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Abstract
Coronavirus (COVID-19) creates an extensive range of respiratory contagions, and it is a kind of ribonucleic acid (RNA) 
virus, which affects both animals and humans. Moreover, COVID-19 is a new disease, which produces contamination in 
upper respiration alterritory and lungs. The new COVID is a rapidly spreading pathogen globally, and it threatens billions 
of humans’ lives. However, it is significant to identify positive cases in order to avoid the spread of plague and to speedily  
treat infected patients. Hence, in this paper, the WSCA-based RMDL approach is devised for COVID-19 prediction by  
means of chest X-ray images. Moreover, Fuzzy Weighted Local Information C-Means (FWLICM) approach is devised 
in order to segment lung lobes. The developed FWLICM method is designed by modifying the Fuzzy Local Information 
C-Means (FLICM) technique. Additionally, random multimodel deep learning (RMDL) classifier is utilized for the COVID-
19 prediction process. The new optimization approach, named water sine cosine algorithm (WSCA), is devised in order to 
obtain an effective prediction. The developed WSCA is newly designed by incorporating sine cosine algorithm (SCA) and 
water cycle algorithm (WCA). The developed WSCA-driven RMDL approach outperforms other COVID-19 prediction 
techniques with regard to accuracy, specificity, sensitivity, and dice score of 92.41%, 93.55%, 92.14%, and 90.02%.

Keywords COVID · Fuzzy local information c-means clustering · Random multimodel deep learning · Water cycle 
algorithm · Sine cosine algorithm

Introduction

The novel COVID disease is a severe deadly syndrome, which 
initiates from Wuhan territory, China, during December 2019 
and spread worldwide [1]. The first case of COVID-19 is 
accounted in Wuhan, and it belongs to coronavirus (CoV) 
family, named as acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) prior it was known as COVID-19 through 
World Health Organization (WHO) in February 2020. The 
epidemic was confirmed by the Public Health Emergency 
of International Concern on 30 January 2020, and lastly, on 
March 11, 2020, WHO affirmed COVID-19 as a deadly dis-
ease [2]. After the epidemic, the amount of day-to-day cases 
started to enlarge exponentially and attained 1.8 million cases 
and approximately 114,698 demises in worldwide by 12 April 
2020 [3]. Moreover, many CoV influence animals, although 
they can also be passed to humans due to their zoonotic char-
acter [4]. Besides, COVID-19 occurrence has been immense 
distress to the health community, since no successful treat-
ment has been exposed [5–8]. The biological organization of 
COVID-19 includes positive-oriented single RNA, such that 
it is complex to treat sickness on account of its transforming 
nature. However, international medical specializations suf-
fer exhaustive research to devise an effectual treatment for 
COVID disease. Nowadays, COVID-19 is a crucial reason for  
thousands of demises internationally, and more demises are in  
USA, Iran, Italy, UK, and Spain. In addition, numerous kinds  
of COVID are present, and these diseases are generally identi- 
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fied in animals. Meanwhile, COVID-19 has been revealed in 
humans, bats, cats, pigs, rodents, dogs, poultry, and so on [1].

The characteristic clinical characteristics of COVID-19 con-
tain cough, sore throat, muscle pain, fever, fatigue, headache, 
and lack of breath [4, 9]. Moreover, this virus can inflame the 
death of humans with destabilized immune systems [1, 10, 11]. 
Generally, COVID-19 is spread from one person to other per-
son habitually through physical interaction. However, healthy 
people can be affected by hand, breath, or mucous contact with 
people, who have COVID-19 [1, 12]. The most general inves-
tigation approach presently utilized for COVID-19 detection is 
real-world reverse transcription polymerase chain reaction (RT-
PCR). Additionally, chest radiological imaging, namely com-
puted tomography (CT) and X-ray are very important parts of 
premature prediction and treatment of this disease [4, 13–15]. 
In general, X-ray images are recognized as effective for observ-
ing and evaluation of different lung illnesses, like pneumonia, 
tuberculosis, infiltration, and hernia. Meanwhile, COVID-19 
is obvious as lung infection and upper respiratory tract, which 
was first examined in China in late 2019. Since, the virus has 
spread quickly, it becomes a global epidemic with more number 
of cases and deaths still growing [16]. Therefore, chest X-ray 
images are considered helpful, because COVID-19 affects lung 
tissues. Thus, X-ray images are also widely employed in order 
to detect COVID-19 disease [8].

In recent days, artificial intelligence (AI) is most commonly 
utilized for accelerating bio-medical researches [1]. Further-
more, the applications of machine learning techniques for 
automatic detection in medical fields are more attractive, and 
it is an effectual tool for physicians [4, 17–19]. Moreover, vari-
ous deep learning techniques, and AI are widely employed for 
several applications, data classification, image detection, and 
segmentation of image [1, 20, 21]. However, the people, who 
are contaminated by COVID-19, may be affected by pneumonia 
owing to the virus spreading to the lungs. A greater number 
of deep learning methods have discovered the disease using 
X-ray images [1, 22]. The deep learning technique is the most 
familiar research field of AI, which enables end-to-end model 
development in order to obtain effective outcomes based on the  
input image. Moreover, deep learning schemes are effectively 
employed in numerous issues, like breast cancer [23], as well 
as skin cancer classification [24], arrhythmia recognition, brain 
disease detection, and pneumonia discovery from chest X-ray 
images, lung segmentation, and fundus image segmentation. 
Additionally, the speed increment of the COVID-19 pandemic 
demands the proficiency need in this medical area [4]. Fur-
thermore, a deep learning system was introduced for automatic  
prediction of COVID-19 disease [4]. The CNN-based model 
called CoroDet is used in the automatic detection of COVID-
19. Also, the fine-tuning, extraction of deep features, and end-
to-end training are used in the effective detection of COVID-19  
[25–27]. Moreover, the end-to-end model needs a raw chest 

X-ray images for prediction purposes. Meanwhile, this tech-
nique was trained with 125 chest X-ray images, which was not 
a standard structure [28, 29].

