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Abstract

The effects of light-limitation stress were investigated in natural stands of the seagrasses Zostera marina and Cymodocea
nodosa in Ria Formosa coastal lagoon, southern Portugal. Three levels of light attenuation were imposed for 3 weeks in two
adjacent meadows (2–3 m depth), each dominated by one species. The response of photosynthesis to light was determined
with oxygen electrodes. Chlorophylls and carotenoids were determined by high-pressure liquid chromatography (HPLC).
Soluble protein, carbohydrates, malondialdehyde and phenol contents were also analysed. Both species showed evident
signs of photoacclimation. Their maximum photosynthetic rates were significantly reduced with shading. Ratios between
specific light harvesting carotenoids and the epoxidation state of xanthophyll cycle carotenoids revealed significantly higher
light harvesting efficiency of C. nodosa, a competitive advantage in a low light environment. The contents of both soluble
sugars and starch were considerably lower in Z. marina plants, particularly in the rhizomes, decreasing even further with
shading. The different carbohydrate energy storage strategies found between the two species clearly favour C. nodosa’s
resilience to light deprivation, a condition enhanced by its intrinsic arrangement of the pigment pool. On the other hand, Z.
marina revealed a lower tolerance to light reduction, mostly due to a less plastic arrangement of the pigment pool and
lower carbohydrate storage. Our findings indicate that Z. marina is close to a light-mediated ecophysiological threshold in
Ria Formosa.
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Introduction

Seagrasses are exhibiting important declines worldwide. These

are generally attributed to man-induced disturbances that lead to

eutrophication and siltation, which deteriorate the light environ-

ment for these plants [1], [2], [3]. However, the mechanistic

processes of physiological decline that ultimately lead to seagrass

losses are not yet clear, partially because seagrass light require-

ments are not well understood. Published literature addressing the

effects of light on seagrass photosynthesis has been recently

reviewed [4]. The authors concluded that, despite the several

published reports on the effects of light reduction on seagrass

photosynthesis, morphology, growth and survival, essential

knowledge on the underlying physiological mechanisms of light

harvesting and resource allocation is still missing. Added

constraints preventing generic assumptions for seagrasses are the

interspecific variety of ecological strategies, growth rates, morpho-

logical and photosynthetic plasticity, photoacclimation potential

and energy management strategies.

Following light reduction events, physiological responses are the

first to occur, preceding morphological changes and the eventual

biomass loss [5]. However, the type of response of different

seagrass species to light reduction and/or deprivation appears to

be highly related to specific morphology and leaf turnover rates

[4]. Whereas smaller and faster-growing species are able to

increase their leaf length or even replace them by new leaves, more

adapted to low-light conditions, larger and slow-growing species

must rely more on their capacity to adjust the photosynthetic

apparatus and regulate the processes of light acquisition and

energy conversion and storage. Adjustments in the photosynthetic

apparatus to low light usually involve an overall increase of total

chlorophyll and a reduction of the chlorophyll a:b ratio [6] as a

form of increasing photosynthetic efficiency, while the mobiliza-

tion of carbohydrate reserves, mostly from rhizomes, provides a

carbon source necessary to sustain growth [7], [5]. Ultimately,

dealing with light reduction is an energetic balance issue, as plants

try to optimize light energy harvesting while making the best

possible use of stored carbon energy. The result of this interplay

dictates the relative success with which seagrass species deal with

periods of light reduction.

Of critical importance to understanding the light harvesting

mechanism and its photoacclimation potential is detailed knowl-

edge of the photosynthetic pigment pool. Light harvesting systems

are able to adjust their operating efficiency to the light

environment, shifting from high efficiency when light is limiting

to photosynthesis, to lower efficiency when there is too much light.

The modulation of photosynthetic pigments and soluble protein

contents, as well as their balance, are part of this process and

contribute to attaining a proper equilibrium between the energy

input and output. In addition to chlorophyll a and b, the antennae

of light harvesting complexes of terrestrial plants contain

neoxanthin, lutein epoxide plus lutein and violaxanthin. Whereas

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e81058



chlorophyll a and b are always the main light capturing antennae

pigments, higher proportions of neoxanthin, lutein epoxide and

violaxanthin have been associated with more efficient light-

harvesting antennae, eventually becoming acclimated to shady

environments, and less prone to switch to the photoprotective

mode [8], [9], [10].

