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Abstract
Accuracy of genomic predictions is an important component of the selection response. The objectives of this research 
were: 1) to investigate trends for prediction accuracies over time in a broiler population of accumulated phenotypes, 
genotypes, and pedigrees and 2) to test if data from distant generations are useful to maintain prediction accuracies 
in selection candidates. The data contained 820K phenotypes for a growth trait (GT), 200K for two feed efficiency traits 
(FE1 and FE2), and 42K for a carcass yield trait (CY). The pedigree included 1,252,619 birds hatched over 7 years, of which 
154,318 from the last 4 years were genotyped. Training populations were constructed adding 1 year of data sequentially, 
persistency of accuracy over time was evaluated using predictions from birds hatched in the three generations following 
or in the years after the training populations. In the first generation, before genotypes became available for the training 
populations (first 3 years of data), accuracies remained almost stable with successive additions of phenotypes and pedigree 
to the accumulated dataset. The inclusion of 1 year of genotypes in addition to 4 years of phenotypes and pedigree in the 
training population led to increases in accuracy of 54% for GT, 76% for FE1, 110% for CY, and 38% for FE2; on average, 74% 
of the increase was due to genomics. Prediction accuracies declined faster without than with genomic information in the 
training populations. When genotypes were unavailable, the average decline in prediction accuracy across traits was 41% 
from the first to the second generation of validation, and 51% from the second to the third generation of validation. When 
genotypes were available, the average decline across traits was 14% from the first to the second generation of validation, 
and 3% from the second to the third generation of validation. Prediction accuracies in the last three generations were the 
same when the training population included 5 or 2 years of data, and a decrease of ~7% was observed when the training 
population included only 1 year of data. Training sets including genomic information provided an increase in accuracy 
and persistence of genomic predictions compared with training sets without genomic data. The two most recent years of 
pedigree, phenotypic, and genomic data were sufficient to maintain prediction accuracies in selection candidates. Similar 
conclusions were obtained using validation populations per year.
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Introduction
Accuracy of genomic predictions is an important parameter 
in animal breeding programs because of its direct relationship 
with selection response. This parameter is a function of the 
proportion of the genetic variance captured by single nucleotide 
polymorphisms (SNP) and the accuracy of SNP effect estimates, 
which depends on the amount and distribution of phenotypic 
and genotypic data available, the genetic architecture and the 
heritability of the trait, and the statistical method used (Dekkers, 
2007; Goddard, 2009).

The decay in accuracy of predictions over time in initial 
genomic selection studies using stochastic simulations was small. 
Meuwissen et al. (2001) found that the prediction accuracy for a trait 
with major genes, in the absence of artificial selection, decreased 
from 0.84 to 0.72 after five generations without phenotyping the 
genotyped animals. Muir (2007), also using a stochastic simulation, 
concluded that accuracy of genomic selection in breeding programs 
decays faster for traits under selection.

Using simulated data from layers, Wolc et al. (2015) reported 
that after 3 years of selection, the prediction accuracy remained 
almost stable, decaying from 0.77 to 0.73 when the breeding 
program included new animals with genotypes and phenotypes 
every generation. Conversely, the accuracy declined from 0.77 
to 0.34, when no new animals with phenotypes were included, 
and the attained selection response was smaller. In the same 
study, results obtained using real data from approximately 
2,700 genotyped animals were consistent with those of the 
simulation; however, the accuracy was lower.

Genomic selection acts on independent chromosome 
segments (VanRaden, 2008; Goddard, 2009) and on clusters of 
chromosome segments (Pocrnic et  al., 2019). The number of 
independent chromosome segments segregating in a finite 
population can be estimated as 4NeL (Stam, 1980), where 
Ne is the effective population size and L is the length of the 
genome in Morgans. Equivalently, the number of independent 
chromosome segments can be estimated as the number of 
the largest eigenvalues explaining 98% of the variation in the 
genomic relationship matrix (G; Pocrnic et al., 2016a). Assuming 
L = 30 Morgans, Pocrnic et al. (2016b) estimated the number of 
independent chromosome segments in a broiler population to 
be approximately 5.5K, when Ne was 44.