Motivation

COVID-19 is a new disease, which produces contamination in 
upper respiration alterritory and lungs. The COVID-19 predic-
tion is significant, and the early detection is more essential to 
control the spread and death rate. The challenges experienced 
by the existing COVID-19 prediction techniques are deliber-
ated as follows:

• The noises in the chest X-ray images may affect the accu-
racy of the COVID-19 detection.

• The lobar fissures may affect the accuracy of the lung lobe 
segmentation.

• In some methods, huge database handling was difficult.
• Some methods have high computational complexity, which 

may affect the detection performance.

The aforesaid challenges experienced by the existing COVID-
19 prediction approaches are considered the motivation to devise 
the WSCA-based RMDL technique.

Contribution

The most important intension of this research is to devise 
COVID-19 detection using the developed WSCA-based 
RMDL approach. This COVID-19 prediction process com-
prises three phases, namely pre-processing, lung lobe segmen-
tation, and COVID-19 prediction. Initially, the input X-ray 
image is obtained, and it is passed to the pre-processing stage. 
In the pre-processing stage, ROI extraction and Laplacian fil-
tering are applied to remove the noises from the input image. 
Afterwards, lung lobe segmentation is done by the introduced 
FWLICM. The devised FWLICM is the modified approach 
of the FLICM technique [30]. After the lung lobe segmenta-
tion, COVID-19 prediction is done using the RMDL classifier 
[31]. Here, the RMDL is trained by the introduced WSCA for 
effectual classification performance. Furthermore, the devised 
WSCA is the incorporation of WCA [32] and SCA [33].

The most significant contribution of this research work is 
explicated as below:

• Developed WSCA-driven RMDL for COVID-19 predic-
tion: The WSCA-based RMDL technique is introduced for 
the COVID-19 prediction process. Here, the RMDL clas-
sifier is utilized for predicting COVID-19 disease in which 
the RMDL is trained by the devised WSCA. Moreover, the 
introduced WSCA is newly developed by integrating SCA 
and WCA.
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Research Questions

1. How the COVID-19 detection is done?
2. How the lung lobe segmentation is carried out?
3. How the training process of the RMDL is done for effi-

cient COVID-19 prediction?
4. What is the purpose of integrating the SCA and WCA?

Literature Survey

The literature survey of the existing COVID prediction 
approaches with advantages and disadvantages are described 
in this section. Togacar [1] devised a support vector machine 
(SVM) for predicting COVID based on CT images. Here, fuzzy 
and stacking approaches were utilized for pre-processing the 
input chest image. Furthermore, social mimic optimization 
(SMO) algorithm was employed for the extraction of suitable 
features. This method improved the classification rate and 
reduced interference in each image. However, the resolution 
size of novel images, as well as organized images, must be 
similar. Ozturk et al. [4] modeled deep neural network (DNN) 
for COVID prediction by X-ray images. Moreover, this model 
developed a new deep learning system, termed DarkCovidNet 
structure for classification. This method offered precise detection 
for binary classification, although this model was not validated 
by including more images. Khan et al. [3] presented deep convo-
lutional neural network (DCNN) technique for COVID predic-
tion by means of the chest X-ray image. In addition, a transfer 
learning scheme was applied for initiating by weight parameters 
on huge databases. This prediction model obtained less compu-
tational cost, but still, only restricted amount of data was avail-
able in this method for the training process. Ismael and Sengur 
[34] developed SVM approach for COVID identification. Here, 
three DCNN techniques were applied in order to perform the 
prediction of COVID. Here, the cubic kernel function obtained 
better performance than other kernels in deep feature classifica-
tion. Even though, an inadequate quantity of chest images was 
included in this approach for analysis process.

Pandit and Banday [35] introduced deep learning scheme for 
COVID prediction by X-ray images. This technique was robust 
and efficient of non-contact evaluation on COVID patients, 
and it assists for early and commercial prediction of COVID. 
However, this technique failed to evaluate by devising various 
optimization techniques. Autee et al. [36] presented multi-layer 
perceptron (MLP) stacked ensembling technique for COVID 
identification. Here, synthetic minority oversampling technique 
(SMOTE) was executed in order to reduce data imbalance 
issues. This technique increased accuracy and decreased false 
negative rate, but still, this approach needs more training time. 
Zhang et al. [37] devised two-step transfer learning structure 
for COVID prediction by X-ray images. This model obtained 
more precise performance of prediction, although it failed to 

evaluate the performance with more amount of chest X-ray 
images. Bassi and Attux [38] introduced the DCNN technique 
for predicting COVID using chest X-ray images. The classifica-
tion performance of this approach was highly enhanced, even 
though the training process of this model was not effectual.

Proposed COVID‑19 Identification 
Process Using Deep‑Learning Method 
with Optimization Algorithm

This section explicates the developed WSCA-based RMDL 
approach for detecting COVID-19 by chest X-ray images. This 
COVID-19 detection technique mainly includes pre-processing, 
lung lobe segmentation, and COVID-19 prediction. At first, 
the input chest X-ray images are acquired from a dataset, and 
it is passed to the pre-processing step. The input image is pre-
processed in order to remove the noises and redundant pixels 
using ROI extraction and Laplacian filtering model. After that, 
the lung lobes are segmented from the pre-processed image in 
the segmentation phase. The lung lobe segmentation is per-
formed using the developed FWLICM technique. Finally, the 
COVID-19 detection process is done using the RMDL classifier 
[31], which is trained through the introduced WSCA. Moreover, 
the developed WSCA is introduced by combining SCA [39] 
and WCA [32] for effective prediction performance. The block 
diagram of the developed WSCA-based RMDL for COVID-19 
prediction is depicted in Fig. 1.

Let us consider a dataset E with chest X-ray image, and it 
has p quantity of images, which is specified as,

where Ge denotes eth image in a database, and p specifies 
the whole quantity of image in a database. Here, the input 
image Ge is considered, and it is fed to pre-processing phase.

Pre‑processing

The pre-processing process is performed in order to reduce 
unnecessary pixels and noises available in an image. Here, 
the selected input chest image Ge is considered for pre-
processing. The ROI extraction and Laplacian filtering are 
employed for eliminating the noises, such as salt and pepper 
noise, speckle noise, and Poisson noise from the input image.