In seagrasses, however, the analysis of photosynthetic pigments

has so far been restricted to the quantification of chlorophylls and

total carotenoids, whereas detailed analysis of the photosynthetic

carotenoid pool has been scarce. Exceptions are [11], where the

authors screened extracts from four Mediterranean seagrass

species to identify the presence of the major photosynthetic

carotenoids, [12] with the description of the diel evolution of the

xanthophyll cycle pigments in Z. marina and [13], analysing the

depth dependence of several carotenoids in Posidonia sinuosa. Here

we present a comprehensive quantification of the photosynthetic

carotenoid pool of Cymodocea nodosa and Zostera marina, describing

the occurrence of seven photosynthetic carotenoids, with diverse

physiological functions, from light harvesting to photooxidation

prevention. Assessing the responses of the photosynthetic carot-

enoid pool to light reduction opens the way to further research

aiming a better understanding of how seagrasses respond to

transient or permanent shifts in their light environment, allowing a

more detailed insight of the photo-physiological processes under-

lying such responses.

The aim of this study was to compare the short-term

physiological responses of Z. marina and C. nodosa to different

levels of light reduction. Specific objectives were (i) to investigate

the effects of light reduction on the photosynthetic activity, (ii) to

evaluate changes in the composition of the photosynthetic

pigments pools and (iii) to examine the dynamics of carbohydrate

synthesis, allocation and use in the above- and below-ground

tissues.

Materials and Methods

Experimental design
No specific permissions were required to conduct the field

experiments nor to collect biological samples in Ria Formosa

coastal lagoon, according to the current national legislation. This

work did not involve any endangered or protected species.

Cymodocea nodosa and Zostera marina co-occur in the shallow

subtidal of Ria Formosa coastal lagoon (South Portugal, 37uN, 8u
W). Three levels of light attenuation were imposed in situ on both

Z. marina and C. nodosa growing in two adjacent meadows at

3 m depth on February 2011. Five square plots (1 m2) were

established per treatment using metallic structures covered with

PVC mesh to obtain 24, 40 and 75% light attenuation relatively to

ambient photosynthetic active radiation, PAR. Ambient PAR at

3 m depth reached maximum mid-day values of ca. 300 mmol

quanta m22s21, throughout the experiment duration. In the

shaded plots, maximum PAR was 228, 180 and 75 mmol quanta

m22s21 (respectively 24, 40 and 75% attenuation). The shade

screens were cleaned every two days to prevent fouling. The

shading treatments were imposed for 3 weeks, at the end of which

plant samples were collected for photosynthetic measurements and

biochemical analysis. Control plants were collected in the natural

meadows close to the shaded plots. Plants for biochemical analysis

were collected, brought under shade to the surface, immediately

cleaned of epiphytes, separated into leaves, rhizomes and roots,

dried from excess water with paper tissue and frozen in liquid

nitrogen. Plants for photosynthetic measurements were kept under

shade and immersed in seawater for transportation to the

laboratory, where they were kept overnight in a growth chamber,

set to emulate the in situ measured temperature (15uC).

Light response curves
The response of seagrass photosynthesis to the shading

treatments was evaluated through P-E curves, measured with an

oxygen electrode system (DW3/CB1, Hansatech, Norfolk, UK).

Actinic light was provided by a slide projector (Pradovit 150,

Leica, Germany) equipped with a halogen lamp (Osram Xenophot

150 W). A series of neutral density filters mounted on slide frames

were used to obtain different light intensities. For each P-E curve,

two leaf segments (2nd–3rd youngest leaves) of each replicate

(n = 5) of either Z. marina or C. nodosa were clipped and mounted

vertically side by side inside the measuring chamber for an even

exposure to the incident light. GF/F filtered seawater (35%) was

used in the reaction vessel. The incubation chamber was coupled

to a magnetic stirrer, which provided water homogenisation.

