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The aim of this study is to compare the dosimetric characteristics of robotic and 
conventional linac-based SBRT techniques for lung cancer, and to provide planning 
guidance for each modality. Eight patients who received linac-based SBRT were 
retrospectively included in this study. A dose of 60 Gy given in three fractions was 
prescribed to each target. The Synchrony Respiratory Tracking System and a 4D 
dose calculation methodology were used for CyberKnife and linac-based SBRT, 
respectively, to minimize respiratory impact on dose calculation. Identical image 
and contour sets were used for both modalities. While both modalities can provide 
satisfactory target dose coverage, the dose to GTV was more heterogeneous for 
CyberKnife than for linac planning/delivery in all cases. The dose to 1000 cc lung 
was well below institutional constraints for both modalities. In the high dose region, 
the lung dose depended on tumor size, and was similar between both modalities. 
In the low dose region, however, the quality of CyberKnife plans was dependent 
on tumor location. With anteriorly-located tumors, the CyberKnife may deliver 
less dose to normal lung than linac techniques. Conversely, for posteriorly-located 
tumors, CyberKnife delivery may result in higher doses to normal lung. In all cases 
studied, more monitor units were required for CyberKnife delivery for given pre-
scription. Both conventional linacs and CyberKnife provide acceptable target dose 
coverage while sparing normal tissues. The results of this study provide a general 
guideline for patient and treatment modality selection based on dosimetric, tumor 
and normal tissue sparing considerations.
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I.	 Introduction

Lung cancer is the leading cause of cancer death in United States among both men and women.(1)  
Radiation therapy remains an essential modality of treatment, generally in an adjuvant setting 
with surgery and/or chemotherapy.(2) In recent years, stereotactic body radiation therapy (SBRT) 
has been introduced as a primary treatment for lung cancer, with promising results in excellent 
tumor control rates as well as limited toxicities to normal tissue.(3) Since the essential char-
acteristic of SBRT is to deliver an ablative dose in a few fractions, accurate and reproducible 
patient setup and compensation for tumor motion are more critical than in conventional radia-
tion therapy. The planning target volume (PTV), which is delineated from gross tumor volume 
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(GTV), must be as small as reasonably possible in respect to normal tissue tolerances, without 
compromising target dose coverage.

A number of linac-based approaches have been described for delivery of SBRT in lung can-
cer patients.(3-4) Localization and interfraction setup uncertainties can be significantly reduced 
through the application of various image-guided methodologies including orthogonal kV X-ray 
imaging and cone-beam computed topography (CBCT). Although management of intrafraction 
tumor motion due to patient respiration remains a challenge in SBRT treatment of lung cancer, 
several techniques are available to help reduce the impact of intrafraction uncertainties. The 
most straightforward method for compensating for tumor motion is to create internal target 
volume (ITV) by adding an appropriate margin to the GTV. However, this method may irradiate 
excessive normal tissue and/or miss the target by not considering the unique tumor motion in 
individual patients. 4D CT can provide temporal information on target and organ motion based 
on respiration and can be useful to in defining patient-specific ITVs.(5) It has been reported 
that composite images based on 4D CT scans, such as maximum intensity projection (MIP), 
minimum intensity projection and average intensity (AVG), are effective for the assessment 
of tumor mobility and ITV delineation.(6,7) Respiratory gating(8) is an potential method for 
reducing ITVs, with the tradeoff of increased treatment times. Methods such as breath hold, 
abdominal compression, and active breathing control(9-11) have also been shown to be effective 
in reducing tumor motion during treatment. These methods can reduce the volume of normal 
tissue irradiated, but can be limited by such factors as patient comfort and compliance. In the 
future, tracking the tumor directly may prove to be an effective technique. Tumor tracking 
techniques, based on fluoroscopy or portal imaging or combined techniques,(12-14) have been 
described. Although these methods are still under development and not in wide-spread use in 
most institutions, they may help to further reduce the dose to the critical tissue.