ROI Extraction

The ROI in the chest X-ray image is determined based on 
pixel intensity value. In the ROI extraction process, concerned 
regions are separated from unresponsive regions for further 

(1)E =
{
G1,G2, ...Ge, ...Gp

}
,
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prediction process. The output from the ROI extraction pro-
cess is represented as Mr.

Laplacian Filtering

Laplacian filter is an edge detector, which is employed to esti-
mate second-order derivatives in an image. The Laplacian filter 
identifies the alternations in nearby pixels from continuous or 
edge progression. Therefore, Laplacian filtering is used for pre-
processing in the COVID-19 prediction process. The output 
of Laplacian filtering is expressed as Nr . The output of pre-
processed image is expressed as Dr.

Lung Lobe Segmentation by the Developed Fuzzy 
Weighted Local Information C‑Means Algorithm

The pre-processed image Dr is considered the input for seg-
menting lung lobe segmentation. After the pre-processing of 
the input image, lung lobe segmentation process is performed 
for COVID-19 prediction. Here, the lung lobes are segmented 
using the FWLICM approach from the pre-processed image 
Dr . The FWLICM technique is designed by the modification 
of the FLICM technique [30], in which the Jaccard similarity 

coefficient is included in the FLICM technique. This method 
employs fuzzy local similarity measure, which offers assur-
ance for image detail preservation and noise inventiveness. 
In FLICM [30], the weighted fuzzy factor is expressed as,

Here, Zkq indicates Jaccard similarity coefficient, and it 
is estimated by,

where K = Ok , T = Pq , the reference cluster is denoted  
as q , B refers whole pixel amount, kth pixel with respect  
to amount of neighbors within the window around the qth 
pixel Bq , Pq is the prototype of cluster center q , glk denotes 
the spatial Euclidean distance among pixels l and k, fqk is the 
membership degree of kth pixel in qth cluster, and Ok is the 
gray-level value of kth pixel.

Generally, the FLICM method combines local spatial as 
well as gray-level data to its objective function, which is 
given by,

(2)
Hql =

�

k ∈ Bq

l ≠ k

1

glk + 1

�
1 − fqk

�I‖Ok − Pq‖2 + Zkq

(3)Zkq =
|K ∩ T|
|K ∪ T|

Fig. 1  Block diagram of 
the developed COVID-19 
prediction using the developed 
WSCA-based RMDL algorithm

Chest X-ray image Pre-processing

ROI 

extraction

Laplacian 

filtering

Lung lobe 

segmentation

Proposed fuzzy weighted 

local information C-means 

algorithm

COVID 19 detection

Random 

multimodal deep 

learning classifier 

Water 

Cycle 

Algorithm

Proposed Water 

Sine Cosine 

Algorithm

Sine 

Cosine 

Algorithm

Detected 

output



Journal of Digital Imaging 

1 3

where d is the cluster prototypes, the stopping criterion is I , 
the term Ol is a gray-level rate of the lth pixel, and denotes 
weighted fuzzy factor.

The processes of FWLICM clustering are specified as 
below,

Step1: Let us consider cluster prototypes quantity c , fuzzi-
fication parameter I and stopping circumstance �.
Step2: Initialize the fuzzy partition matrix in random 
manner.
Step3: Fix loop counter as Υ = 0.
Step4: Estimate cluster prototype by the following expres-
sion,

Step5: Compute membership values by,

Step 6: If max
{
X

p − X
(p+1)

}
< 𝜌 , then discontinue the 

process, otherwise set Υ = Υ + 1 and go to step 4.

The outcome of lung lobe segmentation is denoted as 
Ls , and it is passed to deep learning classifier for predicting 
COVID.

COVID‑19 Detection Based on Developed Water Sine 
Cosine Algorithm‑Based Random Multimodel Deep 
Learning

This section explicates about the developed WSCA-based 
RMDL approach for COVID identification. The lung lobe 
segmented image Ls is taken as input for the COVID predic-
tion process. Moreover, the RMDL classifier is trained by the 
developed optimization method, termed WSCA. However, the 
developed WSCA is devised by integrating SCA and WCA.

Random Multimodel Deep Learning for COVID Prediction

RMDL classifier [31] is a deep learning system, which is 
employed for effective COVID-19 prediction process. This 
RMDL includes deep recurrent neural networks (RNN), 
deep neural network (DNN), and deep convolutional neural 
network (CNN) blocks. The layer and node count of every 
deep learning multi-method are generated at random. The 

(4)AI =

B�

l=1

d�

q=1

f I
ql
‖Ol − Pq‖

2

+ Hql

(5)Pq =

∑B

l=1
f I
ql
Ol

∑B

l=1
f I
ql

(6)
fql =

1

∑d

k=1

�‖Ol−Pq‖2+Hql

‖Ol−Pq‖2+Hkl

� 1

I−1

RMDL classifier effectively affords better performance in 
huge databases and easily solves classification issues. The 
architecture of the RMDL classifier is specified in Fig. 2.

Deep Neural Network

The DNN representation is introduced to learn various layer 
connections in which all layer receives connection based on 
prior parameters. Furthermore, it affords correlation to the 
successive layer of the hidden part. The input characterizes  
the feature involvement by the first hidden layer of every 
arbitrary method. Moreover, the output layer identifies  
several classes to execute multi class classification and 
obtains input for the binary classification process. All  
learning element is generated arbitrarily, and it uses the 
benchmark backpropagation method with activation and 
ReLU function in DNN. Thus, the activation function is 
specified as,

Moreover, the sigmoid function is illustrated as,

where mt denotes data point, and n specifies arbitrary integer, 
which lies from 1 ≤ n ≤ N.

where N indicates the random number.

Recurrent Neural Network

The RNN distributes more weights before the data point 
sequence. Therefore, this approach is effective for identifying  
sequential data. In RNN, the neural network utilizes data of 
prior nodes for enhancing semantic assessment of database, 
which is specified by,

where bm indicates state at time m , and am denotes input and 
time m . The weighting term is used for modeling the above 
equation,

where Fre is a recurrent matrix weight, Fin specifies input 
weight, � denotes bias, and � symbolizes element-wise 
function.