Water temperature was kept constant at 15uC, controlled by a

thermostatic circulator (Raypa, Spain). For each replicate curve,

10 light levels were applied sequentially, increasing from 5 to

875 mmol quanta m22s21 (PAR). Between light level exposures,

the water from the reaction vessel was replaced by new water from

the same original stock, previously brought to the measuring

temperature. This water renewal prevents both oxygen super-

saturation in the reaction chamber, with potential inhibitory

effects on photosynthesis, and also the occurrence of significant pH

drifts [14]. Each light level was imposed for approximately 8 min,

enough time to obtain a straight line in the oxygen recording

system, assumed as steady-state photosynthesis. P-E curves were

fitted with the model equation of Smith and Talling [15], [16].

P~Pm
aE

Pm2z aEð Þ2
� �1

2

2
664

3
775

in which E is the irradiance, a is the ascending slope at limiting

irradiances, and Pm is the maximum photosynthetic rate. Curves

were fitted iteratively using SigmaPlot 11.0 and the parameters Pm

and a as well as their standard error were estimated for a

confidence interval of 95%. The saturation irradiance, Ik, was

calculated as the ratio between the estimated Pm and a for each

treatment, incorporating error propagation.

Photosynthetic pigments
Photosynthetic pigments were extracted in 100 mg frozen leaf

samples ground in liquid nitrogen in the presence of sodium

ascorbate. Pigments where extracted with 5 mL 100% acetone

buffered with CaCO3 [17]. The extracts were sequentially filtered

with LS 5.0 mm membrane filters and hydrophobic PTFE 0.2 mm

filters, and stored in the dark at 220uC until analysis. The

extraction procedure took place under low light environment.

Chlorophyll a (Ca) and b (Cb) were quantified by spectrophoto-

metric absorbance reading, using the equations of Lichtenthaler

and Buschmann [18]. Carotenoids were analysed in an isocratic

High Performance Liquid Chromatography (HPLC), as described

in [19] after [20]. HPLC calibration [20] was done using

commercially available pigments (CaroteNature, Lupsingen,

Switzerland). Liquid chromatography analysis was performed in

an Alliance Waters 2695 separation module (Milford MA, USA),

with a Waters 2996 photodiode array detector and a Waters

Novapak C18 radial 86100 mm compression column (4 mm

particle size). 20 mL of extract were injected via an auto-sampler.

Shading Effects on Z. marina and C. nodosa
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During the injection period, extracts were maintained at 5uC and

the column was kept at a constant temperature of 24uC. All eluents

were prepared with HPLC grade solvents (VWR Hipersolv

Chromanorm), filtered and sonicated prior to use. Peak areas

were monitored at 450 nm and concentrations were calculated

based on peak areas obtained for standards at known concentra-

tions, calculated based on absorbance measured in a Beckman-

Coulter DU 650 spectrophotometer (Brea CA, USA). The

xanthophyll cycle epoxidation state (EPS) was calculated based

on violaxanthin (V) anteraxanthin (A) and zeaxanthin (Z) foliar

concentrations as in [21]: EPS = (V+0.5A)/(V+A+Z).

Soluble protein
Frozen leaf samples (150 mg each) were ground in 1.5 mL of

protein extraction buffer (100 mM Potassium phosphate, pH 7.8,

1 mM DTT, 1 mM PMSF, 2% (v/v) Triton-X). The extract was

centrifuged at 180006g for 2 min at 4uC and the supernatant was

collected. Soluble protein concentration was determined by a dye-

binding assay (Coomassie Brilliant Blue G-250 dye) [22], against a

Bovine Serum Albumin standard (BioRad).

Non-structural carbohydrates
Freeze-dried samples of leaves and rhizomes (n = 5, 10 mg DW

each) were ground to powder on a ball mill, extracted in ethanol at

80uC for 10 min. and centrifuged at 2000 g for 5 min. [23]. The

supernatant was collected and the pellet was ressuspended in

ethanol for additional extraction. This procedure was repeated a

third time to allow full extraction of soluble sugars (glucose,

sucrose and fructose). The supernatants from the three-step

extraction were mixed together and the amount of soluble sugars

was determined by a phenol-sulphuric assay [24] using glucose

standards. For starch quantification, the pellet was washed in

deionised water, centrifuged, ressuspended again in water

(repeated three times) and autoclaved for 15 min. Starch was

hydrolysed to glucose in the presence of an enzymatic complex

(14 U/ml amyloglucosidase and 1000 U/mg a-amylase per

sample) and determined as glucose equivalents following the

phenol-sulphuric assay described above.

