytotoxic than the 2D nanomaterials considered
previously [30].

The combination of CNF and BNNS is uncommon [24,31], but recently some studies have reported
that BNNS/CNF composite films exhibit good thermal conductivity [32–36]. However, these studies
of BNNS/CNF composites did not examine their gas-barrier performance.

In this study, we show that a BNNS-containing CNF composite film can achieve a low OTR of
~4.7 cc/m2/day (Scheme 1). The film was prepared by simple air drying of the corresponding aqueous
solution. Thus, this method is easily scalable for the production of CNF-based barrier films and is based
on a sustainable aqueous system. Typically, PP, PE and PET films exhibit the OTR values of >1000,
>1000, and 10–100 cc/m2/day, respectively [1–5,13]. The oxygen-barrier performance of the prepared
BNNS/CNF composite film is suitable for use as a packaging film for meats and cheese [13]. The BNNS
addition had minimal effect on the optical properties of the CNF film and improved the tensile strength
by a factor of ~1.23 without a significant elongation reduction. In addition, the composite film did not
show any cytotoxicity to a cell line.
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2. Materials and Methods

2.1. Materials

Boron nitride (BN) and an ionic liquid ([EMIM][BF4]) were purchased from Sigma Aldrich (USA).
A ~3 wt % CNF aqueous dispersion was purchased from the University of Maine (Orono, ME, USA).
The width and length of the CNF were ~50 nm and several µm, respectively.

2.2. Boron Nitride Nanosheet (BNNS) Synthesis

BNNS was synthesized as described in a previous report [36]. Briefly, BN was exfoliated
and functionalized in a Taylor–Couette (TC) reactor composed of two concentric inner and outer
stainless-steel cylinders with a radius ratio of η = Ri/Ro = 0.92 and an aspect ratio of Γ = L/d = 2.3,
where Ri is the inner cylinder radius, Ro is the outer cylinder radius, L is the cylinder length, and d is
the outer cylinder diameter. BN powder was dispersed in a solution of deionized (DI) water/ionic
liquid [EMIM][BF4] (0.15 vol %). The feed solution (30 mg/mL) was injected into the TC reactor and
allowed to react for 1 h. After this process, the resultant dispersion samples were centrifuged (420× g,
150 min) to remove unbounded [EMIM][BF4] and un-exfoliated BN sheets. The BNNS powder samples
were collected by freeze-drying for 24 h. The concentrations of BNNS in water can be adjusted up to
10 mg/mL by mild sonication of BNNS powders in water.

2.3. Composite Film Preparation

Pristine CNF and CNF/BNNS nanocomposite films were prepared as follows (Scheme 1). BNNS
solution (1.79 mg/mL) was dropped onto a CNF solution (0.5 wt %) under stirring, and the resultant
suspension was subsequently mixed at 12,000 rpm using a high-speed stirrer (Ultraturrax T25, IKA,
San Diego, CA, USA) for 10 min, followed by degassing with an ultrasonic cleaner (SD-D400H, lklab
Co., Namyangju, Korea) for 20 min. A total of 100 g of the suspension was then poured into a
polystyrene petri dish (150 mm in diameter) and dried under ambient conditions for 6 days. The films
were peeled from the petri dish and stored in a desiccator prior to further characterization.

2.4. Tensile Properties

The tensile tests of the films were performed with a universal testing machine (Instron 5943,
Instron Corp., Norwood, MA, USA) with a 1000 N load cell. The films were cut into a dog-bone shape.
The test area of the samples was ~26.5 mm in length, ~3.2 mm in width (Figure S1), and ~70.0 µm
thick. The tests were performed at a strain rate of 1 mm/min under ambient conditions. A total of
three specimens were tested for each type of sample. To interpret the data of the tensile properties,
the statics and methods need to consider (Supplementary Materials).

2.5. Oxygen Transmission Rate (OTR)

The OTRs of the composite films at different loadings of BNNS were measured with an automated
oxygen-permeability testing machine (Lyssy L100-5000, Systech Instruments Ltd., Thame, UK). The test
area of the samples was 65 cm2 and the tests were performed at 23 ◦C and 50% relative humidity using
high purity oxygen gas (99.999%) following the ASTM D3985 standard protocol.