(7)V(b) =
1

1 + e−b
∈ (0, 1)

(8)V(b) = max(0, b)

(9)�(m)t =
emt

∑N

n=1
e2n

(10)∀t ∈ {1…N}

(11)bm = R
(
bm−1, am,�

)

(12)bm = Fre�(bm−1) + Finam + �
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Long Short‑Term Memory (LSTM)

LSTM is an exceptional structure of RNN, which conserves 
large dependencies in more effective way, and it is contrary 

to fundamental RNN. This is helpful to defeat the desertion 
gradient problems. However, LSTM is a chain-like system, 
which employs dissimilar gates to regulate quantity of data 
that are distributed to every node state.

Fig. 2  Architecture of RMDL classifier
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The input gate is specified as,

where � denotes weight matrices, bm specifies input to the 
memory cell at time m , C is as input, and Q is a hidden layer.

After that, candid memory cell value is given by,

Moreover, activation of the forget gate is illustrated by,

Additionally, new memory cell value is expressed as,

Finally, the output gate is denoted as,

Gated Recurrent Unit (GRU)

Generally, GRU is the gating approach of RNN, and it is 
considered a fundamental substitute method of the LSTM 
approach. GRU model includes two gates, and GRU where 
GRU does not have interior memory, and thus, non-linearity 
cannot be utilized. The specification of GRU cell is,

where Sm denotes the update gate vector of m , bm is a input 
vector, � , Iz and � refer to parameter matrices and vector, 
and �f  signifies activation function, which can be ReLU or 
sigmoid.

where Zm indicates output vector of m , Ym is a reset gate 
vector of m , Sm refers to update gate vector of m , and �Z 
represents the hyperbolic tangent function.

Convolutional Neural Network

The last deep learning model in RMDL is the CNN, which is 
modified to classify the input image. However, it is generated 

(13)Cm = �
(
�C|bm,Qm−1

)
+ �C

(14)Bm = tanh
(
�B|bm,Qm−1

)
+ �B

(15)Hm = �
(
�H|bm,Qm−1

)
+ �H

(16)Bm = Cm ∗ Bm + HmBm−1

(17)Om = �
(
�O|bm,Bm−1

)
+ �O

(18)Zm = Omtan
(
Hm

)

(19)Sm = �f

(
�Sbm + IzBm−1 + �S

)

(20)Ym = �f

(
�Ybm + IYBm−1 + �Y

)

(21)
Zm = Sm◦Bm−1 +

(
1 − Ym

)
◦�Z

(
�BBm

)
+ IB

(
Ym.Bm−1

)
+ �B

to process the images, and CNN is efficiently utilized to clas-
sify the image. In this, CNN is utilized to process image ten-
sor that is convolved based on several kernel groups with 
� × � . These convolutional layers are termed as feature 
maps, and it can be weighted to afford dissimilar filters on 
input. The CNN employed pooling model in order to decrease 
computation difficulty, and it decreased the output dimension 
from one layer to the next layer. Moreover, the general pool-
ing approach is a max pooling in which the highest compo-
nent is chosen from the pooling window. The maps are com-
pressed to one column to supply the pooling outcome from 
the stacked featured maps to the final layer. Furthermore, the 
final layers of CNN are fully connected layers. Thus, the final 
classified output is represented as �∗

f
.

Developed Water Sine Cosine Algorithm for Training 
Process of Random Multimodel Deep Learning

This section illustrates the developed WSCA for the train-
ing procedure of RMDL. The RMDL is trained through 
the devised optimization model, termed WSCA, which 
is designed by SCA and WCA. WCA [32] is stimulated 
by the nature, and it is developed depending on the water 
cycle reflection and flowing of streams and river over sea 
in real-world circumstance. The WCA has the capacity to 
resolve different engineering enterprises and controlled 
optimization issues. Besides, WCA is effectual for affording 
qualitative solutions and provides effective computational 
efficiency. This approach is utilized to address everyday 
optimization problems with adequate solution accuracy. 
Moreover, it is effectual in managing dissimilar combina-
torial optimization problems and offers the best solution 
with minimum computational complexities. SCA [39] is a 
population-based optimization approach in order to solve 
optimization issues. This method generates numerous early 
random candidate solutions and requests them to oscillate 
away or near optimal solutions based on scientific represen-
tation with cosine and sine functions. In addition, several 
adaptive and random variables are incorporated with the 
SCA algorithm for emphasizing exploitation and explora-
tion of search space in different milestones of optimization. 
This algorithm successfully manages real-world problems 
with constrained and indefinite search space. Therefore, the 
SCA is combined with WCA to acquire enhanced perfor-
mance. The algorithmic process of the developed WSCA is 
explicated as below.

Step‑1: Initialization At first, populations of raindrops are 
generated arbitrarily, which is illustrated by,

(22)K = {K1,K2,⋯ ,Kv,⋯Kw};1 ≤ v ≤ w
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where w represents the whole amount of population, and Kv 
denotes the vth population.

Step‑2: Fitness Function Calculation The fitness measure is 
calculated for predicting the best solution for COVID predic-
tion. The fitness with minimal rate is taken as an optimum 
solution, which is calculated as,

where �f  indicates the target output, �∗
f
 specifies the classi-

fied output, and h denotes the total number of samples.

Step‑3: Compute Every Raindrop Value Here, the cost of 
every raindrop is estimated by the following expression,

where To is a cost of rain drop, wpop specifies the amount of rain 
drops and w

var
 denotes the quantity of design variables.

Step‑4: Estimation of Flow Strength for Sea and Rivers Here, 
flow power of river and sea is computed for assigning the 
raindrops, and it is calculated by,

where Tj symbolizes the amount of streams, which flow to 
specific sea or rivers.