Based on the findings of Pocrnic et  al. (2016b), we 
hypothesized that the accuracy of genomic predictions in 
a broiler population under selection would be high, with a 
small decay over time if predictions are based on at least 5.5K 
genotyped animals with high individual prediction accuracies, 
that is, if the data are large enough to estimate accurately the 
effect of the independent chromosome segments segregating 
in the population. Chromosome segments are high linkage 
disequilibrium regions with low recombination rate (Muir, 2007); 

therefore, the persistence of genomic prediction accuracies 
should be high in a breeding program under the assumption 
of an additive model even with strong selection on traits of 
interest. Bradford et  al. (2017) demonstrated that accuracy 
of genomic predictions declines marginally under intensive 
selection. In their study, the accuracy of predictions in animals 
from the generation of validation was similar using training 
populations with genotyped animals from the previous or 
distant generations (up to 5 generations back).

In the absence of inbreeding, the relatedness and potential 
contributions of ancestors of an animal, based on pedigree 
relationships, decline 50% for each generation traced back in the 
pedigree. Therefore, very distant ancestors have small or even 
negative effects on the accuracy of predictions of the youngest 
animals (Lourenco et al., 2014). The decline of relatedness and 
potential contributions based on genomic relationships will 
depend on the method used to compute G. Thus, it is of interest 
to study the contribution of genotypes, pedigree, and phenotypes 
from distant generations to the accuracy of genomic predictions 
in selection candidates.

One of the most commonly used methods for estimating the 
accuracy of genomic predictions is a cross-validation test called 
predictive ability. Predictive ability refers to the correlation 
between genomic predictions and phenotypes adjusted for 
fixed and random effects other than additive genetic and 
residual effects (Legarra et  al., 2008). According to Legarra 
and Reverter (2018), the statistic of this method is sensitive to 
incorrect heritabilities, structure of systematic effects, and pre-
correction of phenotypes and may yield biased results if these 
are incorrect. Legarra and Reverter (2018) proposed a semi-
parametric method based on linear regression (LR) that relies 
on the comparison of successive evaluations based on partial 
and whole data. The statistic of this method does not require 
pre-correction of phenotypes and may yield better estimates of 
prediction accuracies. Thus, the objectives of this research were: 
1)  to investigate trends for prediction accuracies over time in 
a broiler population of accumulated phenotypes, genotypes, 
and pedigrees, using the LR method and 2) to test if data from 
distant generations are useful to maintain prediction accuracies 
in selection candidates.

Materials and Methods
Animal care and use committee approval were not needed 
because data were obtained from preexisting databases.

Data and variance components

The dataset used in this research study was provided by 
Cobb-Vantress Inc. (Siloam Springs, AR). The pedigree 
included 1,252,619 purebred broilers hatched over 7  years. 
A total of 154,329 birds were genotyped with a 60K SNP panel. 
Depending on the trait, birds were selected for genotyping 
randomly or based on phenotypes. Quality control on 
genotypes was performed using PREGSF90 software (Misztal 
et  al., 2014a) and excluded duplicated genotypes, birds, and 
SNP with call rate <0.90, SNP with minor allele frequency 
<0.05 or with departure from Hardy–Weinberg equilibrium 
(difference between the observed and expected heterozygous 
frequency) > 0.15. Parent-progeny pairs were tested for 
Mendelian conflicts (discrepant homozygous SNP); SNP were 
removed if the conflict rate was >10% (from the total of pairs 
evaluated), progenies were eliminated if the conflict rate 
was >1% (as percentage of all SNP). Monomorphic SNP, with 

Abbreviations

A pedigree relationship matrix
CY carcass yield trait
FE1 feed efficiency trait one
FE2 feed efficiency trait two
G genomic relationship matrix
GT growth trait
L length of the genome
LR linear regression
Ne effective population size
SNP single nucleotide polymorphisms
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unknown position or located at sex chromosomes were also 
discarded. After quality control, 44,448 autosomal markers 
for 154,318 birds were kept for the analyses. All genotyped 
animals belonged to the four most recent years in the dataset. 
The whole dataset contained 820,110 phenotypes for a growth 
trait (GT), 200,093 phenotypes for the first feed efficiency trait 
1 (FE1), 42,895 phenotypes for a carcass yield trait (CY), and 
203,060 phenotypes for the second feed efficiency trait (FE2). 
The GT and CY phenotypes were recorded at 35 d of age, and 
the FE1 and FE2 phenotypes were measured during a 1-week 
period after 35 d of age.

