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Structural basis for recognition of the malaria
vaccine candidate Pfs48/45 by a transmission
blocking antibody
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The quest to develop an effective malaria vaccine remains a major priority in the fight against
global infectious disease. An approach with great potential is a transmission-blocking vaccine
which induces antibodies that prevent establishment of a productive infection in mosquitos
that feed on infected humans, thereby stopping the transmission cycle. One of the most
promising targets for such a vaccine is the gamete surface protein, Pfs48/45. Here we
establish a system for production of full-length Pfs48/45 and use this to raise a panel of
monoclonal antibodies. We map the binding regions of these antibodies on Pfs48/45 and
correlate the location of their epitopes with their transmission-blocking activity. Finally, we
present the structure of the C-terminal domain of Pfs48/45 bound to the most potent
transmission-blocking antibody, and provide key molecular information for future structure-
guided immunogen design.
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alaria is one of the most devastating diseases to affect

humanity, causing hundreds of millions of cases and

around half a million deaths each year!. The develop-
ment of a successful malaria vaccine is therefore pressing. How-
ever, the malaria parasite is an ancient organism that has been co-
evolving with humans for millennia, and generation of a vaccine
has proved a major challenge. In particular, the life cycle of the
parasite is complex and involves multiple developmental stages in
both the human host and the mosquito vector. Additionally,
parasites surface proteins frequently adapt rapidly to avoid
immune detection through antigenic variation. With many
individual immunogens having already been tested in vaccine
trials with varied success, it is commonly acknowledged that an
effective vaccine will contain multiple components that represent
multiple stages of the parasite life cycle’. Immunogens which
raise antibodies that interrupt the life cycle at the sexual stage will
prevent transmission of malaria from infected human to mos-
quito and are potential components of such a vaccine.

The sexual cycle of the Plasmodium life cycle occurs when male
and female gametocytes are ingested as part of a blood meal,
leading to their differentiation into male and female gametes
within the midgut of an infected mosquito. The gametes fuse to
form zygotes, which then develop into oocysts, allowing the
parasite life cycle to continue as emerging sporozoites relocate
into the mosquito salivary glands, positioned to infect other
humans. Several proteins are found on the surfaces of both
gametocytes and gametes and play critical roles in this sexual
event. In particular, Pfs48/45 and Pfs230 form a Glycosylpho-
sphatidylinositol (GPI)-anchored complex on the gametocyte
surface and are required for Plasmodium gamete fusion3~>.

A number of factors converge to suggest Pfs48/45 as a leading
candidate for inclusion in a transmission-blocking vaccine®.
Plasmodium falciparum parasites that do not express Pfs48/45 are
severely impaired in their ability to form ookinetes in mosqui-
toes®. Studies using the rodent malaria species Plasmodium ber-
ghei suggest that this is due to an inability of gametes lacking the
Pfs48/45 orthologue Pbs48/45 to penetrate female gametes and to
proceed to form zygotes®. Indeed, sera from animals immunised
with Pfs48/45 contain antibodies that, when present in a parasite-
infected blood meal, block the sexual and sporogonic develop-
ment of the parasite within the infected mosquito’~!3. In addi-
tion, unlike other transmission-blocking vaccine candidates,
Pfs48/45 and Pfs230 are expressed in gametocytes found in
human blood and the presence of antibodies that target Pfs48/45
in individuals from malaria-endemic regions correlates with the
transmission-blocking activity of their seral3-1°, Recently, it has
been demonstrated that specific antibodies in endemic sera
against Pfs48/45 can functionally block transmission of Plasmo-
dium falciparum in infected mosquitoes in a standard membrane-
feeding assay (SMFA)?. Individuals immunised with Pfs48/45
could therefore experience immune boosting through natural
low-level infection. Finally, unlike many important Plasmodium
surface antigens, sequence diversity of Pfs48/45 is low across
strains of Plasmodium falciparum'®21. Altogether, this suggests
that a vaccine immunogen based on Pfs48/45 will generate
antibodies that target a conserved and essential component of the
parasite life cycle and will prevent further transmission to unin-
fected individuals.

To understand the targets of Pfs48/45 reactive antibodies, a
number of studies have generated and characterised monoclonal
antibodies. Antibodies cloned from immunised mice and rats can
block oocyst development in mosquitoes at close to 100% in an
SMFA®13-22 These have been sorted into five competition groups
and members of four of these groups have transmission-blocking
activity?224, Pfs48/45 contains two 6-cys domains, a domain type
found among Plasmodium proteins expressed throughout

different life cycle stages>>, which in Pfs48/45 are separated by a
4-cys linker domain?®, As Pfs48/45 had previously been difficult
to express, assessment of Pfs48/45 as a transmission-blocking
antigen has focused on truncation variants, containing the central
and the C-terminal 6-Cys domain (Pfs48/45-10C) or the C-
terminal 6-Cys domain alone (Pfs48/45-6C). The C-terminal 6-
cys domain is described as 6C, and a construct which lacks just
the N-terminal 6-cys domain is known as 10C!0 (Fig. 1a). The
most effective monoclonal antibodies characterised to date,
85RF45.113 and 32F38 bind to 6C, highlighting the C-terminal
domain of Pfs48/45 as a promising vaccine candidate. However,
not all inhibitory antibodies bind to 6C®?%27, and our under-
standing of the interplay of different inhibitory epitopes, as well
as the development of Pfs48/45 as vaccine candidate, have been
hampered by lack of a system to generate correctly folded full-
length protein. Furthermore, the absence of a structure of Pfs48/
45 bound to transmission-blocking antibodies has prevented
rational structure-guided immunogen design.