Step‑5: Stream Flow to River Once the flow concentration 
for river and sea is computed, then the stream flow to rivers 
is calculated as,

Step‑6: River Flow to Sea After calculation of the stream flow 
to river, the solution updation is carried out using the devel-
oped WSCA. In this step, river flow to sea is calculated, and 
its maximum downhill position by,

(23)MSE =
1

h

h∑

f=1

[
�

f
− �

∗

f

]2

(24)To = f
(
Ko
1 , k

o
2, ...K

o
wvar

)
;o = 1, 2, ...wpop

(25)wAk = round

⎛
⎜
⎜
⎜
⎜
⎝

����������

Tj

wsr∑
j=1

Tj

����������

× wraindrops

⎞
⎟
⎟
⎟
⎟
⎠

j = 1, 2, ...wsr

(26)K
j+1

stream = K
j

stream + randx
(
K

j

river
− Kj

sream

)

(27)K
j+1

river
= K

j

river
+ randx

(
Kj

sea
− K

j

river

)

(28)K
j+1

river
= K

j

river
(1 − randx) + randxKj

sea

Meanwhile, standard location update expression of SCA 
is,

Let us assume that Mj > Uj,

The above equation is rewritten as in terms of WCA, and 
thus, we get,

Substitute Eq. (32) in (28),

Therefore, the aforementioned equation expresses the final 
updated equation for the introduced WSCA, where rand sym-
bolizes evenly allocated random value ranges from 0 to 1, x is 
the value among 1 and 2, y1 , y2 , and y3 are random numbers, 
and Mj represents destination point.

Step‑7: Replace the Location of River Here, the river location 
is exchanged with stream and it provides an improved solu-
tion. Furthermore, if the river recognizes an optimal solution 
than the sea, then the position of the river is substituted with 
the sea.

Step‑8: Evaporation Condition Evaporation is a significant 
aspect, which evades quick convergence in this approach. 
The evaporation condition is expressed as,

If directly above expression is fulfilled, then the training 
process is performed where Tmax is a small value, which is near 
to zero.

Step‑9: Raining Method After fulfillment of the evaporation 
situation, raining procedure is applied. The new location of 
produced streams is placed by,

(29)Kj+1 = Kj + y1sin
(
y2
)|||y3Mj − Kj

|||

(30)Kj+1 = Kj + y1sin
(
y2
)(
y3Mj − Kj

)

(31)Kj =
Kj+1 − y1y3sin

(
y2
)
Mj

1 − y1sin
(
y2
)

(32)K
j =

K
j+1

river
− y

1
y
3
sin

(
y
2

)
M

j

1 − y
1
sin

(
y
2

)

(33)K
j+1

river
=

K
j+1

river
− y

1
y
3
sin

(
y
2

)
Mj

1 − y
1
sin

(
y
2

) (1 − randx) + randxKj

sea

(34)

K
j+1

river
=

1 − y1sin
(
y2
)

randx − y1sin
(
y2
)

[
randxKj

sea
−

y1y3sin
(
y2
)
Mj

1 − y1sin
(
y2
) (1 − randx)

]

(35)
|||k

j
sea

− K
j

river

||| < Tmax ;j = 1, 2, 3, ...wsr − 1
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where LB and UB indicate lower and upper bound.

Additionally, computational performance, as well as 
convergence degree, is enhanced by the below expression, 
and it is only employed for stream, which directly flows to 
the sea.

where � represents coefficient, and it exposes the choice of 
searching zone near sea, and randz indicates arbitrarily allo-
cated number.

Step‑10: Reduce the Rate of User Define Parameter The big 
quantity of Tmax decreases a search, whereas less rate supports 
search intensity nearby a sea. The worth of Tmax is reduced as,

Step‑11: Check Possibility of Solution The best solution is 
calculated by the fitness function, and if the novel solution is 
improved than the former solution, then it updates the earlier 
value with the optimal one.

Step‑12: Termination The aforementioned processes are 
repetitive until the best solution is attained for COVID pre-
diction. The pseudocode of the developed WSCA is repre-
sented in Algorithm 1.

Algorithm 1 Pseudo code of the devised WSCA

Sl. No Pseudo code of the introduced WSCA

1 Input: populace of rain drop and initial parameters
2 Output: best solution
3 Start
4 Initialize populace of rain drop, sea and river
5 Compute the fitness measure
6 Evaluate the price of every rain drop using expression 

(24)
7 Establish the strength of flow for rivers and sea using 

Eq. (25)
8 Stream flow to river is performed using expression (26)
9 River flow to sea is carried out through expression (34)
10 Replace the location of river and sea
11 Verify evaporation state
12 If |||k

j
sea − K

j

river

||| < T
max

;j = 1,2, 3, ...wsr − 1 do

(36)Knew
srteam

= LB + rand × (UB − LB)

(37)Knew
stream

= Ksea +
√
�randz

�
1,wvar

�

(38)Tj+1
max

= Tj
max

−
T
j
max

max iteration

Sl. No Pseudo code of the introduced WSCA

13 Perform training procedure by means of expression  
(36) and (37)

14 End if
15 Replace user defined parameter
16 Verify the possibility of solution
17 End

Thus, the COVID-19 disease is predicted, and it obtains 
better performance by combining WCA with SCA.

Results and Discussion

The results and discussion of the introduced WSCA-driven 
RMDL approach for COVID prediction is displayed in this 
section. The experimental results, performance metrics,  
performance analysis, comparative approaches, experimental  
setup, comparative analysis, and comparative discussion are 
explicated in this section.

Experimental Setup

The implementation of the designed WSCA-based RMDL 
is executed based on MATLAB tool with Windows 10 OS, 
8 GB RAM with Intel core-i3 processor, and the experimen-
tal setup is mentioned in Table 1.

Database Explanation

The execution of the designed WSCA-driven RMDL approach 
for COVID prediction is performed using DeepCovid Data-
set [39]. This database mainly includes two folders, namely 
training and testing. This dataset contains 3100 test images 
and 2084 training images. In the training file, 84 images are 
COVID and 2000 images are non-COVID, whereas in the test 
set, 100 COVID images and 3000 images are non-COVID.