Variance components were estimated using the average 
information restricted maximum likelihood algorithm 
implemented in the AIREMLF90 software (Misztal et al., 2014a). 
The analysis to estimate variance components was performed 
using the four-trait traditional pedigree-based animal model 
described in Lourenco et  al. (2015) including all available 
pedigree and phenotypic data. The statistical model included 
sex and generation-hatch interaction as fixed effects, and the 
direct additive genetic and residual as random effects for all the 
traits but for GT, which also included the maternal permanent 
environmental random effect. The heritabilities for the four 
traits ranged from 0.20 to 0.55, the genetic correlations ranged 
from −0.15 to 0.31, and the phenotypic correlations ranged from 
−0.01 to 0.43.

Statistical analyses and computations

Genomic estimated breeding values were obtained with a four-
trait animal model using a single-step genomic best linear 
unbiased prediction procedure (ssGBLUP; Aguilar et  al., 2010) 
and the algorithm for proven and young (APY; Misztal et  al., 
2014b). Computations were performed with the software 
BLUP90IOD2OMP1 (Misztal et al., 2014a). The construction of the 
genomic relationship matrix G was based on VanRaden (2008). 
Matrix G was blended with 5% of the block of the pedigree 
relationship matrix A corresponding to genotyped animals 
(A22) to avoid singularity problems. The rescaling of G to match 
A22 involved diagonals and off-diagonals (Chen et al., 2011). To 
implement APY, the eigenvalue decomposition of G was done 
to determine the number of the largest eigenvalues explaining 
98% of the variation. Based on this, a core set of 5,173 genotyped 
animals was randomly selected.

Training and validation populations

The effect of increasing or decreasing the size of the training 
population on prediction accuracies was evaluated using a 7-year 
accumulated poultry dataset split according to year of hatch.

In the first scenario, increasing the size of the training 
population, the objective was to investigate the evolution 
of prediction accuracy over time using yearly accumulated 
phenotype, genotype, and pedigree data. Thus, the initial training 
population was progressively increased by adding 1 year of data 
at a time. For example, the first training population included all 
animals with phenotypes hatched in the first year, the second 
training population included all animals with phenotypes hatched 
in the first 2 years, and so on until the sixth training population, 
which included all animals with phenotypes in the first 6 years.

The first 3 years of data did not include genotyped animals; 
thus, only the last 4 years of data contributed with genotyped 
animals to the training populations. This data structure 
permitted the evaluation of the impact of including genomic 
information in training populations on accuracies of predictions 
of validation animals. When the training population included up 
to the first 3 years of data (no genomic information), validation 

was done on animals with phenotypes and pedigree, whereas 
for the training populations with genotyped animals, validation 
was done on animals with phenotypes, pedigree, and genotypes 
in the accumulated datasets.

The validation populations were constructed using two 
approaches: 1) animals hatched in the three generations after 
the most recent generation of the training population, that is, 
the progeny (P), grand progeny (GP), and great grand progeny 
(GGP) of animals from the most recent generation in the 
training population and 2)  animals hatched during the years 
after the most recent year in the training population; hence, 
these validation populations included animals hatched only 
in 1  year. For example, if the training population included 
animals hatched in the first 3 years, there were four validation 
populations, formed by animals hatched in the fourth, fifth, 
sixth, and seventh year. The validation populations were defined 
by generations and by years to have an estimate of accuracy 
of predictions for separated generations and for overlapped 
generations (validation by years). The phenotypes of animals 
and their contemporaries in the validation populations were 
removed from the analyses. Also, siblings of birds in validation 
populations were removed from training populations, genotypes 
(when available) were kept in validation animals in all the 
analyses.

In the second scenario, decreasing the size of the training 
population, the objective was to test if the data from distant 
generations helped to avoid a decrease in prediction accuracy 
in selection candidates. The training population with 5 years of 
data was progressively reduced by removing the oldest animals. 
For example, when the training population was reduced from 5 
to 4 years of data, data from the first year were removed from the 
training population. When the second year of data was removed, 
the training population was left with 3 years of data (i.e., data 
from years 3 to 5). This process continued until only the last year 
of data was kept in the training population (data from year five). 
The validation populations in this case were always formed by 
animals hatched in the three generations after the last year of 
the training population (i.e., after the fifth year of data). The 
number of animals in the training populations is presented in 
Table 1. The number of animals in the validation populations is 
presented in Table 2 by generation, and in Table 3 by year.