We have therefore developed an expression system for full-
length Pfs48/45 that allows for the production of milligram
quantities of correctly folded Pfs48/45. Using this protein, we
have raised and characterised a panel of monoclonal antibodies,
demonstrating that transmission-blocking antibodies bind to the
central and the C-terminal domain of Pfs48/45. Finally, we have
determined the crystal structure of Pfs48/45 bound to the most
potent transmission-blocking antibody and show that the epitope
targeted by this antibody is highly conserved among all char-
acterised Plasmodium falciparum isolates.

Results

Insect cell produced Pfs48/45 elicits inhibitory antibodies. A
major obstacle for development of Pfs48/45 as a transmission-
blocking vaccine has been the lack of an expression system that
produces large quantities of correctly folded full-length protein.
The most effective solution to date has been to express truncated
forms of Pfs48/45. Constructs containing either the C-terminal
domain (6C) or the central and C-terminal domains (10C)
(Fig. 1a) can be expressed in Lactococcus lactis when fused to the
asexual blood-stage malaria antigen GLURP?8, but this results in
problems associated with a large fusion partner. Therefore, non-
virally transfected Drosophila Schneider-2 cells were used to
produce full-length Pfs48/45 lacking its GPI-anchor but with
glycosylation sites intact (Fig. 1b) at 2 mg per litre. This protein
was pure and was recognised by antibodies that bind conforma-
tional epitopes in the central (85RF45.3) and C-terminal
(85RF45.1 and 32F3) domains!3 (Fig. 1b), suggesting that it has
adopted the correct fold. This was further confirmed by circular
dichroism spectroscopy, showing that recombinant Pfs48/45
predominantly consist of p-sheets (Supplementary Figure 1A), as
expected due to the presence of 6-cys domains?°.

To assess the ability of this Pfs48/45 to induce functionally
active transmission-blocking antibodies, CD1 mice were immu-
nised. These outbred (CD1) mice were used to maximise the
breadth of the induced antibody response. Serum antibody titres
were determined by end point ELISA, revealing an immune
response that was boosted at each of the three time points
(Fig. 1c). We confirmed the functionality of the induced
antibodies by SMFA, in which purified IgG from pooled serum
samples from mice immunised with Pfs48/45 reduced the oocyst
intensity of mosquitoes fed with gametocytes by 96% (95% CI =
87.7-98.6; p=0.001) when compared with IgG from pooled
serum samples from mice immunised with OVA (Fig. 1d and
Supplementary Figure 1B). This gave comparable levels of
transmission-blocking activity to a positive control, the Pfs25-
reactive monoclonal antibody 4B7. These results were confirmed
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Fig. 1 Full-length Pfs48/45 can be expressed in native conformation by S2 cells. a Domain structure of Pfs48/45. Length of bars is proportional to the
number of amino acids in each domain. Disulphide bonds are drawn based on sequence homology to other 6-Cys domain proteins and numbered for each
individual domain. b Western blots and Coomassie gel of full-length Pfs48/45. The protein was run on 4-12% Bis-Tris polyacrylamide gels in the presence
and absence of dithiothreitol (DTT) and stained with Coomassie brilliant blue (€) or blotted on nitrocellulose membranes and detected with Pfs48/45-
specific monoclonal antibodies (32F3, 85RF45.1, 85RF45.3 and 85RF45.5, at a concentration of 1ug/ml). € Anti-Pfs48/45 IgG end point titres in mouse
serum after immunisation with Pfs48/45 or chicken ovalbumin (OVA) (n = 6). Data points show end point titres in individual mice determined by Pfs48/
45 end point ELISA, bars show median, error bars show 95% ClI. Anti-Pfs48/45 IgG titres after consecutive immunisations were compared by Wilcoxon
signed-rank test, day 63 anti-Pfs48/45 IgG titres induced by immunisation with Pfs48/45-FL and OVA, respectively, were compared by Mann-Whitney
test, *p < 0.05, **p < 0.005. d Transmission-reducing activity of purified IgG from mice immunised with Pfs48/45 was determined relative to purified 1gG
from mice immunised with OVA at 750 pug/ml. Transmission-blocking mAb 4B7 was used as a positive control at a concentration of 94 ug/ml. Data points

show transmission-reducing activity (TRA) calculated from the oocyst counts in 20 mosquito midguts, error bars show 95% Cl

in an independent mouse experiment, which furthermore
revealed that complement was not required for anti-Pfs48/45-
mediated transmission-reducing activity (Supplementary Figure
1C and D). Therefore, full-length Pfs48/45 expressed in insect
cells contains epitopes bound by key monoclonal antibodies and
is able to potently raise a transmission-blocking immune
response.

Monoclonal antibodies raised by immunisation with Pfs48/45.
With full-length Pfs48/45 available for the first time, we next
raised and screened a panel of monoclonal antibodies, to identify
which regions of this protein contain epitopes with the potential
to generate transmission-blocking responses. Hybridoma colonies
were selected from splenocytes of Balb/c mice immunised with
Pfs48/45. Balb/c mice were chosen as previous studies had shown
that mAbs with high transmission-reducing activity can be raised
in this mouse strain®. Of these, 16 produced antibodies that
bound Pfs48/45 at levels above background reactivity in ELISA.
These antibodies were further analysed by cross-competition
ELISA, to find groups that share overlapping epitopes (Fig. 2a, b
and Supplementary Figure 2). We identified three groups, the
largest of which contains eight mAbs (group A), while the other
two groups (B and C) each contained two mAbs. The four
remaining antibodies did not belong to any competition group.
The interactions between these mAbs were complex. For example,
9D1 was only efficiently blocked by one member of competition
group A (1F10), while 9A6 was efficiently blocked by all mAbs in
group A, but did not itself block them. Finally, 7A6 was blocked
by 10D8 (from group A), and itself blocked mAbs of group C as
well as 9A6. The only mAb to not show any competition with any

other mAb was 10F10. This complex network of interactions
suggests that a variety of overlapping epitopes are present within
Pfs48/45. No mAb from this panel blocked binding of the
previously identified transmission-blocking mAbs 85RF45.1 and
32F3.