Performance Metrics

The performance of the introduced WSCA-driven RMDL 
scheme is computed by different metrics, like accuracy,  
specificity, sensitivity, and dice score.

Accuracy

Accuracy is employed to compute the true negative and true 
positive proportions of every sample, which is given by,
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Sensitivity

Sensitivity is a metric, which is calculated to predict the 
severity level of COVID disease, and it is specified as,

Specificity

Specificity is estimated by precise identification of COVID, 
and it is expressed as,

Dice Score

Dice score is estimated to quantify the performance of image 
segmentation methods, and it is expressed as,

where Eo indicates true positive, Eg specifies true negative, 
Ro is a false positive, and Rg denotes false negative.

Experimental Outcomes

The experimental outcome of the devised WSCA-based RMDL 
model is displayed in this section. Here, the input chest X-ray 
image 1, 2, 3, and 4 are shown Fig. 3a in which image 1, 3, and 
4 are non-COVID and image 2 is the COVID sample. The pre-
processed image of input chest X-ray image 1, 2, 3, and 4 are 
portrayed in Fig. 3b. Moreover, the segmented image of the input 
chest X-ray image 1, 2, 3, and 4 are also portrayed in Fig. 3c.

(47)Accuracy =
Eo + Eg

Eo + Eg + Ro + Rg

(48)Sensitivity =
Eg

Eg + Ro

(49)Specificity =
Eo

Eo + Rg

(50)Dice =
2Eo

2Eo + R0 + Rg

Performance Analysis

The analysis of the WSCA-driven RMDL approach with  
different epoch sizes by varying k-fold and training data is 
specified in this section.

Analysis by Shifting Training Data

Table 2 exposes an analysis of the designed WSCA-driven 
RMDL by altering training data percentage by means of per-
formance metrics. From this table, it is clear that the pro-
posed system attains better performance when increasing the 
epoch and training data.

Performance Analysis by Changing K‑fold

The performance analysis of the devised WSCA-driven RMDL 
by changing k-fold value based on performance metrics is spec-
ified in Table 3. The maximum accuracy, sensitivity, specificity, 
and dice score is attained at Epoch = 100 and the k-fold is 9.

Receiver‑Operating Characteristic (ROC)‑Based 
Performance Analysis

Table 4 depicts the ROC graph of performance analysis for the 
developed WSCA-based RMDL with different epoch sizes. The 
ROC analysis is an important tool for evaluating the diagnostic 
tests and predictive models. Also, it is utilized for assessing 
the accuracy quantitatively or compares accuracy between pre-
dictive or tests models. The developed WSCA-based RMDL 
model has TPR of 83.77%, 88.45%, 93.19%, and 93.93% for 
FPR of 20%, 40%, 60%, and 80% in epoch size 40. Similarly, 
the developed WSCA-based RMDL technique attains TPR 
value of 89.18%, 90.60%, 93.74%, 94.86%, 95.40%, 97.15%, 
97.74%, 98.72%, and 100, while FPR is 20%, 30%, 40%, 50%, 
60%, 70%, 80%, 90%, and 100% for the epoch size is 100.

Comparative Methods

The analysis of the introduced WSCA-driven RMDL approach 
is carried out by comparing the devised method with other 
conventional COVID prediction techniques, including deep 
learning [1], DNN [4], MLP [36], DCNN [38], and RNN [40].

Comparative Analysis

This section represents an analysis of the devised WSCA-
based RMDL technique with regard to specificity, sensitivity, 
accuracy, and dice score by chaining k-fold and training data.

Table 1  Experimental setup Parameter Value

Batch size 128
Embedding dimension 50
Hidden layers of DNN 8
Hidden layers of RNN 5
Hidden layers of CNN 10
Number of iteration 100
Population size 10
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Comparative Analysis by Altering Training Data 
Percentage

Table 5 denotes analysis of the devised WSCA-driven RMDL 
based on performance metrics by changing the training  
data. The developed WSCA-based RMDL obtained a better 
percentage improvement of 10.84%, 8.86%, 7.08%, 5.27%, 
and 3.55%, while compared with deep learning, DNN, MLP, 
RNN, and DCNN techniques for 80% training data. Similarly,  
the performance enhancement obtained by the designed 
WSCA-enabled RMDL is 12.31%, 9.62%, 8.45%, 6.44%, and 
3.87% with other methods, like deep learning, DNN, MLP, 
RNN, and DCNN for the same training data. Likewise, the 
introduced WSCA-based RMDL attained better performance 
improvement of specificity for deep learning that is 15.26%, 
DNN is 13.33%, MLP is 9.47%, RNN is 8.14%, and DCNN 
is 5.29% for 80% training data. The proposed method has a 
maximum dice score of 89.20% for training data = 80%.

Comparative Analysis by Changing K‑fold Value

Table 6 specifies analysis of the devised WSCA-driven 
RMDL based on performance metrics by varying k-fold. 
The accuracy obtained by the introduced WSCA-driven 
RMDL is 11.06%, 8.60%, 4.67%, 5.36%, and 2.36% perfor-
mance improvement with other methods, like deep learning, 
DNN, MLP, RNN, and DCNN for considering k-fold = 8. 
Also, for the same k-fold, the devised WSCA-driven RMDL 
achieved better sensitivity percentage improvement of 
13.78%, 7.79%, 4.36%, 4.77%, and 4.16%, while compared 
with deep learning, DNN, MLP, and DCNN methods. 
Similarly, the specificity value obtained by deep learning 
scheme is 77.26%, DNN is 79.31%, MLP is 84.88%, RNN 
is 86.21%, DCNN is 88.02%, and the developed WSCA-
based RMDL is 89.78% for the k-fold value of 8. The pro-
posed technique has a maximum dice score of 91.39, when 
k-fold = 8.