CyberKnife is an image-guided stereotactic radiosurgery system.(15) By using a 6 MV 
linac, which is mounted on a robotic arm, CyberKnife can deliver multiple isocentric or non-
isocentric beams to a desired target. An integrated stereoscopic kV imaging system is used to 
monitor patient position throughout the course of treatment. By matching fiducial markers or 
bony anatomy from kV X-ray images to DRRs generated from CT simulation, the resulting 
setup errors (three translations and three rotations) can be determined and compensated either 
automatically or manually by a therapist. Synchrony Respiratory Tracking system (Accuray Inc., 
Sunnyvale, CA) is an integrated tumor tracking component of the CyberKnife system(16) that 
allows dynamic compensation for respiratory motion. The tumor position, which is determined 
through kV X-ray visualization of adjacent fiducial markers, is correlated with the location of 
external markers using an adaptive model. By optically tracking the motion of external markers 
position, the adaptive model can predict the tumor position and guide the robot in tracking the 
tumor. The model can be updated during the treatment by subsequent kV imaging to validate 
the position of an internal reference. A recent report has shown that the Synchrony system can 
provide accurate tracking of lung tumors.(17) 

Both linac-based systems and the CyberKnife have been applied to SBRT treatment of lung 
cancer. However, there are no clear guidelines for patient selection between these two different 
modalities. The different characteristic of these two modalities, which may produce significantly 
different dose distributions, has not been addressed. A study conducted by Prevost et al.(18) 
utilized the linear-quadratic model to investigate biological aspects of CyberKnife SBRT and 
conventional 3D CRT for lung irradiation. There are significant uncertainties in the results, 
particularly as the linear quadratic model may require modification for large dose-per-fraction, 
as is the case in SBRT.(19) Further, in the absence of 4D dose calculation, the GTV and PTV 
in this study are different between CyberKnife and 3D CRT due to patient respiratory motion. 
In an effort to address the different dosemetric characteristics of linac-based SBRT and that 
of CyberKnife for lung tumor treatment, we present a matched comparison of treatment plans 
for both modalities. To minimize respiratory motion impact on dose calculation, a 4D dose 
calculation technique was used for linac-based SBRT for comparison with Synchrony plans 
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and delivery. Identical patient image and contour sets were used for dose calculation from both 
modalities, eliminating potential sources of bias due to variations in patient anatomy, normal 
tissue contouring and PTV definition. The results of this study may provide a general guideline 
for patient and treatment modality selection based on dosimetric, tumor control and normal 
tissue sparing considerations.

II.	 Materials and Methods

A.	 Patients
Eight patients with lung tumors, previously treated using linac-based SBRT, were included in this 
retrospective study. A published protocol(3) was followed for all the patients treatment planning. 
Sixty Gy in three fractions was prescribed to cover 95% of target tumor. This study was approved 
by the institutional review board and conducted in accordance with institutional guidelines. 

B.	 4D CT study
In this study and in our routine practice, all patients were placed in a stereotactic body frame, 
which has been described in literature.(20) Abdominal compression(10) was applied to all patients 
to reduce respiratory motion. A bellows system coupled to our 16-slice Brilliance Big Bore 
CT scanner (Philips Healthcare, Andover, MD) was used to monitor the patients’ respiratory 
motion for subsequent amplitude-based sorting. After scanning, the 4D CT image data were 
sorted into 10 phases, such that the 0% respiratory phase corresponds to peak inhalation and 
the 50% respiratory phase corresponds to the peak exhalation. For each phase, a 3D CT volume 
image of the patient is created. These images allow physicians, physicists, and dosimetrists to 
localize a moving organ or target in each phase of breathing cycle. 

C.	 Linac-based SBRT planning 
Following CT scanning, three-dimensional MIP images were created from the full 4D CT image 
sets. MIP images were subsequently exported to Pinnacle3 8.0m (Phillips Medical Systems, 
Cleveland, OH) treatment planning system for contouring. Lung tumors were contoured by a 
radiation oncologist on MIP images to create an ITV. The PTV3D used for linac-based 3D con-
formal SBRT planning was obtained by adding a uniform three-dimensional 5 mm margin to the 
ITV, which was used to compensate for setup uncertainties and residual respiratory motion not 
represented by 4D CT. Both lungs were automatically segmented using a threshold algorithm 
in Pinnacle; the PTV3D was subsequently subtracted for the lung volume. Other critical organs 
such as heart, esophagus and spinal cord were also contoured. 3D conformal SBRT plans were 
created for each target by experienced dosimetrists. 