The ability of the generated mAbs to bind native parasite
epitopes was assessed by indirect fluorescence assay. Out of the 16
mAbs, 13 bound Plasmodium falciparum gametes air dried onto
glass microscopy slides (Supplementary Figure 3), suggesting that
the majority of the epitopes are exposed on the gamete surface.
The functional activity of the mAbs was next assessed by SMFA
(Fig. 2c and Supplementary Figure 4A-C). Four mAbs (6A10,
3G3, 10D8 and 1F10), all of which are members of competition
group A, reduced transmission. At a concentration of 375 ug/ml,
the transmission-reducing activity from two feeds was calculated
as 74.5% (95% CI = 45.7-88.1%; p = 0.001) for 6A10, 59.1% (95%
CI=14.1-80.8%; p=0.019) for 3G3, 559% (95% CI=
6.9-78.7%; p=0.031) for 10D8 and 74.5% (95% Cl=
46.9-88.3%; p=0.001) for 1F10. There was no connection
between transmission-reducing activity and the isotype or
Pfs48/45 end point titre of the mAbs.

Our new transmission-blocking antibodies require significantly
higher concentrations to achieve effective blocking activity when
compared to the levels previously cited for antibody 85RF45.1,
which is completely effective at 12.5 ug/ml'3. To further evaluate
these differences, the four blocking mAbs of our panel were
compared side by side with the well-characterised transmission-
blocking mAbs 85RF45.1 and 32F3 in SMFA at different
concentrations (Fig. 2d and Supplementary Figure 4D). In this
assay, only 1F10 showed significant TRA, and only at the highest-
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Fig. 2 Full-length Pfs48/45 induces functional polyclonal and monoclonal antibodies in mice. a. A panel of Pfs48/45-specific mAbs was raised from
splenocytes of mice immunised with full-length Pfs48/45. End point titres were determined by Pfs48/45 end point ELISA. The IgG isotypes of the
individual mAbs are indicated. The mAbs were grouped by cross-competition ELISA. b Schematic depiction of competition groups in the mAb panel and
85RF45.1 and 32F3. Lines indicate cross-competition between whole groups or individual mAbs and other competition groups. ¢ Transmission-reducing
activity of the anti-Pfs48/45 mAb panel at a concentration of 375 ug/ml was determined relative to normal mouse antibody. Data points show %TRA
calculated from the oocyst counts in 20 mosquito midguts for non-transmission-blocking mAbs and 40 mosquito midguts from two independent feeds for
transmission-blocking mAbs, error bars show 95% Cl. d Transmission-reducing activity of selected anti-Pfs48/45 mAbs was determined relative to normal
mouse IgG at 350, 70 and 14 pug/ml. Data points show transmission-reducing activity calculated from the oocyst counts in 20 mosquito midguts, error bars

show 95% Cl

tested concentration of 350 pg/ml (%TRA =61.0%; 95% CI=
11.0-82.8%; p = 0.032). Similarly, 32F3 showed significant TRA
only at 350 ug/ml (%TRA =99.8%; 95% CI=98.9-100%; p =
0.032), while 85RF45.1 showed 100% TRA at all tested
concentrations (p <0.001 at all concentrations). Our next aim
was therefore to map the binding region of these antibodies onto
the three domains of Pfs48/45, to understand if transmission
blocking is specifically associated with epitopes in one of these
domains.

Identifying the domains targeted by inhibitory antibodies. The
availability of a comprehensive panel of both new and previously
characterised antibodies provided the opportunity to explore the
molecular determinants of transmission blocking in more detail.
For this, we mapped the binding region of these antibodies onto
the three domains of Pfs48/45. In addition to full-length Pfs48/45,
we produced the C-terminal 6-cys domain (6C) and the 10C

construct containing the central and C-terminal domains
(Fig. 1a) in Schneider-2 cells and confirmed their correct fold by
CD spectroscopy and western blot (Supplementary Figure 5A and
B). We then used surface plasmon resonance and dot blots to
study binding of all three constructs to our extended panel of
antibodies (Fig. 3a and Supplementary Figure 5C).

Overall, the antibodies bound with varying strength to the
different Pfs48/45 constructs, independent of their blocking or
non-blocking activity (Fig. 3a). In particular, 9A6 showed very
weak binding to Pfs48/45, while 3H6 and 7A7 bound Pfs48/45
with quick dissociation kinetics, indicating a very short-lived
interaction. This suggests that the inability of these mAbs to
detect gametes in the indirect immunofluorescence assay
(Supplementary Figure 3) could be due to their binding affinity
and kinetics rather than due to inaccessibility or non-native
conformation of their epitopes. With regard to the individual
domains bound by the antibodies, we found that members of
antibody competition group B (1B12 and 6E1, Fig. 2b), both of
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Fig. 3 Mapping of anti-Pfs48/45 antibodies binding to different Pfs48/45 subdomains. a The indicated mAbs were immobilised on a Protein A/G chip at
fixed concentration. Pfs48/45 FL (blue lines), Pfs48/45-10C (red lines) or Pfs48/45-6C (green lines) were then injected over the chip surface at fixed
concentration. 9AD4 is a control antibody reactive against PfRH5. b Summary of epitope mapping experiments. Circles indicate the different competition
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outlines, respectively. Black dashed outlines show which mAbs bind to the N-terminal, central (10C) or C-terminal (6C) domain. Previously defined

epitopes |-V, for anti-Pfs48/45 antibodies, are indicated

which are non-inhibitory, bind to all three protein constructs,
suggesting that their epitopes are largely contained within the C-
terminal domain of Pfs48/45. We observed a similar binding
profile for 32F3 and 85RF45.1, confirming previous results!®13.
Therefore, while the most potent transmission-blocking anti-
bodies currently available bind to the C-terminal domain of
Pfs48/45, not all antibodies that target this domain have
transmission-blocking activity.