Fig. 3  Experimental outcomes 
of the developed WSCA-based 
RMDL a input image 1, 3, and 
4 with non-COVID and input 
image-2 with COVID, b pre-
processed image of input image 
1, 2, 3, and 4, and c segmenta-
tion image of input image 1, 2, 
3, and 4
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ROC‑Based Comparative Analysis

Table 7 specifies the ROC graph of comparative analysis 
for the developed WSCA-based RMDL. The developed 
WSCA-based RMDL model has TPR of 75.32%, 77.57%, 
79.82%, 83.24%, 86.21%, 89.26%, 90.80%, 91.28%, and 
100%, while the FPR value is 20%. Similarly, when the 
FPR is 80%, the developed WSCA-based RMDL has TPR 
of 82.65%, 88.95%, 92.78%, 88.93%, 92.86%, 95.78%, 
95.36%, 97.67%, and 100%.

Comparative Discussion

Table 8 specifies a comparative discussion of the devised WSCA-
driven RMDL with other COVID prediction techniques by alter-
ing training data and k-fold value with performance metrics. The 
accuracy attained through deep learning, DNN, MLP, RNN, 

DCNN, and the developed WSCA-based RMDL is 82.59%, 
84.43%, 87.98%, 89.1%, 90.48%, and 92.41% for the k-fold value 
of 9. Moreover, the sensitivity value of the developed WSCA-
based RMDL approach is 92.58%, whereas deep learning model 
is 82.23%, DNN is 85.22%, MLP is 87.97%, RNN is 88.2%, and 
DCNN is 88.46% in the k-fold value of 9. When the f-fold value 
is 9, the specificity value of the deep learning method is 78.75%, 
DNN is 80.49%, MLP is 86.49%, RNN is 87.23%, DCNN is 
89.07%, while the developed WSCA-based RMDL approach 
attains 92.14%. From the below discussion table, it is well noted 
that the introduced WSCA-based RMDL achieved an improved 
performance with accuracy and specificity of 92.41% and 92.14% 
in the k-fold value of 9 as well as the sensitivity of 93.55% in 90% 
of the training data. The proposed WSCA-based RMDL achieved 
a maximum dice score of 89.99% and 92.02% for varying the 
training data and k-fold, respectively.

The computational time of the devised and existing meth-
ods is depicted in Table 9. From this table, it is clear that the 
devised method has a minimum computational time of 140 s.

Table 2  Performance analysis of WSCA-driven RMDL by shifting 
training data percentage with various epoch size

The training data, K-fold, and TPR values are represented in bold font

Epoch/training 
data

20 40 60 80 100

Accuracy (%)
40 81.37 82.30 84.15 87.00 88.07
50 81.40 83.12 84.57 87.10 88.71
60 82.43 83.76 84.65 87.23 89.99
70 83.10 84.03 85.90 87.97 90.25
80 84.64 85.36 86.76 88.35 91.64
90 84.69 86.10 86.91 88.78 92.03

Sensitivity (%)
40 84.53 85.02 85.18 86.83 89.34
50 85.12 85.26 87.26 87.36 90.66
60 85.79 85.82 88.47 88.65 92.37
70 85.84 86.60 89.00 92.35 92.70
80 86.08 86.75 90.23 92.39 93.74
90 87.71 91.03 92.25 92.85 94.35

Specificity (%)
40 79.37 80.77 83.27 84.62 86.10
50 79.73 83.43 84.36 85.10 86.18
60 81.13 83.49 84.68 85.44 86.98
70 81.15 83.52 84.77 85.45 87.74
80 82.03 84.02 85.02 85.88 88.12
90 82.73 84.54 85.81 87.01 90.19

Dice score (%)
40 81.02 82.37 83.44 83.95 84.11
50 81.73 82.40 84.60 86.43 89.00
60 81.83 82.87 84.66 86.69 89.18
70 82.15 83.80 84.85 86.88 89.54
80 82.84 84.24 86.38 87.45 90.44
90 83.74 84.49 86.55 89.42 90.56

Table 3  Performance analysis of WSCA enabled RMDL by shifting 
k-fold value

The training data, K-fold, and TPR values are represented in bold font

Epoch/k-fold 20 40 60 80 100

Accuracy (%)
4 82.33 83.27 84.17 86.30 87.67
5 82.47 84.59 85.99 87.44 88.51
6 83.40 85.50 86.50 88.13 89.66
7 84.28 85.57 86.58 88.72 89.79
8 84.42 86.26 86.64 89.10 90.88
9 84.49 86.44 88.84 89.99 92.06

Sensitivity (%)
4 82.87 84.54 84.62 85.96 86.25
5 83.70 84.82 85.27 86.14 88.12
6 83.92 84.98 85.30 86.15 88.39
7 84.01 85.09 85.80 86.76 88.77
8 84.75 85.56 86.76 88.23 88.84
9 84.88 86.24 88.62 88.98 91.27

Specificity (%)
4 78.24 80.33 81.81 82.77 84.71
5 78.86 81.30 82.26 84.55 84.80
6 79.98 82.32 82.45 84.66 85.68
7 80.64 82.40 83.23 85.63 86.11
8 80.78 83.55 84.43 86.23 87.10
9 83.31 84.13 85.03 86.55 88.02

Dice score (%)
4 82.23 83.73 84.69 85.44 87.03
5 82.26 83.78 85.68 85.82 87.48
6 82.87 83.80 85.84 86.26 88.75
7 84.21 84.73 86.15 87.75 89.61
8 84.80 85.11 86.86 88.74 89.71
9 85.12 85.67 88.46 89.53 90.97
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Table 4  ROC performance 
analysis for the developed 
WSCA-based RMDL

The training data, K-fold, and TPR values are represented in bold font

Epoch/TPR Deep learning DNN MLP RNN DCNN Developed 
WSCA-based 
RMDL

10 0 0 0 0 0 0
20 83.37 83.77 84.26 82.01 85.62 89.18
30 86.11 86.37 86.97 86.13 89.05 90.60
40 87.40 88.45 89.23 91.23 91.16 93.74
50 87.61 88.69 93.16 89.71 94.02 94.86
60 91.54 93.19 94.30 91.31 94.44 95.40
70 92.87 93.55 94.81 93.17 96.63 97.15
80 93.30 93.93 95.85 94.31 97.38 97.74
90 93.76 94.05 98.39 96.88 98.67 98.72
100 100 100 100 100 100 100