D.	 4D dose calculation
Clearly, the PTV3D, which is expanded from the ITV, includes the patient respiratory motion 
information. Therefore, the resulting dose distribution does not accurately reflect the dose de-
livered to the target or surrounding critical organs in the presence of respiratory motion. In this 
study, a 4D dose calculation procedure was applied to calculate the 4D dose distribution without 
the impact of respiratory motion. A GTV and PTV4D, which exclude the motion information, 
were contoured for dose evaluation. This procedure was performed in the following manner.  

Because the MIP image and the 10 4D CT datasets are represented in the same DICOM 
coordinate space, the SBRT plan with all the beam information can be applied to each of the 10 
4D CT datasets by mapping the DICOM coordinates. The dose is subsequently calculated on 
each of the 10 4D CT datasets. To calculate the cumulative radiation dose to moving anatomy, 
it is necessary to trace the deformation trajectory of each voxel during the respiratory cycle. An 
intensity-based automatic deformable registration algorithm known as a “demons” algorithm(21) 
was applied to track the respiratory motion of each voxel. In this study, the 50% respiratory 
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phase of the 4D CT image set (corresponding to end exhalation) was chosen as the fixed refer-
ence, and the demons method was applied to match each of the other 4D CT respiratory phases 
to it. Similar work has been reported in the literature.(22)

Deformable registration builds the voxel-to-voxel correspondence between the moving 
image and fixed image. Given such information, the cumulative dose that the moving target 
receives during respiration can be calculated by using the following method. First, the radia-
tion dose distribution is calculated on each respiratory phase for same beam configuration. 
Strictly, the probability density function derived from patient breathing files should be used 
to weigh the duration of each respiratory phase. In this study, this was simplified using equal 
respiration phases as an approximation. Therefore, the cumulative radiation dose Di of voxel i 
can be computed as:

		  (1)
	

where N is the number of respiratory phases, and Di’j is the dose of voxel i’ at breathing phase j. 
The voxel  i’  corresponds to the voxel i at the 50% respiratory phase. 

The GTV is contoured on the 50% phase of the 4D CT image set by experienced radiation 
oncologists. The ITV contour, which was drawn on MIP images, is used as a reference for GTV  
contouring to minimize normal tissue such as the chest wall from inclusion within the  
GTV. The PTV4D is then created by adding a uniform three dimensional 5 mm margin to  
the GTV. The 50% phase from the 4D CT, and the contours of the GTV and PTV4D are sent 
from the Pinnacle system to the multiplan system for CyberKnife treatment planning. Following 
this 4D dose calculation procedure, the respiratory motion impact is removed from the resulting 
dose distribution, which corresponds solely to the 50% phase of 4D CT images. Tumor volume 
and location, and lung volume, are listed for each patient in Table 1.

Table 1. Tumor and lung volume and tumor location.

	
Patient

	 GTV	 PTV4D	 ITV	 PTV3D	 Lung	 Tumor Position
		  (cm3) 	 (cm3) 	 (cm3) 	 (cm3) 	 (cm3) 	 A/P	 S/I

	 1	 2.2	 15.5	 3.1	 18.3	 4604	 Anterior	 Middle
	 2	 9.7	 34.3	 10.3	 36	 2877	 Anterior 	 Superior
	 3	 7.6	 24.8	 9.7	 33.7	 2716	 Middle	 Superior
	 4	 66.3	 126	 68.3	 145.4	 2653	 Middle	 Inferior
	 5	 18.5	 46.5	 18.5	 46.5	 3122	 Posterior	 Middle
	 6	 19.8	 64.5	 25.6	 76.5	 3713	 Posterior 	 Inferior
	 7	 2.4	 12.7	 3.1	 14.6	 2417	 Posterior 	 Middle
	 8	 10.5	 31.6	 17.1	 43.5	 3087	 Posterior 	 Middle