In contrast, all antibodies within group A as well as 9D1 and
9A6, bind to 10C but not to 6C, showing that a substantial part of

their epitope lies in the central domain of Pfs48/45. This includes
antibodies 6A10, 1F10, 3G3 and 10D8, which show transmission-
blocking activity. Finally, the antibodies of group C (3H6 and
7A7), together with 10F10 and 7A6, bind to full-length Pfs48/45,
but not to 6C or 10C, showing their epitopes to be largely
contained within the N-terminal domain. These show no
transmission-blocking activity.

These studies confirm the C-terminal domain of Pfs48/45 as
the target for the most effective transmission-blocking antibody
available to date. However, they further highlight that antibodies
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Table 1 Data collection and refinement statistics
Pfs48/45-6C-85RF45.1 Fab
Data collection
Space group P2 242
Cell dimensions
a, b, c (A) 59.69, 165.39, 189.66
a, B,y (® 90.00, 90.00, 90.00
Resolution (A) 41.98-3.23 (3.29-3.23)
Rimerge 0.38 (2.08)
Rpim 0.16 (0.86)
I/l 5.4 (1.3)
CC1/2 0.98 (0.56)
Completeness (%) 100 (100)
Redundancy 6.5 (6.8)
Refinement
Resolution (A) 3.23
No. unique reflections 30,979 (3059)
Rwork/ Riree 26.10/28.21
No. atoms
Protein 8376
Ligand/ion —
Water -
B-factors
Protein 79.49
Ligand/ion —
Water —
R.m.s. deviations
Bond lengths (A) 0.005
Bond angles (°) 0.85
Values in parentheses are for highest-resolution shell

binding to the central domain of Pfs48/45 also display
transmission-blocking potential and demonstrate that not all
epitopes within the C-terminal domain elicit effective antibody
responses (Fig. 3b). Therefore, to develop Pfs48/45 into an
effective vaccine candidate, a more detailed molecular under-
standing of critical epitopes targeted by transmission-blocking
antibodies is necessary.

Structure of the C-terminal Pfs48/45 domain with 85RF45.1.
Since the C-terminal 6-cys domain of Pfs48/45 is the target of the
most potent transmission-blocking antibodies, we used structural
studies to understand the architecture of this domain as well as
the key epitope targeted by antibody 85RF45.1. For this, we set up
crystallisation trials for a complex of a Fab fragment from
85RF45.1 bound to Pfs48/45-6C, which yielded crystals diffract-
ing to a resolution of 3.2 A (Table 1). We solved the structure by
molecular replacement using a poly-alanine model of a sequence-
related Fab fragment?® as search model and found two copies of
the 85RF45.1 Fab-Pfs48/45-6C complex in the asymmetric unit
of the P2 2; 2; unit cell (Fig. 4a).

Pfs48/45-6C adopts a typical 3-sandwich fold, which is further
characterised by three disulphide bridges, two of which connect
B-strands while the third stabilises the packing of a loop
connecting P-sheets 3 and 4 against the core of the domain
(Fig. 4b). While most of the loops connecting the sheets of the -
sandwich are well resolved, a large loop that bridges B-sheets 4
and B5 in Pfs48/45-6C is disordered in our structure, indicating
flexibility (Fig. 4b). The overall architecture and disulphide
pattern of Pfs48/45-6C is highly similar to the fold of the C-
terminal 6-cys domains (D2) from the two other structurally
characterised Plasmodium 6-cys proteins, Pf12 and Pf412>30-32,
both of which are expressed on the merozoite surface. Indeed,
P£s48/45-6C overlays with Pf41-D2 and Pf12-D2 with low root

mean square deviations of 1.27 A and 1.65 A (Fig. 4c) at sequence
similarities of 31.6% and 34.7%, respectively. This structural
similarity between proteins expressed at different stages of the
parasite life cycle further highlights the 6-cys domain as a basic
structural building block that can be adopted for a variety of
different functions in other Plasmodium 6-cys proteins.

85RF45.1 targets a conserved epitope on Pfs48/45. The crystal
structure also reveals how an effective transmission-blocking
antibody binds to Pfs48/45. Antibody 85RF45.1 approaches
Pfs48/45-6C from the opposite side relative to the GPI-anchored
C terminus of Pfs48/45 (Fig. 4a and Supplementary Figure 6) and
the interaction is mediated by five of its CDR loops (CDR H1-3,
CDR L1 and L2) (Figs. 4a, 5). These CDR loops form a positively
charged groove, part of which binds to a corresponding negative
patch on the apical tip of Pfs48/45. Indeed, the majority of the
interactions between 85RF45.1 and Pfs48/45-6C are mediated by
hydrogen bonds (Fig. 5a, Supplementary Figure 7 and Supple-
mentary Table 1), from both the heavy chain and light chain
CDRs. Furthermore, CDR H2 and H3 each present hydrophobic
residues (154 and M102), which form van-der-Waals interactions
with hydrophobic patches on the surface of Pfs48/45-6C (Fig. 5b,
Supplementary Figure 7 and Supplementary Table 1). Together,
these interactions lead to a total buried surface area of 970 A2,
defining an elongated epitope on Pfs48/45-6C (Fig. 5c¢).