Total phenols
Frozen leaf samples (ca. 200 mg fresh weight) were powdered in

liquid nitrogen and total phenols were extracted and quantified as

in [25], [26]. Extracts were suspended in 0.1 mol L21 HCl and

kept overnight at 4uC in the dark, under constant agitation.

Following centrifugation, 0.25 N Folin-Ciocalteu reagent and

7.5% Na2CO3 were added to the supernatant. Absorbance was

read at 724 nm in a Beckman Coulter DU-650 spectrophotometer

(Brea CA, USA), against a blank sample. The assay results were

expressed as chlorogenic acid equivalents.

Malondialdehyde (MDA)
For MDA extraction, ca. 300 mg of frozen leaf samples were

ground to powder in liquid nitrogen and suspended in 80%

aqueous ethanol. After centrifugation the supernatant was added

to a solution of 20% trichloroacetic acid (TCA) with 0.65%

thiobarbituric acid (TBA) and 0.015% butylated hydroxytoluene

(BHT). Two blanks were done either without TBA or with 80%

ethanol instead of sample extract. All samples and blanks reaction

mixtures were heated (90uC, 25 min), then cooled (ice bath,

15 min) and again centrifuged. Absorbances were read in the

supernatants at 532 nm, 600 nm and 440 nm using a Beckman

Coulter DU-650 spectrophotometer and MDA equivalents were

calculated as in [27].

Statistical analysis
All results are presented as mean values 6 standard error of

replicate samples (n = 5), except when noted differently. When not

stated otherwise, one or two way ANOVAs were applied to test

significant effects (p,0.05). Student-Newman-Keuls post-hoc

method was used to reveal significant differences between

individual means [28]. All data treatment and statistical analysis

was performed using the SigmaStat/SigmaPlot (SPSS Inc., v.11)

software package.

Results

Light response curves
The maximum photosynthetic rates of both Zostera marina and

Cymodocea nodosa were significantly reduced with the shading

treatment (Fig. 1 and Table 1). In Z. marina plants, reductions in Pm

increased with the shading level, with significant differences from

control to all the shading levels, with the 75% shading level

displaying the lowest Pm. In C. nodosa, all levels showed significant

differences in Pm relative to the control but not among them; the

plants under 75% shading were the exception, with significantly

higher Pm than 24% and 40% shading levels. With the exception

of the highest shading level, Z. marina Pm rates were always

significantly higher (three-fold or more) than those of C. nodosa.

The ascending slope at limiting PPFDs (a) decreased in Z. marina

from the control to all the shading levels, while in C. nodosa an

opposite trend was observed, with all the shading levels displaying

higher a values than control plants (Table 1). The saturation

irradiance (Ik) of Z. marina was not affected by shading, whereas in

C. nodosa it decreased at least four-fold from the control to all

shading levels, with no significant differences among these

(Table 1).

Photosynthetic pigments
The total chlorophyll/soluble protein ratio in Z. marina leaves

increased with shading (Fig. 2), up to 2.6 fold at the 75% shading

level. In C. nodosa, the ratio peaked at the 24% level, the only one

with a significant difference from the control. The ChlT/protein

ratio was higher in C. nodosa than in Z. marina, with significant

differences observed both in control and 40% shading levels.

In both species, the photosynthetic carotenoids neoxanthin,

lutein epoxide + lutein (LxL), violaxanthin and b –carotene

presented identical patterns of response to shading (Fig. 3 A–D). In

C. nodosa, none of these pigments showed a significant difference

among treatments, whereas in Z. marina their concentration

increased only at the 75% shading level, by a factor of 2.3 in

neoxanthin, LxL and violaxanthin and 1.8 in b – Carotene.

The epoxidation state (EPS) of Z. marina was lower than that of

C. nodosa in control plants and in those submitted to the two

lowest shading levels, being identical at the 75% treatment (Fig. 4).