Table 5  Analysis of the devised 
WSCA-driven RMDL based on 
training percentage

The training data, K-fold, and TPR values are represented in bold font

Methods Deep learning DNN MLP RNN DCNN Developed 
WSCA-based 
RMDL

Accuracy (%)
40 76.24 78.67 80.82 82.2 84.53 87.08
50 77.36 80.50 81.64 82.3 85.45 88.12
60 78.05 80.60 83.38 84.0 85.71 88.42
70 78.92 81.93 83.47 84.5 85.83 88.88
80 80.19 81.97 83.57 85.2 86.74 89.94
90 81.68 82.94 83.86 86.3 88.08 90.60

Sensitivity (%)
40 77.83 79.62 83.17 83.5 83.84 89.93
50 78.20 81.82 83.65 84.1 85.65 90.10
60 80.26 82.79 83.95 85.3 87.31 91.46
70 80.59 83.11 83.99 85.8 87.57 91.85
80 80.97 83.46 84.54 86.4 88.77 92.35
90 82.68 84.46 85.26 87.3 90.46 93.55

Specificity (%)
40 76.31 76.75 79.70 80.2 80.75 85.63
50 76.45 78.18 80.54 81.3 82.77 87.22
60 77.37 78.27 81.33 82.4 86.03 89.39
70 77.44 78.45 81.34 83.3 86.27 90.71
80 77.58 79.35 82.88 84.1 86.70 91.55
90 79.18 80.34 85.10 86.3 87.18 91.55

Dice score (%)
40 75.74 76.71 79.38 81.61 82.27 86.60
50 75.94 79.12 79.49 81.74 82.99 86.63
60 76.50 79.12 81.45 83.21 84.07 87.10
70 77.07 79.25 81.92 83.64 84.12 88.40
80 77.89 80.13 82.77 84.12 85.14 89.20
90 78.05 80.69 83.76 84.62 87.34 89.99
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Table 6  Comparative analysis 
of the designed WSCA-driven 
RMDL based on k-fold

The training data, K-fold, and TPR values are represented in bold font

Methods/K-
fold

Deep learning DNN MLP RNN DCNN developed 
WSCA-based 
RMDL

Accuracy (%)
4 75.27 78.80 81.36 81.4 81.57 84.21
5 76.53 78.87 82.31 83.6 86.04 89.23
6 76.95 80.26 82.49 84.1 86.68 89.36
7 78.13 81.17 83.30 85.1 87.15 90.20
8 80.70 82.94 85.87 86.5 88.60 90.74
9 82.59 84.43 87.98 89.1 90.48 92.41

Sensitivity (%)
4 76.56 81.55 82.86 83.0 83.23 85.63
5 76.60 83.36 84.20 84.3 84.42 85.94
6 77.98 83.67 84.36 85.0 85.40 86.14
7 78.46 83.91 85.79 86.0 86.32 90.80
8 78.52 83.98 86.72 87.1 87.28 91.07
9 82.23 85.22 87.97 88.2 88.46 92.58

Specificity (%)
4 74.93 77.61 83.08 83.51 84.19 84.81
5 75.03 77.98 83.22 84.61 85.53 87.83
6 75.72 78.06 83.75 85.41 87.29 88.62
7 76.79 79.22 84.38 85.63 87.71 89.45
8 77.26 79.31 84.88 86.21 88.02 89.78
9 78.75 80.49 86.49 87.23 89.07 92.14

Dice score (%)
4 74.37 76.04 79.87 80.12 81.14 85.77
5 74.42 76.69 80.71 81.33 82.06 87.48
6 74.49 77.08 80.80 81.54 82.11 88.70
7 75.82 77.76 81.44 81.67 82.59 89.54
8 76.78 80.10 82.71 83.23 84.85 91.39
9 79.39 80.70 83.98 85.34 88.22 92.02

Table 7  ROC comparative 
analysis for the developed 
WSCA-based RMDL

The training data, K-fold, and TPR values are represented in bold font

Methods/TPR Deep learning DNN MLP RNN DCNN Developed 
WSCA-based 
RMDL

10 0 0 0 0 0 0
20 75.32 76.58 81.54 82.01 82.65 82.66
30 77.57 79.99 85.01 86.13 88.95 91.00
40 79.82 81.17 89.33 91.23 92.78 93.84
50 83.24 85.71 89.81 89.71 88.93 95.70
60 86.21 87.97 90.31 91.31 92.86 94.32
70 89.26 90.25 92.46 93.17 95.78 96.59
80 90.80 91.06 93.56 94.31 95.36 97.45
90 91.28 94.06 96.56 96.88 97.67 99.45
100 100 100 100 100 100 100



Journal of Digital Imaging 

1 3

Conclusion

This paper presents and develop the WSCA-based RMDL 
approach for predicting COVID. Here, the chest X-ray image 
is considered an input for COVID prediction. This COVID 
performs the pre-processing process in order to eradicate the 
unrequited pixels and noises available in the input image. The 
ROI extraction and Laplacian filter are employed in order to 
eliminate the redundant pixels from the input image. The 
segmentation process is necessary in the prediction system 
for effective classification. Moreover, the FWLICM tech-
nique is devised for segmenting lung lobes from the pre-
processed image. Here, the developed FWILCM is designed 
by the modification of the FLICM technique. Meanwhile, 
the RMDL classifier is employed for the prediction process 
of COVID. In addition, RMDL is trained through an intro-
duced optimization approach, termed WSCA to achieve 
effective performance. However, the developed WSCA is 
newly developed by combining SCA and WCA. Moreover, 
the performance of the devised WSCA-enabled RMDL is 
evaluated by means of four metrics, like accuracy, sensitivity, 
specificity, and dice score. The introduced COVID prediction 
model achieves better performance with accuracy of 92.41%, 
sensitivity of 93.55%, specificity of 92.14%, and dice score 
of 92.02%. However, the classification of COVID-19 is 
not possible in the proposed method. In the future, hybrid 
deep learning classifier will be proposed for classifying the 
COVID-19 chest X-ray images.
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