We next investigated the conservation of the 85RF45.1 epitope
among Pfs48/45 from different Plasmodium falciparum isolates.
We analysed the frequency of single-nucleotide polymorphisms
that lead to amino acid changes over more than 2400 Pfs48/
45 sequences from the Pf3k database. The sequence variation
observed over the whole of Pfs48/45 was minor, with only two
substitutions at a frequency >10% (Supplementary Figure 8).
When mapped onto the surface of Pfs48/45-6C, there are no
polymorphisms with significant coverage within the epitope. The
only two polymorphisms that lie within the epitope occur with
low frequency (I349V, 0.0092% and K416N, 0.053%) and result in
substitution by chemically equivalent amino acids (Fig. 5c¢ and
Supplementary Figure 8), which would not be expected to affect
binding of 85RF45.1. Therefore, 85RF45.1 targets an epitope that
is highly conserved among Pfs48/45 from all characterised
Plasmodium falciparum isolates.

Discussion
A renewed focus on the goal of malaria eradication has brought
the concept of a transmission-blocking vaccine back to promi-
nence. Such a vaccine must efficiently target key stages of the
sexual reproduction cycle of the parasite in order to prevent its
transmission among a susceptible population and thereby reduce
the number of malaria cases. Here, we have focused on the
leading candidate for a malaria transmission-blocking vaccine,
Pfs48/45. A major challenge for developing a Pfs48/45-based
vaccine has been the lack of a suitable expression system for full-
length protein (reviewed in ref. ©). The insect cell-based expres-
sion system developed here overcomes this obstacle and allows
the production of milligram quantities of correctly folded Pfs48/
45, as well as its subunits 10C and 6C, without the need for
additional fusion partners or carrier proteins. As well as gen-
erating material which can be directly included in future vaccines,
the availability of full-length Pfs48/45 has allowed us to raise and
analyse monoclonal antibodies and will, in the future, allow the
study of naturally acquired transmission-blocking anti-Pfs48/45
antibodies from malaria-exposed individuals and the character-
isation of their epitopes.

Our immunisation studies, performed with full-length Pfs48/
45, show that transmission-blocking antibodies not only target its
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85RF45.1
light chain

85RF45.1
heavy chain

b Pfs48/45-6C c

Pfs48/45 6C
P41

COOH-GPI anchor

Pfs48/45 6C
D2 Pfs12 D2

Fig. 4 The structure of Pfs48/45-6C bound to a Fab fragment of the transmission-blocking mAb 85RF45.1. a The structure of Pfs48/45 (blue) bound to
85RF45.1 Fab fragment (red). The light (dark red) and heavy chains (light red) are indicated. Disulphide bonds are shown in stick representation. b
Disulphide bond pattern within Pfs48/45-6C, numbered as in Fig. 1A. A disordered loop connecting B-sheet 4 and 5 is indicated by dashed lines. € Overlay
of Pfs48/45-6C with the C-terminal 6-cys domains of Pf41 (PDB code 4YS4) and P12 (PDB code 2YMO). Pfs48/456C and Pfs41D2 were structurally
aligned over 62 Ca atoms, Pfs48/456C and Pfs12P2 were aligned over 60 Ca atoms

C-terminal 6-cys domain, but also its central domain, suggesting
that both domains should be explored as vaccine targets. This is
consistent with previous studies which have analysed the anti-
bodies generated by immunisation of rodents with either game-
tocytes '3 or individual domains of Pfs48/45 fused to large carrier
proteins?3. However, we find that, in addition to antibodies which
reduce transmission in an SMFA, our immunisation experiment
generates a larger number of antibodies with no transmission-
blocking potential. Some of these bind to the C-terminal 6-cys
domain, which is also the target of the best transmission-blocking
antibody reported to date, 85RF45.1 (Fig. 2d)®. This indicates that
simply including the C-terminal domain of Pfs48/45 in a vaccine
will not selectively induce transmission-blocking antibodies, but
might also raise ineffective antibodies. Designing an effective

vaccine candidate, that specifically elicits transmission-blocking
activity, therefore requires a more focused approach and a better
understanding of the spatial organisation of Pfs48/45 domains
and its key epitopes.

For this, we determined the crystal structure of the most
effective transmission-blocking antibody, 85RF45.1, bound to the
C-terminal 6-cys domain of Pfs48/45. This structure reveals an
interaction predominantly driven by electrostatics on a surface
which is conserved in parasite genomes throughout the globe
(Fig. 5). The Pfs48/45 binding site lies on the opposite face of the
6-cys domain to the GPI attachment site, through which Pfs48/45
is associated with the gamete membrane (Fig. 4 and Supple-
mentary Figure 6). Parts of remaining surfaces of Pfs48/45 will
associate with the N-terminal and central domains, which emerge
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CDR H3

1349V
0.009%

1381V
0.04%

A387S/T
0.17%

Fig. 5 Determinants and conservation of the epitope targeted by 85RF45.1. a, b Direct interactions between the CDR loops of 85RF45.1 and charged
residues (a) or hydrophobic patches (b) in Pfs48/45-6C. Heavy and light chain CDRs are coloured as in Fig. 4. Residues that directly interact are shown as
stick representation (green for Pfs4845 residues, red and dark red for 85RF45.1 residues). Hydrogen bonds are indicated by dashed grey lines. ¢ Surface
footprint of 85RF45.1 on Pfs48/45-6C, represented by directly interacting residues, coloured in green. Residues that vary among >2400 Pfs48/

45 sequences are shown in yellow and the observed substitutions as well as the overall frequency of substitutions are indicated

at the membrane distal side of the C-terminal domain. However,
future structural studies will be needed to understand the context
of the 85RF45.1-binding site relative to these two domains, and to
understand the effect that the rest of the Pfs48/45 protein has on
the exposure of this important epitope as well as revealing the
epitopes for other antibodies with transmission-blocking poten-
tial. Future studies will also be needed to understand why
85RF45.1 is the most effective transmission-blocking antibody
identified to date. In this work, we find that this is not due to
improved affinity, as other antibodies, such as 32F3 have a similar
affinity for Pfs48/45. It is instead likely that the high efficacy of
85RF45.1 is due to its ability to block the normal function of
Pfs48/45, or its binding partners. As the molecular basis for the
role of Pfs48/45 in gamete fusion is unknown, this will require
further experimentation.