The EPS index of Z. marina increased significantly at all levels,

whereas in C. nodosa it did not respond to the shading treatment.

Table 2 summarizes total chlorophyll contents and pigment

ratios that were not significantly affected by shading for both

species. Significant interspecific differences are indicated. The

average total chlorophyll content was nearly two-fold higher in C.

nodosa and the ratios of lutein epoxide per total chlorophyll and

per total VAZ pool were also 3.4 and 6.6 times higher,

respectively, than in Z. marina. The ratio of total VAZ per total

chlorophyll was two-fold higher in the later species.

Non-structural carbohydrates
Z. marina and C. nodosa control plants presented an identical level

of soluble sugars in the leaves and this level declined significantly

Shading Effects on Z. marina and C. nodosa
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with shading in both species (Fig. 5 A and B). However, C. nodosa

control plants had ca. 3.5 fold more soluble sugar stored in the

rhizomes than Z. marina and this high level was not affected by

shading. The rhizome sugar content of Z. marina decreased

between 70 and 85% in relation to control. In addition, Z. marina

and C. nodosa control leaves showed identical starch contents (Fig. 5

C and D), and in both species a decrease was only observed under

the highest shading level. In contrast, C. nodosa control plants had

nearly four-fold more starch stored in the rhizomes than Z. marina,

showing only a significant decrease at the highest shading level.

MDA and phenols
MDA foliar content was not significantly affected by shading in

C. nodosa whereas in Z. marina it showed a significant increase only

at 75% shading (Fig. 6 A). MDA values were always similar in

both species except at 75% shading. Total phenols increased with

shading in both species (Fig. 6 B). Z. marina plants always had

significantly higher phenol content than C. nodosa.

Discussion

Shading induced significant alterations in the photosynthetic

apparatus of both Zostera marina and Cymodocea nodosa, as revealed

Figure 1. Light response curves of Zostera marina and Cymodocea nodosa. Plants submitted to shading treatments of 24, 40 and 75% of
naturally available photosynthetically active radiation (CTRL). The model equation of Smith and Talling [15] [16] was adjusted to the observed points.
doi:10.1371/journal.pone.0081058.g001
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by the decrease of their photosynthetic activity (Fig. 1 and Table 1).

Both species showed a continuous, yet distinct, photoacclimatory

response. In Z. marina the maximum photosynthetic rate (Pm)

decreased with the shade levels, revealing a decreased capacity to

photosynthesize as well as a lower photosynthetic efficiency,

expressed by a reduction in the ascending slope of the light-limited

part of the P-E curve (a). As Pm and a decreased proportionally,

the saturation irradiance (Ik) didn’t change significantly with the

shading levels, In contrast, the decrease of Pm in C. nodosa was

accompanied by a significant increase of the photosynthetic

efficiency at low light intensities (a, resulting in a decrease (to less

than 20%) in Ik. The higher photosynthetic efficiency of C. nodosa

at low light intensities may even be amplified by its higher content

on total chlorophyll (Table 2), supporting the hypothesis that C.

nodosa is generally more able to deal with low light conditions than

Z. marina.

Both C. nodosa and Z. marina presented foliar chl a/b ratios below

2.5 (Table 2), values frequently attributed to shade leaves in

terrestrial plants [29]. Additionally, C. nodosa displayed higher Lx/

ChlT and Lx/VAZ ratios and lower VAZ/ChlT and b-car/ChlT

ratios than Z. marina. This is typical of shade acclimated leaves [30]

and points to a higher light harvesting efficiency, advantageous in

a low light environment where less excitation energy reaches the

reaction centres, which become underused unless the light capture

capacity is enhanced. However, in an apparent contradiction, C.