E.	C yberKnife treatment planning
The Synchrony treatment planning procedure recommended by manufacturer and described 
in detail by Ozhasoglu et al.(16) was used in this study. Since the CyberKnife Synchrony 
system can track the tumor during respiratory motion, the manufacturer recommends that the 
GTVCyber is contoured on an end-exhalation breath-hold CT scan, which is similar to the 50% 
phase (maximum exhalation phase) of 4D CT images. The PTVCyber for the CyberKnife treat-
ment planning is defined by adding a uniform 5 mm margin to the GTVCyber to compensate 
for residual setup error and respiratory motion, and for tumor deformation. In this manner, the 
recommended definition of the GTVCyber and PTVCyber for the CyberKnife Synchrony treatment 
planning is equivalent to the GTV and PTV4D defined for the 4D dose calculation in linac-based 
SBRT. In this study, the GTV, PTV4D and 50% 4D CT images were transferred from Pinnacle 
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to CyberKnife to ensure that the identical images and contour sets were used for both the 4D 
dose calculation in linac-based SBRT and CyberKnife Synchrony treatment planning. For 
comparison purposes, a dose prescription of 60 Gy in three fractions designed to cover at least 
95% of the PTV4D was used for both CyberKnife and linac plans. 

F.	 Study protocol
Figure 1 shows the technical aspects of the study. A 4D CT scan is obtained for all patients. For 
linac-based SBRT, a 3D conformal plan is designed based on the ITV and corresponding PTV3D. 
A deformable registration method described in the previous section is then applied to obtain 
the 4D cumulative dose distribution. The GTV and PTV4D are contoured on the 50% phase of 
4D CT images, which corresponds to maximum exhalation. The 50% phase volume, and the 
contours of the GTV and PTV4D are transferred to the CyberKnife system for Synchrony plan-
ning. Dose volume histograms (DVHs) for GTV, PTV4D and lung are calculated and compared 
between the linac-based and CyberKnife SBRT plans. 

A dose heterogeneity index (DHI) is introduced to numerically evaluate dose heterogeneity 
in target tumor. This index is defined as follows:

	 DHI=100 × (D20-D80)/Dprescription	                           (2)

where D20 and D80 represent the dose covering 20% and 80% of target volume, respectively, and 
Dprescription  is the prescription dose. According to the definitions of D20 and D80, D20 is always 
greater or equal to D80. Therefore a lower index reflects a smaller difference between the doses 
covering 20% and 80% of the target volume, and indicates better dose homogeneity. 

The equivalent path length method was applied in our current multiplan treatment planning 
system of CyberKnife for heterogeneous correction of lung treatment. This method corrects 
the density of lung without consideration of the heterogeneity with regard to lateral electron 
scatter. For comparison with CyberKnife plans, only primary photon fluence corrections were 
applied for lung heterogeneities in the Pinnacle plans. 
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III.	Res ults & DISCUSSION 

A.	T arget coverage 
Typical DVHs for the GTV, PTV4D and total lung (excluding the PTV4D) are shown in Fig. 2. 
While both linac and CyberKnife can provide enough dose coverage for target tumor, the target 
dose distributions of the two modalities have different characteristics. Specifically, the dose to 
the GTV in the CyberKnife plan is more heterogeneous than that of linac-based SBRT plans. 
Further investigation of the DHI in Table 2 shows that the average DHI of GTV is 8.71 (stan-
dard deviation of 1.87) for CyberKnife plans, which is statistically greater than 3.35 (standard 
deviation of 1.47) for linac-based SBRT. The maximum dose to the GTV is also greater for 
CyberKnife than for linac-based treatment. In contrast, there was no statistical difference in 
the DHI for PTV4D between these two modalities. 

Difference in delivery characteristics between the CyberKnife and linac systems can explain 
the differences in tumor dose distributions. The CyberKnfie system does not have a flatten-
ing filter. Therefore, the CyberKnife dose profiles are less flat than that of linac systems for a 

Fig. 1.  Diagram of study protocol. A 4D CT scanning is performed for all patients. A 3D conformal linac-based SBRT 
plan is designed on ITV and corresponding PTV3D. A deformable registration method is then applied to obtain the 4D 
cumulative dose distribution. GTV and PTV4D are contoured on the 50% phase of 4D CT images, which corresponds to 
the maximum exhalation. The 50% phase of 4D CT images and contour sets of GTV and PTV4D are sent to CyberKnife 
system for Synchrony planning. 
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given collimator size. Furthermore, to keep a balance between conformity and short treatment 
times, the cone size of CyberKnife was chosen as 60%~80% of smallest dimension of the 
PTV4D. In contrast, the linac-based system uses a beam aperture covering the entire PTV3D, 
which encompasses the tumor motion. Therefore, the linac-based plans employ a larger beam 
aperture than CyberKnife plans. Consequently, the linac-based dose profiles are much flatter 
than those from the CyberKnife. Additionally, the number of beams and beam directions used 
by the CyberKnife (100 ~ 150 beams) are much greater than that used in linac-based SBRT 
(7 ~ 10 beams). While this provides for high conformity in CyberKnife plans, it also increases 
the heterogeneity of resulting dose distribution. Conversely, the GTV dose distribution in linac-
based plans is more homogeneous than for CyberKnife plans.