The structural studies presented here provide important insight
into how to further develop Pfs48/45 as a vaccine candidate. First,
small immunogens such as 6C are often presented on scaffolds,
such as virus-like particles to boost their immunogenicity.
Knowledge of the location of the 85RF45.1 epitope will guide such
experiments, revealing the orientation in which this domain
should be attached to such particles to elicit appropriate anti-
bodies and prevent presentation of epitopes for non-
transmission-blocking antibodies. Second, these findings pave
the way for epitope grafting approaches in which the determi-
nants from the 85RF45.1 epitope are grafted onto smaller

scaffolds to specifically elicit protective antibodies. Such
structure-based approaches will now guide the development of
more advanced immunogens for truly effective transmission-
blocking vaccine components.

Methods

Expression and purification of Pfs48/45. The Pfs48/45 sequence (PlasmoDB:
PF3D7_1346700, residues 27-427) was codon optimised for expression in Droso-
phila melanogaster (GeneArt Life Technologies), the signal peptide was replaced
with the Drosophila BiP signal peptide and the GPI-anchor sequence was replaced
with the four amino acids EPEA (C-Tag). No further changes were made to the
sequence and all N-glycosylation sites were left intact. The sequence was subcloned
into the Drosophila S2 expression vector pExpres2.1 (ExpreS%ion Biotechnologies).
Polyclonal Drosophila S2 stable cell lines were generated by non-viral transfection
into ExpreS? Drosophila S? cells (Expres®ions Biotechnologies) and recombinant
Pfs48/45 purified by buffer exchanging the cell culture supernatant using a Tan-
gential Flow Filtration system with a Pellicon 3 Ultracel 10 kDa membrane (Merck
Millipore, UK). The concentrated supernatant was then loaded onto Capture-
Select™ C-tag affinity column (Thermo Fisher Scientific) equilibrated in Tris-
buffered saline and bound proteins were eluted with 20 mM Tris-HCl, 2 M MgCl,,
pH 7.4. Fractions containing Psf48/45 were then pooled, concentrated and sub-
jected to size-exclusion chromatography using a Superdex 200 16/60 PG column
(GE Healthcare)33. 10C and 6C truncation variants were cloned, expressed and
purified as described above. 10C comprises amino acids 159-428 while 6C com-
prises residues 291-428.

Western blot and Coomassie. Polyacrylamide gel electrophoresis was performed
on pre-cast NuPAGE™ 4-12% Bis-Tris Midi Protein Gels (Invitrogen) poly-
acrylamide gels. Protein samples analysed under reducing conditions were incu-
bated with 250 mM DTT before loading onto the gel. Gels were electrophoresed in
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NuPAGE™ MES SDS Running Buffer (Invitrogen). Total protein in a gel was
visualised by Coomassie staining (Quick Coomassie, Generon). Proteins were
blotted on nitrocellulose membranes using the BioRad TransBlot Turbo Transfer
System (BioRad). Different mouse and rat antibodies at a concentration of 1 ug/ml
were bound to the membrane using the iBind Flex western system (Invitrogen),
alkaline phosphatase-conjugated goat anti-mouse IgG (Sigma, A8438, 1:1000) or
alkaline phosphatase-conjugated goat anti-rat IgG (Sigma, A8438, 1:1000) were
used for detection. Western blots were developed using SIGMAFAST™ BCIP®/NBT
(Sigma).

Immunisation of mice with Pfs48/45. All animal experiments and procedures
were performed according to the UK Animals (Scientific Procedures) Act Project
Licence (30/2889) and approved by the Oxford University Local Ethical Review
Body. To assess immunogenicity of Pfs48/45-FL, six 6-8-week-old female CD1
mice (Envigo, UK) per group, housed in specific pathogen-free environments, were
immunised with either 5 pg Pfs48/45-FL or 5 ug OVA three times with a 3-week
interval. Group sizes between 6 and 10 animals were chosen as these numbers had
been shown to allow for the detection of meaningful differences in immunogenicity
in previous similar experiments. Immunisations were administered intramuscular
in alternating hind legs in a total volume of 50 ul containing 25 pl AddaVax
(InvivoGen). Prior to the second and third immunisation, serum samples were
collected for analysis by ELISA. Three weeks after the third immunisations, mice
were exsanguinated and serum collected for analysis by ELISA and SMFA. To
obtain B cells for the generation of hybridoma cells, a 6-8-week-old female BALB/
C mouse (Envigo) was immunised as above with 10 ug Pfs48/45-FL three times
with a 3-week interval. Three weeks after the third immunisation the mouse
received 10 pug Pfs48/45 intravenously to focus antigen-specific B cells in the spleen.
Three days after the intravenous injection the mouse was killed and the spleen was
collected.