Table 1. Number of animals with phenotypic records in the training 
populations

Training 
population  
Years Trait1

Accumulated data GT FE1 CY FE2

1 104,993 24,059 5,830 24,753
1–2 224,193 52,590 12,613 53,861
1–3 342,282 82,214 18,214 83,940
1–4 464,088 111,521 23,915 113,487
1–5 596,956 141,521 30,381 143,823
1–6 711,252 171,232 36,749 173,905
Removal of old data
1–5 596,956 141,521 30,381 143,823
2–5 491,963 117,462 24,551 119,070
3–5 372,763 88,931 17,768 89,962
4–5 254,674 59,307 12,167 59,883
5 132,868 30,000 6,466 30,336

1GT, growth trait; FE1, feed efficiency trait one; CY, carcass yield 
trait; FE2, feed efficiency trait two.
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In the first scenario, where data were accumulated over 
successive years, the core set in APY remained unchanged. 
Conversely, in the analyses with removal of old data, the core 
set was updated after removing the fourth year of data because 
animals with genotypes that were hatched in that year were 
excluded from the analysis. Therefore, a new core set of 5,173 
genotyped animals was randomly selected within the genotyped 
animals available at that time, that is, the core was selected with 
birds that were hatched from the fifth year and afterward.

Accuracy of genomic predictions

Validation of genomic estimated breeding values was done by 
the LR method, which may provide more accurate estimates 
of prediction accuracies than the predictive ability method 
because it does not depend on the adjustments present in the 
predictive ability formula (Legarra and Reverter, 2018). In the LR 
method, statistics for validation individuals are computed by 
comparing estimated breeding values obtained using the whole 
dataset (ûw) with estimated breeding values obtained using 
a partial dataset (ûp). In the latter, phenotypes of validation 
individuals are removed from the analyses. Thus, both methods 
yield estimates of the correlation between estimated and “true” 
breeding values. The accuracies of estimated breeding values 
using the LR method (‘AccLR) were calculated as follows:

‘AccLR =

 
cov(ûw, ûp)

(1− F̄)σ2
a

,

where cov(ûw, ûp) is the covariance between estimated breeding 
values obtained with the whole dataset and estimated breeding 
values obtained with the partial dataset, F̄ is the average 
inbreeding coefficient in the validation population, and σ2

a is the 
additive genetic variance of the population.

Macedo et  al. (2020b) used simulation to assess the 
performance of the statistics of the LR method when the 
evaluation model used either overestimated or underestimated 
heritabilities, and when the evaluation model did not account 
for environmental trends. The accuracy of estimated breeding 

values was well estimated in all cases, and it was more precise 
as the amount of information (heritability) increased, proving 
that the LR method can provide accurate estimates of accuracy 
even with wrong heritabilities because accuracies are invariant 
to shift and scaling. In their study, the real heritability was 
either 0.10 or 0.30 and the assumed wrong heritabilities were 
deviate 0.05 upwards or downwards. In our study, we estimated 
genetic parameters using a pedigree-based model, though 
the heritability estimated using the genomic information can 
be different from the pedigree-based estimated, it is a good 
approximation.

Results and Discussion

Effect of increasing the size of the training 
population

The trends for the accuracy of estimated breeding values for GT, 
FE1, CY, and FE2 in the validation populations per generation and 
per year are shown in Figures 1 and 2, respectively. Accumulation 
of phenotypes and genotypes over time increased accuracy. 
A trait with lower heritability would require a larger number of 
phenotypes to achieve a similar level of accuracy and persistency 
of accuracy as a trait with higher heritability. For instance, FE1 
and FE2 were half as heritable as CY, but number of FE1 and 
FE2 phenotypes were five times larger than the number of CY 
phenotypes; thus, the accuracy and persistency of accuracy 
attained by these traits was similar. Another factor influencing 
the accuracy attained is the structure of information, for CY, 
most birds were genotyped and with phenotypes.