For the PTV4D, the dose heterogeneity in proximity to the tumor-lung interface outweighs the 
impact of multiple unflattened beams used by CyberKnife. Accordingly, no statistical difference 
in the PTV4D DVIs was observed between both modalities.

Table 2. DHI of PTV4D and GTV and maximum point dose to GTV. 

		
DHI for PTV4D	 DHI for GTV

	 Maximum Point Dose
	Patient			   to GTV (Gy)

		  CyberKnife	 Linac	 CyberKnife	 Linac	 CyberKnife	 Linac

	 1	 11.94	 8.19	 10.09	 2.31	 78.2	 70.3
	 2	 7.86	 9.91	 9.01	 3.51	 72.4	 72.2
	 3	 12.13	 4.82	 5.93	 2.38	 74.3	 66.9
	 4	 9.84	 7.46	 11.28	 5.43	 75.2	 71.3
	 5	 9.08	 12.98	 6.24	 5.84	 73.3	 73.2
	 6	 14.1	 5.48	 8.36	 2.17	 77.1	 68.1
	 7	 9.98	 14.14	 8.62	 2.61	 73.3	 73.2
	 8	 10.77	 6.64	 10.13	 2.53	 76.2	 70.2

	 mean
	 ±std	 10.71±1.97	 8.70±3.40	 8.71±1.87	 3.35±1.47	 75.0±2.0	 70.7±2.3

Fig. 2.  A typical DVH of GTV, PTV4D and lung for CyberKnife and linac-based SBRT lung cancer treatment. The solid 
curves are the DVH for CyberKnife plan. The dash lines are the DVH for linac-based SBRT plan.
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The clinical relationship between tumor dose heterogeneity and tumor control in lung SBRT 
is poorly understood. While an earlier investigation suggested the dose heterogeneity generated 
by GammKnife radiosurgery may result in greater control of cranial tumors compared to 
linac-based stereotactic radiosurgery,(23) the conclusion has been disputed.(24) Certainly those 
results cannot be generalized to apply to lung SBRT. Therefore, if the dose coverage of the PTV 
meets the dose constraints presented in the literature,(3) no clinical difference between linac 
and CyberKnife SBRT can be predicted. Further investigation is expected to clarify what is the 
impact of the difference of dose heterogeneity found in our study to lung tumor control. 

Table 3 shows the RTOG conformity index,(25) defined as the ratio of the tissue volume 
receiving the prescription isodose or more to the tumor volume, for both modalities. It should 
be noted that although CyberKnife provided a more conformal dose to the target, the difference 
in conformity is due primarily to the smaller target volumes in CyberKnife treatment by robotic 
tumor tracking.

Table 3. Conformity index.

	
Patient

	 CI	 Tumor Position
		  CyberKnife	 Linac

	 1	 1.22	 2.14	 Anterior
	 2	 1.16	 1.38	 Anterior
	 3	 1.09	 1.89	 Middle
	 4	 1.21	 1.62	 Middle
	 5	 1.15	 1.27	 Posterior
	 6	 1.15	 1.62	 Posterior
	 7	 1.21	 1.44	 Posterior
	 8	 1.06	 1.80	 Posterior