Generation of monoclonal antibodies and Fab fragments. Hybridoma cells were
generated and cultured using the ClonaCell”-HY Hybridoma Kit according to the
manufacturer’s manual. In brief, the spleen of an immunised mouse was dis-
aggregated into a single-cell suspension and the splenocytes fused with SP2/0
myeloma cells (ECACC 85072401) by addition of PEG. Hybridomas were grown
for 10 days in methylcellulose containing semi-solid medium under HTA selection
to allow formation of individual colonies. Colonies were selected and transferred to
96-well plates and supernatant was positively screened for binding of Pfs48/45-FL
and negatively screened for binding of Pfs25-C-Tag, by total IgG ELISA. Hybri-
domas showing a positive response to Pfs48/45 over two consecutive screens, but
no response to Pfs25-C-Tag, were single-cell sorted on a Moflo FACS sorter
(Beckman Coulter) and ELISA-positive sister clones were selected for cryopre-
servation as well as for further experiments. The isotypes of the mAbs were
determined using the Pierce Rapid Isotyping Kit Mouse according to the manu-
facturer’s instructions. For production of monoclonal antibodies, hybridomas were
grown in Celline CL 1000 two-compartment bioreactors (Integra). Antibodies were
purified from the supernatant using 5ml HiTrap® Protein G columns (GE
Healthcare) on an AKTA pure FPLC system (GE Healthcare). Fab fragments used
for crystallisation trials were prepared from full-length 85RF45.1 mAb using Ficin
immobilised on agarose (Thermo Fisher) according to the manufacturer’s
instructions. After cleavage, Fabs were further purified by size-exclusion chroma-
tography on a Superdex Increase 75 10/300 column (GE Healthcare).

Indirect fluorescence assay. Cultured P. falciparum NF54 strain gametes were
activated in FCS at room temperature for 30 min. Gametes were then air dried onto
glass slides coated with poly-L-lysine and fixed with 4% paraformaldehyde. Slides
were blocked for 1h in blocking buffer (3% BSA/PBS) followed by incubation with
test mAbs or control monoclonal antibody 32F3 in 3% BSA/PBS. The Rh5-specific
mADb 2AC7 and PBS were used as negative controls. All mAbs were used at a
concentration of 25 pg/ml. Slides were incubated at room temperature in a wet
chamber for 1h. Slides were washed three times in PBS and then incubated with
AlexaFluor 488-conjugated goat anti-mouse IgG (0.5 pg/ml, Life Technologies
A11029) for 1 h. For the last 5 min DAPI was added to a final concentration of 5
pg/ml. Slides were washed six times, mounted with IMM (ibidi) and analysed by
fluorescence microscopy on a DMI3000B microscope (Leica Microsystems).

Enzyme-linked immunosorbent assay (ELISA). Hybridoma supernatants were
assessed by total IgG ELISA, and mAbs as well as antibody responses in mouse sera
were assessed by end point total IgG ELISA. ELISAs were carried out in Nunc-
Immuno Maxisorp 96-well plates (Thermo Scientific) coated with 2 pg/ml of
antigen in carbonate-bicarbonate coating buffer (Sigma) overnight at 4 °C. Plates
were washed with PBS-Tween and blocked with 10% Casein Block (Thermo Sci-
entific). Hybridoma supernatants were added to the wells undiluted, while mAbs
were diluted to a starting concentration of 5 pg/ml and sera were diluted to a
starting concentration between 1:100 and 1:3000. Diluted samples for end point
ELISAs were added to the top row of the plate in duplicate, and serially diluted
threefold down the plate. Plates were incubated for 2 h at room temperature and
then washed as before. Goat anti-mouse whole IgG conjugated to alkaline phos-
phatase (Sigma) was added for 1h at room temperature. Following a final wash,

plates were developed by adding p-nitrophenylphosphate (Sigma) at 1 mg/ml in
diethanolamine buffer (Sigma) and ODgs was read on a microtitre plate reader
(Tecan). End point titres were taken as the x-axis intercept of the dilution curve at
an absorbance value of the background plus three standard deviations or a mini-
mum of 0.25. If a 0.5 pug/ml dilution of an mAb or a 1:100 dilution of a serum
sample did not develop a signal above background, the IgG titre in this sample was
considered to be 0. To make results comparable, 32F3 was included on each plate
as an internal control and all plates were developed until 32F3 reached an end
point titre between 120,000 and 140,000.

Cross-competition ELISA. Monoclonal antibodies were binned into competition
groups by cross-competition ELISA. Cross-competition ELISAs were carried out in
Nunc-Immuno Maxisorp 96-well plates (Thermo Scientific) coated with 2 pg/ml of
Pfs48/45-FL in carbonate-bicarbonate coating buffer (Sigma) overnight at 4 °C.
Plates were washed with PBS-Tween and blocked with 10% Casein Block (Thermo
Scientific). Blocking antibodies were added to the wells at a concentration of 25 ug/
ml in triplicates. Fifteen minutes later, biotinylated antibody was added to the wells
at a concentration of 2.5 ug/ml. Plates were incubated for 2 h at room temperature
and then washed as before. Streptavidin conjugated to alkaline phosphatase
(Mabtech 3310-10) was added for 1h at room temperature to detect bound bio-
tinylated mAbs. Following a final wash, plates were developed by adding p-nitro-
phenylphosphate (Sigma) at 1 mg/ml in diethanolamine buffer (Sigma) and OD o5
was read on a microtitre plate reader (Tecan). Competition was assessed as the
ability of a blocking antibody to reduce binding of a biotinylated antibody. The
same non-biotinylated-blocking mAb was used as a positive control for competi-
tion for each biotinylated mAb, with the Rh5 mAb 2AC7 used as a negative control
for competition. Biotinylated mAb added to wells without any blocking antibody
was used as a positive control for detection of biotinylated mAbs. Biotinylated
2AC7 added to wells without any blocking antibody was used as the negative
control.