2.6. Characterization

The light transmittance spectra of the films were measured from 400–800 nm with a
ultraviolet/visible (UV-vis) spectrophotometer (UV-2600, Shimadzu, Kyoto, Japan). The structure and
morphology of the prepared nanocomposite films were characterized using a field emission scanning
electron microscope (FE-SEM, MIRA 3 XMU, TESCAN, Brno, Czech Republic) equipped with the
OIMTM-technology from EDAX/TSL, operating at an acceleration voltage of 10 kV. The FE-SEM
samples were prepared by vacuum sputtering Pt onto the dried sample under ambient conditions.
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Transmission electron microscopy (TEM) images were obtained using an E.M. 912 Ω energy-filtering
TEM (EF TEM 120 kV) and a JEM-3010 HR TEM (300 kV). A scanning transmission electron microscope
(STEM) was operated with a probe focused to 0.2 nm and a camera length of 20 cm. The scan raster
was 512 × 512 points with a dwell time of 8.5 s per scan.

2.7. Cytotoxicity Test

The cell viability test was performed on the surfaces of pristine and 5 wt % BNNS-containing
composite CNF films [37–39]. The fully swollen film disks with the same diameter as the 24-well plate
were immersed in ethanol for 12 h and washed with phosphate-buffered saline (PBS) just before cell
seeding. A mouse pre-osteoblast cell line, MC3T3-E1, was cultured in minimal essential medium-alpha
(MEM-α; Hyclone, Cramlington, UK) supplemented with 10% fetal bovine serum (FBS; Hyclone,
Cramlington, UK) and 1% penicillin/streptomycin (Hyclone, Cramlington, UK) at 37 ◦C under a
humidified atmosphere of 5% CO2 and 95% air. The subconfluent cells were detached using 0.25%
trypsin-EDTA (Hyclone, Cramlington, UK), and the viable cells were counted using the trypan blue
assay. The cells were further seeded onto film-containing and empty wells as a control in a 24-well
plate at a density of approximately 3 × 104 cells per well and cultured for 3 days. The number of
viable cells as a function of culture time (0 to 3 days) was determined via a colorimetric assay (CCK-8,
Dojindo, Santa Clara, CA, USA); the number of viable cells is proportional to the light absorbance
value at 450 nm.

3. Results and Discussion

3.1. Appearance of Cellulose Nanofiber (CNF) and BNNS Solutions

The CNF and BNNS aqueous dispersions are opaque and translucent, respectively, and both are
white-colored (Figure 1). The similar color of the BNNS filler and CNF film is beneficial for esthetic
reasons. The CNF and BNNS particles did not precipitate even after 1 year, indicating that both particles
were stably dispersed in the aqueous solutions. Other types of cellulose nanomaterials with surface
charges, such as cellulose nanocrystals and carboxylated CNF, are transparent [20]. However, CNF has
no surface charge and its fibers were partially aggregated, resulting in an opaque dispersion [20].
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3.2. Analysis of BNNS Particles

BNNS was prepared as a nanometer-thick sheet. The dimensions of the synthesized BNNS
particles were investigated using a zeta sizer, SEM, and TEM (Figure 2). The zeta average size
and polydispersity (PDI) of the BNNS particles were ~1084 nm and ~0.85, respectively (Figure 2A).
The particle size is represented as the hydrodynamic diameter of an equivalent sphere. Thus, the zeta
average size would be similar to the longest length of the nanosheets. The relatively low PDI suggests
that the TC reactor-based exfoliation produced uniformly sized BNNS particles. The >1000 nm length
of BNNS is the main reason that its aqueous solutions are translucent.
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Figure 2. (A) Zeta sizer analysis of the synthesized BNNS particle solution with Z-average size
and polydispersity (PDI) values; (B) Scanning electron microscope (SEM) and (C) transmission
electron microscope (TEM) images of the synthesized BNNS particles. Scale bars are 5 µm and
50 nm, respectively.