When genotypes were not available for animals in 
the training populations (first 3  years of data), prediction 
accuracies in the validation populations were either nearly 
stable or their increase was small (ranging from not increase 
up to 15% of increase) even as pedigrees and phenotypes 
accumulated over time (Figures 1 and 2). As an illustration, 
the accuracy for GT in the progeny was 0.27, 0.26, and 0.31 
when the training population included 1, 2, and 3  years of 
data, respectively. In contrast, when genotyped birds were 
available in the training populations, prediction accuracies in 
the validation populations had an important increase in all 
traits. Prediction accuracies in the progeny increased by 54% 
(0.31 vs. 0.48) for GT, 76% (0.35 vs. 0.61) for FE1, 110% (0.30 vs. 
0.63) for CY, and 38% (0.47 vs. 0.65) for FE2 when the training 
population included 4 rather than 3 years of data (Figure 1). As 

Table 2. Number of animals in the validation populations by 
generation

Training population  
Years

Validation 
population1

Trait2

GT FE1 CY FE2

1 P 90,673 21,341 4,927 21,797
GP 101,843 25,416 5,134 25,853
GGP 111,953 26,824 5,008 27,081

1–2 P 95,485 23,730 4,150 24,134
GP 106,400 25,024 4,893 25,245
GGP 102,146 25,264 5,150 25,511

1–3 P 98,337 22,715 4,289 22,909
GP 99,476 23,776 4,857 24,021
GGP 103,909 24,028 5,161 24,298

1–4 P 37,823 27,628 6,286 27,925
GP 30,473 22,888 4,760 23,157
GGP 31,607 22,086 4,768 22,346

1–5 P 78,663 58,084 12,731 58,748
GP 31,594 22,021 4,509 22,280
GGP 17,489 12,651 2,921 12,759

1P, progeny; GP, grand progeny; GGP, great grand progeny.
2GT, growth trait; FE1, feed efficiency trait one; CY, carcass yield 
trait; FE2, feed efficiency trait two.

Table 3. Number of animals in the validation populations by year1

Year of validation

Trait2

GT FE1 CY FE2

2 119,200 28,531 6,783 29,108
3 118,089 29,624 5,601 30,079
4 33,343 24,856 5,652 25,066
5 39,068 28,695 6,442 29,022
6 39,859 29,633 6,341 30,003
7 41,019 28,769 5,948 29,063

1The number of animals presented corresponds to the smallest 
training population including 1 year of data, when the training 
population included 2 years of data, the first year of validation was 
year 3 in the table. The same logic applies to the successive and 
larger training populations.
2GT, growth trait; FE1, feed efficiency trait one; CY, carcass yield 
trait; FE2, feed efficiency trait two.
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expected, the greatest increase in accuracy was observed for 
the trait with the greatest heritability. Across traits, on average, 
74% of the increased accuracy was due to the inclusion of 
genotypes and the remaining 26% was due to the inclusion of 
more phenotypes and pedigrees (Figure 1).

A similar trend was observed for validation per year. The 
accuracy in the validation animals hatched 1  year after the 
training population increased by 72% (0.29 vs. 0.50) for GT, 78% 
(0.32 vs. 0.58) for FE1, 116% (0.29 vs. 0.59) for CY, and 39% (0.46 vs. 
0.64) for FE2 when the training population included 4 instead of 
3 years of data (Figure 2). The maximum accuracy attained per 
traits was greater in the validation per generation than in the 
validation per year. The maximum accuracy for the validation 
per generation(year) was 0.75(0.55) for GT, 0.70(0.67) for FE1, 
0.73(0.67) for CY, and 0.76(0.66) for FE2.

The benefits of including genomic information on prediction 
accuracies have been reported across several species and 
traits. Wolc et al. (2011) indicated an average increase ~17% for 
predictions of 16 traits in layers. Lourenco et al. (2015) estimated 
an increase of ~50% in accuracy of predictions for growth and 
efficiency-related traits in broilers. Vallejo et  al. (2017) stated 
that genomic information doubled the accuracy of predictions 
for disease resistance in rainbow trout. Garcia et al. (2018) found 
that genomic information increased accuracy up to 36% for 
predictions of residual carcass weight in channel catfish. In dual 
purpose cattle, Cesarani et al. (2020) found an increase of 37% 
in accuracy for predictions of milkability. Macedo et al. (2020a) 
reported an increase in accuracy of ~33% for predictions of milk 
production in a sheep population. Bermann et al. (2020) reported 
an increase of 15% in accuracy of predictions for mortality in 
broilers.