	 mean
	 ±std	 1.16±0.06	 1.64±0.29	 —

B.	N ormal lung dose
Radiation-induced pneumonitis is the most common complication of lung tumor treatment. The 
probability and severity of this complication is highly dependent on the lung dose and irradiated 
volume. Various models and dose parameters, based largely on the existing clinical experience 
with conventional fractions, have been used to predict the probability of complications.(26) In 
estimating the likelihood of radiation-induced lung toxicity, the result of model-based predic-
tions is highly correlated with DVH characteristics.(27) Therefore, single point metrics such as 
V20, which is the percentage volume receiving the dose of 20 Gy or higher, may be used as 
a single factor to estimate lung complication for conventional lung treatment. However, lung 
toxicity from a dose of 20 Gy given in few fractions is not predicted by conventional models 
or metrics(19) and thus, it is unlikely that V20 can adequately represent the possibilities of lung 
complication of SBRT treatment. Lung toxicity following SBRT treatment is a subject of much 
discussion and interest. A recent study by Stephans et al.(28) has suggested that volume of normal 
lung within low dose region is associated with pulmonary function changes following SBRT. 
In the present study, we have used V20 as a metric in the high dose region, and the minimum 
dose to 1000 cm3 is used to characterize plan quality in low dose region. 

As shown in Table 4 and illustrated in Fig. 3, V20 is very similar between both modalities 
for all of the patients. Further investigation shows that V20 increases with increasing tumor 
volume for both modalities, and is strongly correlated with tumor volume and shape. It also 
indicates that both modalities can provide very similar conformal dose distributions around 
the target tumor.
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Table 4. V20 and minimal dose to 1000 cm3 lung.

		  	 V20
	 Minimal Dose to

	Patient	 VPTV4D		  1000 cm3 lung (Gy)	 Tumor Position

			   CyberKnife	 Linac	 CyberKnife	 Linac

	 1	 0.34%	 1.34%	 3.27%	 2.55	 5.77	 Anterior
	 2	 1.19%	 3.67%	 3.11%	 2.86	 4.28	 Anterior
	 3	 0.91%	 4.31%	 4.90%	 2.07	 2.35	 Middle
	 4	 4.75%	 16.32%	 13.37%	 8.36	 6.96	 Middle
	 5	 1.49%	 2.16%	 2.59%	 3.76	 2.30	 Posterior
	 6	 1.74%	 9.11%	 6.95%	 7.86	 4.10	 Posterior
	 7	 0.53%	 2.21%	 2.74%	 2.75	 2.91	 Posterior
	 8	 1.02%	 4.83%	 5.67%	 5.85	 4.00	 Posterior

	 mean
	 ±std	 1.5%±1.4%	 5.5%±5%	 5.3%±3.6%	 4.2±2.6	 3.8±1.6	 —

In the low dose region, both modalities also provided similar dose to 1000 cc lung for all 
of the patients (Table 4). However, tumor location is a more important factor in characteriz-
ing the lung dose distribution in this region. The present study shows that the lung dose from 
CyberKnife plans is more susceptible to the tumor location than that of linac-based SBRT 
plan. As illustrated in Fig. 4, when the tumor attaches to the anterior chest wall, CyberKnife 
may deliver less dose to the lung than Linac-based SBRT. When the tumor location is more 
posterior, the lung dose from CyberKnife plans/treatment can be significantly greater than that 
of Linac-based SBRT plans/treatments. For patients with tumor attached to the posterior chest 
wall, the low dose volume from CyberKnife delivery is significantly greater than from linac-
based delivery. Figure 5 shows the minimum dose to 1000 cm3 of lung for all the patients as a 
function of tumor location. The numerical results were given in Table 4. 

These observations are due to several characteristics which are different between the two 
modalities. First, a typical CyberKnife SBRT treatment plan uses many more beams (typically 
more than 100 in our practice) than linac-based SBRT treatment (7 to 10 beams). Second, limited 
by the accessible position of robotic arm, none of the CyberKnife beams can be delivered from 
underneath the patient. Therefore, while CyberKnife can deliver a more conformal dose to the 
tumor than Linac-based SBRT and less dose to the lung when the tumor is attached to anterior 
chest wall, the opposite is the case for posterior-located tumors.

Both modalities can provide a very conformal dose to the target tumor and spare the normal 
lung. Although the low dose to lung may be different between CyberKnife and linac-based SBRT 
due to the tumor location, the lung dose is well below institutional constrain for all patients 

Fig. 3.  V20 for CyberKnife and linac-based SBRT treatment grouped with tumor location.
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by both modalities. Therefore, applying different modalities in lung cancer treatment may not 
introduce dramatically different possibility of lung complication.