In the SEM image (Figure 2B), ~1 µm sized BNNS particles were observed. The length of the
BNNS particles determined from the SEM images is compatible to the zeta average size. The TEM
image shows a more magnified shape of a single BNNS particle (Figure 2C). In the TEM image,
the BNNS is translucent, indicating that the electron beam was transmitted through the BNNS particle,
likely because of its nm thickness.

3.3. Preparation of BNNS-Containing CNF Composites

Pristine CNF and BNNS/CNF composite films with the different BNNS contents of 0–5 wt % were
prepared by drying the corresponding aqueous dispersions (Scheme 1). Because both CNF and BNNS
were prepared as aqueous dispersions, homogenous BNNS/CNF composite films were obtained.
Ionic liquids are not volatile [40–42], so during the preparation of the pristine CNF and composite
films, mostly water evaporated.
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3.4. Optical Properties of the BNNS-Containing CNF Composite

The resultant pristine CNF and BNNS/CNF composite films were white and translucent,
respectively (Figure 3A). Both pristine CNF and 5 wt % BNNS-containing CNF composite films
show similar light-transmittance patterns, and a transmittance of only several percent was observed
at 400–800 nm (Figure 3B). The 5 wt % BNNS addition exhibited only minimal effects on the light
transmittance of the CNF film, and the color change was also negligible upon the addition of BNNS.
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3.5. Morphology of the BNNS-Containing CNF Composite

The surface morphology of the pristine CNF and BNNS/CNF composite films was investigated
by SEM (Figure 4). Figure 4A shows the typical surface morphology of a CNF film where the nanofibril
structure can be observed. The SEM image of the 5 wt % BNNS-containing CNF film exhibited an
analogous morphology, indicating that the BNNS addition did not significantly affect the surface
morphology of the CNF film. In addition, BNNS particles were not observed on the surface of the
5 wt % BNNS-containing CNF film (Figure 4B).
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3.6. Oxygen Transmission Rate of BNNS-containing CNF Composite

As observed in previously reported 2D nanomaterials, BNNS addition improved the oxygen
barrier properties of the CNF film (Figure 5). The pristine CNF film exhibited an OTR of
19.08 cc/m2/day, which is similar to that of the bare PET film [1–5]. The barrier performance of the
pristine CNF is not sufficient for use in most food-packaging applications. As previously mentioned,
CNF films typically exhibit an OTR of <1 cc/m2/day under ideal conditions. However, during
large-scale production of CNF films, the capillary force induced by water drying can result in pinholes
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in the film [20]. The OTR values of the BNNS-containing CNF composites gradually decreased with
increasing BNNS content to 4.7 cc/m2/day. The oxygen-barrier performance of the composite film
is similar to that of ethylene vinyl alcohol (EVOH), a typical oxygen-barrier polymeric film, and is
suitable for use as a packaging film for meat and cheese [13]. Nevertheless, the OTR can still be
improved to <1 cc/m2/day, which would be similar to metalized PET and PVDC films that are used in
most food-packaging applications.Polymers 2018, 9, x FOR PEER REVIEW  7 of 11 
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Figure 5. Oxygen transmission rate (OTR) of pristine and BNNS-containing CNF films. The data of
triplicate samples represent mean ± deviation.