Increases in accuracy are attributed to a more precise 
estimation of Mendelian sampling terms (Hayes et al., 2009; Cole 
and VanRaden, 2011). The magnitude of the increase in accuracy 
of genomic predictions depends on the number, distribution, 
and contribution of genotypes and phenotypes, as well as on 
the selection intensity on traits (Lourenco et  al., 2015). In our 
study, the increase in accuracy by inclusion of genotypes was 
greater than in most previous studies, which can be explained 
by the large number of phenotypes and genotypes available in 
this broiler population.

Accuracies in the validation populations declined faster 
without genotyped birds than with genotyped birds in the training 
populations (first 3  years of data), suggesting that the effects 
of independent chromosome segments were estimated with 
more precision in the latter case. According to Bastiaansen et al. 
(2012), pedigree relationships are not able to predict the random 
segregation of independent chromosome segments to the next 
generations, whereas this segregation can be traced by markers. 
Therefore, the proportion of the genetic variance explained 
by linkage disequilibrium with markers decays less than the 
proportion of the genetic variance explained by family structure. 
When individuals in the training and validation populations are 
related, they will share more chromosome segments, minimizing 
the loss of accuracy from training to validation populations; 
furthermore, if the data is large enough to accurately estimate the 
effect of the independent chromosome segments segregating in the 
population, the persistence will be high across several generations.

When no genotyped birds were included in the training 
populations, the average decrease in accuracy of estimated 
breeding values across traits and training populations was 41% 
from progeny to grand progeny, 60% from progeny to great grand 

Figure 1. Trends for prediction accuracies of estimated breeding values in P, GP, and GGP of broilers in different training populations of accumulated pedigree, 

phenotypic, and genomic data for GT, FE1, CY, and FE2. Prediction accuracies were nearly stable with the accumulation of pedigree and phenotypes over time. The 

addition of genomic information generated an increase in prediction accuracy.
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progeny, and 51% from grand progeny to great grand progeny. 
Conversely, the accuracy of estimated breeding values declined 
by 14% from progeny to grand progeny, 17% from progeny to 
great grand progeny, and only 3% from grand progeny to great 
grand progeny when training populations included genotyped 
birds (Figure 1). Habier et  al. (2007) reported similar results 
when comparing several methods of estimation of breeding 
values. In their study, the persistence of accuracies of genomic-
based methods was always greater than that of pedigree-based 
methods.

Our results agreed with the expectation of a 50% decay in 
pedigree relationships every generation. Genomic relationships 
are expected to decline at a slower rate (Wolc et al., 2011), which 
was confirmed by the higher persistence of genomic prediction 
accuracies. The decrease in accuracy across traits when training 
populations included genotyped birds was important from 
progeny to grand progeny; however, this decline was marginal 
from grand progeny to great grand progeny. Thus, the advantage 
of using genomic information increased as breeding values from 
more distant validation generations were predicted. Wolc et al. 
(2011) also reported higher persistence of accuracies of estimated 
breeding values from genomic evaluations than from genetic 
evaluations, as well as a larger decrease in accuracy in the first 
generation and smaller losses in subsequent generations.

The decay of accuracy over generations was similar when the 
training population included 1 or 2 years of genomic information 
(Figure 1). Thus, although the decrease in accuracy was smaller 
when genomic information was used, it is important to highlight 
the need for continuing phenotyping animals to minimize 
accuracy decay (Sonesson and Meuwissen, 2009).

The persistence of accuracy of genomic estimated breeding 
values had a similar trend when validation was done by year. When 
no genotyped birds were included in the training populations (first 
3 years of data), the average decline in accuracy across traits and 
training populations was 46% from the first to the second year of 
validation, 79% from the first to the third year of validation, and 
67% from the second to the third year of validation. Further, the 
persistence of the accuracy of genomic estimated breeding values 
was greater when training populations included genotyped birds. 
In this case, on average, the accuracy decreased by 8% from the first 
to the second year of validation and 10% from the first to the third 
year of validation (Figure 2).