Surface plasmon resonance (SPR). All SPR experiments were carried out using a
Biacore T200 instrument (GE Healthcare). To analyse binding of Pfs48/45-FL,
Pfs48/45-10C and Pfs48/45-6C constructs to different mAbs, the Pfs48/45 con-
structs were buffer-exchanged into 20 mM HEPES pH 7.2, 300 mM NaCl, 0.05%
Tween-20 and diluted to a concentration of 0.5 uM. The individual mAbs were
then immobilised on a CM5-chip (GE Healthcare) pre-coupled to Protein A/G
(Thermo Fisher) and the different Pfs48/45 constructs were then individually
injected over the chip surface at a concentration of 0.5 pM and a flow rate of 30 ul/
min, with 240 s association time and 240 s dissociation time. After each injection,
the chip surface was regenerated with 10 mM glycine, pH 2.0 for 120 s at 10 pl/min,
followed by a regeneration period of 180s. All SPR data were analysed using the
BIAevaluation software 2.0.3 (GE Healthcare).

Standard membrane-feeding assay (SMFA). SMFA was performed to assess the
ability of polyclonal and monoclonal antibodies to block the development of P.
falciparum strain NF54 oocysts in the mosquito midgut®. For this, stage V
gametocytes from a mature gametocyte culture were mixed with normal human
serum and normal red blood cells to make a feeding mixture with 0.15-0.2% stage
V gametocytemia. Unless stated, SMFAs were conducted in the presence of active
human complement. Purified IgG or mAbs were added to these at the specified
concentrations and then fed to 3-6-day-old starved female A. stephensi (SDA 500,
NIAID) via a parafilm® membrane. The mosquitoes were maintained for 8 days
and then dissected to count the number of oocysts per midgut in 20 mosquitoes.
Percent reduction in infection intensity was calculated relative to the respective
control IgG tested in the same assay.

Statistical analysis. Comparison of antibody titres within the same group but at
different time points were performed using Wilcoxon-matched pairs signed-rank
test. Antibody titres between different groups were compared by Mann-Whitney
test.

TRA was calculated from SMFA data, as 100 x (mean number of occysts in test/
mean number of oocysts in control) and 95% confidence intervals (95% CIs) of %
inhibition in oocyst density from a single- or multiple-feeding experiments for each
test antibody at each concentration were calculated using a zero-inflation negative
binomial model3. Statistical tests were performed using Prism 6 (GraphPad
Software Inc, USA) or JMP11 (SAS Institute Inc, USA). P values <0.05 were
considered significant.

Circular dichroism (CD) spectroscopy. Far-UV CD spectroscopy experiments
were conducted on a J-815 Spectropolarimeter attached to a Peltier temperature
control unit. For the measurements, the samples were dialysed against 100 mM
sodium phosphate buffer, 150 mM NaF, pH 7.2 and diluted to 0.4 mg/ml. CD
spectra recorded at 20 °C between wavelengths of 195 and 260 nm using a cell with
a 1 mM path.

Crystallisation. A complex of Pfs48/45-6C with a Fab fragment from 85RF45.1
mAb was generated by mixing purified Pfs48/45-6C with a 1.5 molar excess of
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purified Fab, followed by size-exclusion chromatography on two Superdex Increase
200 10/300 columns (GE Healthcare) in series into 10 mM HEPES, 150 mM NaCl,
pH 7.2. Peak fractions containing pure complex were then concentrated and used
to set up vapour diffusion crystallisation trials in sitting drops by mixing 100 nl of
protein complex with 100 nl of well solutions. Initial crystals for Pfs48/45-
6C-85RF45.1 Fab grew at 277 K at a concentration of 11.7 mg/ml as small stacks of
plates in conditions from the JCSG + screen (Molecular Dimensions) containing
0.2 M ammonium dihydrogen phosphate, 0.1 M Tris pH 8.5 and 50% (v/v) 2-
methyl-2,4-pentanediol. Crystals were further optimised by microseeding into

0.1 M Tris pH 8.0 and 50% (v/v) 2-methyl-2,4-pentanediol which yielded slightly
larger, individual plates suitable for diffraction experiments. These crystals were
harvested, transferred into well solution containing 0.1 M Tris pH 8.0, 50% (v/v) 2-
methyl-2,4-pentanediol and 25% glycerol and flash frozen in liquid nitrogen for
cryoprotection.

Data collection, phasing and refinement. Data were collected at the 103
beamline (Diamond Light Source, UK) with a Pilatus3 6M detector (Dectris,
Baden-Daettwil, Switzerland) and X-rays at a wavelength of 0.98 A. Data were
processed with the CCP4i2 programme suite>® using the Xia2/DIALS pipeline3° for
indexing and scaling. The structure was solved by molecular replacement with
Phaser-MR?7, using a poly-alanine model of the most closely related Fab fragment
(PDB code 4k2u [https://www.rcsb.org/structure/4K2U]29) with trimmed loops as
search model. Molecular replacement found two copies of the Pfs48/45-
6C-85RF45.1 Fab complex in the asymmetric unit. After one initial round of rigid-
body refinement using the PHENIX programme suite3®, density for Pfs48/45-6C
was clearly visible, and both Pfs48/45-6C and the remaining parts of the 85RF45.1
Fab fragment were built by iterative cycles of model building in Coot>® and
refinement in Buster?). Both copies of Pfs48/45 and the variable domains of both
copies of 85RF45.1 were well defined. The constant domains of 85RF45.1 were well
defined in chains B and C, but density was poor in chains E and F. For this reason,
the constant domains of 85RF45.1 were built in copies B and C and used as a
molecular replacement search model in phaser to identify the correct location for
the equivalent domains in chains E and F. The structure was refined to give final
Ramachandran statistics of 93.4% residues in the favoured regions, 6.6% in the
allowed regions and no residues in the disallowed regions. The coordinate and
structure factor data are deposited in the protein data bank (PDB) under the
accession code 6H5N. All figures showing structures were prepared with PyMol
(Schroedinger LLC).

Data availability

Data for the structure reported here have been deposited in the PDB under the accession
code 6H5N. Additional data supporting the findings reported in this manuscript are
available from the corresponding authors on request.
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