Fig. 4.  The impact of tumor location on DVH of CyberKnife and linac-based SBRT lung cancer treatment: lung tumors 
are shown in (a), (b) and (c); (d), (e) and (f) are the corresponding DVHs, respectively. 
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C.	 Whole body dose
One of the results of the present study is that the total number of monitor units needed to deliver 
similar prescription dose is significantly different between these two modalities. The small aper-
ture and unflattened beam profile limit the output of CyberKnife and increase the MU required 
to deliver similar dose to the target. For CyberKnife treatments, more than 25,000 monitor units 
were required, compared with 9000 to 15,000 monitor units required in linac-based SBRT. As 
a result, CyberKnife delivery may result in a higher whole body dose to the patients. This is 
supported by the results from an interinstitution phantom study by treating prostate and brain 
tumors using linac-based IMRT and CyberKnife.(29)

D.	U ncertainties for dose delivery 
There are several uncertainties that may impact the actual dose distribution delivered to the 
patient. These uncertainties include setup error and residual respiratory motion which can not 
be represented by 4D CT. Generally, both setup error and residual respiratory motion can be 
treated as two independent random error sources. Therefore, these uncertainties can be added 
in quadrature to determine the total uncertainty.

In our study, abdominal compression, which usually can reduce the patient tumor motion to 
less than 1 cm, is applied to all patients treated with linac-based SBRT. CT data are reconstructed 
with a slice thickness of 2 mm. Scans are acquired with an X-ray tube rotation time of 0.5 s. 
These parameters are close to those reported in the study by Rietzel et al.(30) who concluded 
that the accuracy of 4D CT images is one CT slice thickness. Although additional setup error 
may be introduced in the process of matching the CBCT to DRR generated by average image 
of 4D CT, the total uncertainties can be limited within few millimeters. Since the orthogonal 
X-ray images matched to DRRs are used to set up patients for CyberKnife treatments and the 
Synchrony system is applied to tumor tracking throughout the entire treatment, similar level 
of uncertainties can be expected in CyberKnife treatment.

By applying the modern IGRT techniques, the patients’ setup error and residual motion are 
limited to a few millimeters for both modalities. With the application of abdominal compression 
and the IGRT techniques described above, 5 millimeters GTV to PTV4D margin was adequate 
for providing acceptable compensation for setup error and residual breathing motion.

Fig. 5.  Minimal dose to 1000 cm3 lung for CyberKnife and linac-based SBRT treatment grouped with tumor location.
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E.	O ther treatment options for linac-based systems
Treatment techniques such as respiratory gating and IMRT may further reduce the irradi-
ated volume of normal lung in linac-based SBRT. Therefore, improved dosimetric result for 
linac-based SBRT treatment planning can be expected by applying these techniques. However, 
careful consideration should be made before applying these techniques.

The application of respiratory gating would increase delivery time by a factor of 3 or more 
over that of conventional delivery, depending on duty cycle of gating, the beam on and off 
effects, and patient compliance. Additional imaging may also be required during treatment to 
verify/confirm target location, further extending treatment time. Increases in delivery time may 
also negatively impact patient’s comfort, increase chances of patient movement and decrease 
patient throughput. A recent study of gating treatment for SBRT also concluded that if the tumor 
motion less than 15 mm, free breathing treatment is preferable.(31)

Although IMRT can improve dose conformity of linac-based treatment planning, respiratory 
motion may present considerable dose variation if IMRT is used.(32) Although this effect may 
average/blur out in treatments with many factions, for SBRT treatment with only few fractions, 
it may become significant. Treatment time will also be increased by applying IMRT technique 
in SBRT treatment. 

IV.	C onclusions

Both Linac and CyberKnife SBRT systems can provide adequate dose coverage for target 
tumor. While the CyberKnife may deliver less lung dose than linac-based systems for tumors 
close to the anterior chest wall, the converse is true for tumors located posteriorally. The 
magnitude of differences in lung dose between both modalities due to tumor position is 
relatively small. CyberKnife requires more MU to deliver similar target prescription to the 
tumor than linac SBRT systems. The results of this study may provide a general guideline for 
patient and treatment modality selection based on dosimetric, tumor control and normal tissue  
sparing considerations.
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