Figure 3 shows trends for accuracies of estimated breeding 
values for GT, FE1, CY, and FE2 from broilers hatched the year 
after the last year included in various training populations. 
Although data accumulation over years resulted in an increase 
in accuracy, the addition of the last year of data (year six) to 
the training population did not increase the accuracy for GT, CY, 
and FE2.

Considering that the formula for the accuracy based on 
the LR method contains the additive genetic variance in the 
validation population, a possible explanation would be a decline 
in the heritability (genetic variance) of the trait that was not 
accounted for by the formula (Legarra and Reverter, 2018). 
Selection would reduce genetic variances and heritabilities as 
shown analytically by Bulmer (1971) and through simulations by 
Bijma (2012) and Gorjanc et al. (2015). Recent studies using real 
data reported a reduction in genetic variances and heritabilities 
as a result of selection (Bulmer effect) and drift (Hidalgo et al., 
2020; Macedo et al., 2021; Tsuruta et al., 2021).

Figure 2. Trends for prediction accuracies of estimated breeding values of broilers hatched during successive years after the last year included in different training 

populations of accumulated pedigree, phenotypic, and genomic data for GT, FE1, CY, and FE2. Prediction accuracies were nearly stable with the accumulation of 

pedigree and phenotypes over time. The addition of genomic information generated an increase in prediction accuracy.
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It would be useful to have theoretical formulas for 
accuracies of estimated breeding values of animals hatched 
in the generation following the last generation in the training 
population as well as in subsequent generations based on 
parameters such as population size, effective population size, 
number of animals with genotypes and phenotypes, breeding 
structure, and genetic parameters. In theory, one would 
expect to have similar theoretical accuracies for traits with 
similar parameters, an increase in prediction accuracy and 
persistence as data accumulates over time, and a consistent 
decline in prediction accuracy from progeny to grand progeny 
and succeeding generations without collection of additional 
phenotypes. However, the outcomes of this study defied such 
expectations because when the training population included 
5 years of data, the accuracy of estimated breeding values was 
the same across traits for progeny (GT vs. FE2; Figure 1), and it 
was greater for great grand progeny and great grand progeny for 
traits with fewer data and lower heritability (FE1 and FE2) than 
for a trait with more data and higher heritability (GT; Figure 1). 
A possible explanation to the greater accuracy attained by traits 
with smaller heritabilities was reported by Weng et  al. (2016), 
in their study, the low-heritable traits required less training 
generations of data than high-heritable traits to reach the 
maximum accuracy.

Further, within traits, accuracies of estimated breeding 
values were the same in grand progeny and great grand 
progeny for several training populations (Figure 1). Thus, the 
expected decline in prediction accuracy was not consistent 
in this broiler population. These outcomes can be explained 
by selection intensity and by changes in genetic parameters 
over time.

Lourenco et  al. (2015) looked at accuracies of genomic 
predictions obtained with genotypes of males, females, and both 

males and females in a broiler population. Prediction accuracies 
were strongly dependent on selection intensity within sexes, 
which means that accuracies of estimated breeding values for 
strongly selected traits in males were reduced when the training 
population included genotypes of both sexes. Hence, prediction 
accuracies provided insights into selection practices.

Hidalgo et al. (2020) found that genetic parameters based on 
pedigrees and phenotypes differed from parameters based on 
phenotypes, pedigrees, and genomic information. If heritabilities 
decline over time, accuracies computed by LR method using previous 
estimates of heritability will be underestimated. Also, if genetic 
correlations change, correlated responses will change accordingly. 
Therefore, a realistic theory for accuracy and persistence of 
genomic predictions would have to include the effects of selection 
and to account for changes in genetic parameters. An additional 
complication would be the need to account for epistatic changes 
if they occurred at a faster rate with genomic selection due to a 
greater genetic gain than without genomic selection. According to 
Forneris et al. (2017), epistatic interactions can change the additive 
genetic variance available for selection, affecting the selection 
response. Complex genetic architectures (involving epistasis) can 
reduce the value of old data, requiring the update of the evaluation 
model as genomic selection proceeds.