3.7. Tensile Properties of the BNNS-Containing CNF Composite

The 2D geometry of the BNNS enhanced the mechanical properties of the composite films.
The tensile tests of the pure and BNNS-containing CNF films provided quantitative measures of their
Young’s moduli, tensile strengths and elongations (Figure 6, Figures S2–S5). Young’s modulus, tensile
strength, and elongation of the pristine CNF were ~4.7 ± 0.3 GPa, ~88.1 ± 7.5 MPa, and ~4.5 ± 1.2%,
respectively, which are comparable to those of previously examined CNF films (Tables S1–S3) [11,12].
Young’s modulus and tensile strength gradually increased with increasing BNNS content without
compromising the elongation. Young’s modulus, tensile strength, and elongation of the 5 wt %
BNNS-containing CNF film were ~7.2 ± 0.9 GPa, ~109.5 ± 5.8 MPa, and ~4.5 ± 1.2%, respectively.
These Young’s modulus and tensile strength values were approximately 1.52- and 1.19-fold greater,
respectively, than those of pristine CNF. In most cases, reinforcing fillers improve the tensile
strength but reduce the elongation of composite materials [43,44]. In other words, the reinforced
composite becomes stronger but more brittle. The improvement in stiffness without compromising
stretchability indicates that the 5 wt % BNNS-containing CNF film is tougher than the pristine film.
The good adhesion between BNNS and CNF likely enabled improved toughness. However, the data
interpretation is limited to three measurements for each sample.

The tensile properties of the composites are as great as those of engineering plastics, e.g.,
polycarbonate. Actually, the bio-based plastics, e.g., polylactic acid (PLA) have poorer mechanical
properties than the commodity plastics, e.g., PP and PE that are widely used as food-packaging
films [45,46]. Along with the poor oxygen barrier, this low mechanical properties of the bio-based
plastics is a main reason for the difficulty in commercialization. Thus, this result is encouraging for an
increase in the use of bio-based polymeric materials.
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Figure 6. Tensile properties of pristine and BNNS-containing CNF films: (A) Young’s modulus;
(B) tensile strength; and (C) elongation. The data of triplicate samples represent mean ± deviation.
Statistical significance of a comparison of 0 wt % and 5 wt % BNNS-containing samples (N.S.,
not significant, p > 0.05; *, p < 0.05; unpaired t-test). The data statics is described in the
Supplementary Materials.

3.8. In Vitro Cytotoxicity Test of the BNNS-Containing CNF Composite

To examine the cytotoxicity of BNNS to mammalian cells (MC3T3-E1), viable cells on an empty
cell culture well were used as a control, and viable cells on pristine and 5 wt % BNNS-containing
CNF films were monitored for 48 h via colorimetric assay (Figure 7). The number of viable cells on
the pristine and 5 wt % BNNS-containing CNF films gradually increased and became slightly more
abundant than those on the empty well over 48 h, probably because the hydroxyl groups of CNF
are more absorbable than the polystyrene surface. There was no significant difference in the number
of viable cells (p > 0.05) with the addition of BNNS, indicating that BNNS exhibited no cytotoxicity
towards the MC3T3-E1 cells. However, the side effects of BNNS in humans have not been studied
from a long-term perspective. Further testing is required to prove the lack of cytotoxicity of BNNS
when BNNS is exposed to food and beverages.
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4. Conclusions

In summary, the CNF/BNNS composite film exhibited good oxygen-barrier properties and
an OTR of <5 cc/m2/day, which is suitable for use as a packaging material for meat and cheese.
By the simple addition of BNNS particles to the CNF aqueous solution, without modifying the CNF
film fabrication process, the resultant film exhibited improved oxygen-barrier and tensile properties.
Owing to the synergistic combination of CNF and BNNS, the tensile strength was improved without
sacrificing elongation. Finally, the composite film showed no cytotoxicity to MC3T3 cells, indicating
the great potential of the prepared film for food packaging.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/5/501/s1,
Figure S1: Dog-bone shape samples for tensile tests, Figure S2: Tensile strain stress curves of 0% BNNS containing
CNF films, Figure S3: Tensile strain stress curves of 1% BNNS containing CNF films, Figure S4: Tensile strain
stress curves of 3% BNNS containing CNF films, Figure S5: Tensile strain stress curves of 5% BNNS containing
CNF films, Table S1: Young’s modulus (GPa) statics from tensile stress strain curves: values, mean, 48 mean
absolute deviation of triplicate trials, Table S2: Ultimate tensile strength (MPa) statics from tensile stress strain
curves: values, 51 mean, mean absolute deviation of triplicate trials, Table S3: Elongation at break (%) statics from
tensile stress strain curves: values, mean, mean 54 absolute deviation of triplicate trials.
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