Effect of decreasing the size of training population

Figure 4 shows trends for accuracies of genomic estimated 
breeding values for GT, FE1, CY, and FE2 in the last three 
generations of validation when data from distant generations 
were removed. The accuracy of genomic predictions in the last 
three generations was the same as when the training population 
included 5 or 2 years of data. A marginal decrease in accuracy of 
genomic estimated breeding values was observed when training 

Figure 3. Trends for prediction accuracies of estimated breeding values of broilers hatched the year after the last year included in different training populations 

of accumulated pedigree, phenotypic and genomic data for GT, FE1, CY, and FE2. Overall, the accumulation of data increased prediction accuracy, although after 

accumulating data for 5 years, adding one more year of data did not increase accuracy in GT, CY, and FE2.
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populations only included data from the nearest year to the three 
generations included in the validation populations (i.e., data from 
the fifth year). For instance, accuracies in the progeny decreased 
from 0.75 to 0.71 for GT, from 0.70 to 0.65 for FE1, from 0.73 to 0.68 
for CY, and from 0.76 to 0.70 for FE2. Across traits, on average, 
the accuracy of genomic predictions declined 7% for progeny, 
5% for grand progeny, and 7% for great grand progeny when the 
training population include 1 rather than 2 years of data. These 
results indicate that the 2  years of pedigree, phenotypic, and 
genomic data closest to the selection candidates are enough to 
maintain the accuracy of genomic estimated breeding values. 
However, additional research is needed to assess the decay 
in accuracy when more years of information are eliminated, 
including genotypes. The high persistence of accuracy of 
genomic predictions obtained in this research study is explained 
by the large amount of data available in recent relatives of the 
selection candidates, smaller populations may need more years/
generations of data depending on the size of the population.

Similar results were reported by Lourenco et al. (2014), where 
no decrease in accuracy of genomic estimated breeding values 
was observed for final score in US Holsteins after removing two 
or three generations (12–17 years) of phenotypes and pedigrees. 
This was also true for evaluations of reproductive traits in pigs 
after removing up to five generations (15 years) of phenotypes 
and pedigrees. The conclusions of Lourenco et al. (2014) agree 
with our findings that retaining two or three generations of 
phenotypes are enough to maintain the accuracy of genomic 
estimate breeding values. An additional advantage is a decrease 
in computing cost due to reductions in the size of datasets.

In a simulation study by Bastiaansen et  al. (2012), the 
decay in accuracy of genomic predictions was steeper in 
the first generation of validation, with marginal reduction 
from the second to the tenth generation of validation. These 
results agreed with our results (Figures 1 and 2); however, 
the same authors indicated similar reduction in the accuracy 
of genomic predictions across generations using either a 
deep (five generations) or a shallow (one generation of data) 
training population of the same size. Those results were not 
in agreement with ours because the reduction in accuracy of 
genomic predictions, in our study, was only present with the 
shallower training population (most recent year of data; Figure 1).  
A  key difference in our study was that the deeper training 
populations were of greater size, providing more information. 
In addition, possible explanations for this discrepancy can be 
the genetic architecture simulated in the study of Bastiaansen 
et al (2012), which included either from 3 to 4 or from 30 to 300 
quantitative trait loci and only 10% of the quantitative trait 
loci explained 90% of the genetic variance; and the size of the 
training population, always composed of 500 individuals.

Conclusions
Training populations in this broiler population that included 
genomic information yielded increases in accuracy and 
persistence of genomic estimated breeding values about twice as 
large as training populations without genomic data. There was 
a general decline in accuracy when predicting the performance 
of distant relatives from training populations such as grand 

Figure 4. Prediction accuracies of estimated breeding values in P, GP, and GGP of broilers in different training populations of accumulated pedigree, phenotypic, and 

genomic data for GT, FE1, CY, and FE2. Validation populations included three generations after the fifth year of data. Prediction accuracies were the same with either 5 

or 2 years of data in the training population. A marginal decay in prediction accuracy was observed when the training population included only the last year of data.
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progeny and great grand progeny, and this decline was larger 
for grand progeny than for great grand progeny. Accuracies 
were greater when the most recent data were incorporated into 
the analysis. The most recent 2 years of pedigree, phenotypic, 
and genomic data produced persistent accuracies of estimated 
breeding values for selection candidates in the three generations 
following the training population.
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