nodosa control plants presented significantly lower photosynthetic

efficiency than Z. marina. This might be explained by potentially

higher rates of oxygen consuming processes such as photorespi-

ration, Mehler reaction, cellular respiration, chlororespiration and

mitochondrial alternative oxidase pathway [31], [32], [33], [34] in

non-shaded C. nodosa plants. Some of these processes, namely

photorespiration, Mehler reaction and cellular respiration, also

produce reactive oxygen species (ROS) [35], which induce the

peroxidation of cellular membrane lipids and lead to the

production of malondialdehyde (MDA) [36]. Thus, higher rates of

those metabolic pathways should be reflected on higher MDA

values in C. nodosa, particularly in control plants. As well, assuming

that the rate of those metabolic pathways would decrease with

shade, so would the MDA content. This decrease of oxygen

consuming processes with shade would be in line with the increase

of the photosynthetic efficiency (a). However, there were no

differences on the MDA content of C. nodosa plants under the

different shading treatments (Fig. 6 A), meaning that either there

was no change on the amount of ROS production or, most likely,

there was an efficient ROS scavenging machinery operating in

control plants and keeping ROS below the limit from which they

cause significant oxidative stress. In Z. marina the intensification of

shading was followed by the increment on oxidative stress, which

reached its maximum at 75% shading level (Fig. 6 A). In this

species the increment on oxidative stress was accompanied by a

significant decrease on photosynthetic efficiency (a, which could

be related to the up regulation of O2 consuming biochemical

pathways. Unlike C. nodosa, Z. marina is reported to have

photorespiration [37], but the up regulation of photorespiration,

Mehler reaction and chlororespiration is commonly related with

high light intensities and/or temperature stress, but not with

shading. Nonetheless, an increment on oxidative stress in the

aquatic macrophyte Potamogeton crispus was attributed to the

unbalance of C-N metabolism under low light [38]. This kind of

mechanism could be simultaneously responsible for the increase of

oxidative stress in Z. marina, and for the maintenance of the MDA

levels in C. nodosa. Plant phenolic compounds are carbon based

and are believed to act as antioxidants [39] [40]. The likely

decrease in O2-consuming metabolic pathways together with the

increase on leaf phenols seems to have contributed to the

maintenance of MDA concentrations in shaded C. nodosa plants.

In Z. marina, the increase on total phenols was not enough to

prevent oxidative stress, which in turn may be related to the

decrease of a with shading, since ROS are known to decrease the

rate of repair of photosystem II [41]. Leaf total phenols were

always higher in Z. marina then in C. nodosa, probably due to

constitutive differences between the two species.

Table 1. Photosynthetic parameters obtained from the
adjustment of the model equation of Smith and Talling [15]
[16] to the observed P-E data for Zostera marina and
Cymodocea nodosa.

Shading treatment Pm a Ik r2

Z. marina

CTRL 6.06*a60.19 0.0498*a60.0038 121.71610.06 0.90

24% 3.18*c60.09 0.0253*b60.0017 125.66*69.17 0.91

40% 3.75*b60.14 0.0321b60.0029 116.74*611.43 0.88

75% 1.01d60.06 0.0091c60.0013 111.51617.28 0.76

C. nodosa

CTRL 1.47a60.09 0.004b60.0003 397.68*a640.08 0.93

24% 0.77c60.04 0.0113b60.0016 68.34b610.26 0.62

40% 0.65c60.03 0.0236a60.0039 27.49b64.68 0.58

75% 1.03b60.06 0.0142ab60.0023 72.15b612.40 0.50

Zostera marina and Cymodocea nodosa plants submitted to shading treatments
of 24, 40 and 75% of naturally available photosynthetically active radiation
(CTRL). Values are means 6 se (n = 5, p,0.001). Pm is the maximum
photosynthetic rate (mg O2 mmol ChlT21h21), a is the ascending slope of the
light response curves at limiting PPFDs (mg O2 mmol ChlT21h21 (mmol quanta
m22s21)21), Ik is the saturation irradiance (mmol quanta m22s21) and r2 is the
coefficient of determination of the model adjustment to the data. Different
letters indicate significant differences between treatments,
*indicates differences between species (p,0.05).
doi:10.1371/journal.pone.0081058.t001

Figure 2. Total chlorophyll to soluble protein ratio (ChlT/
Protein) in leaves of Zostera marina and Cymodocea nodosa.
Plants submitted to shading treatments of 24, 40 and 75% of naturally
available photosynthetically active radiation (CTRL). Different letters
indicate significant differences between treatments, * indicates
differences between species (n = 5, p,0.05).
doi:10.1371/journal.pone.0081058.g002
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While C. nodosa displayed a pigment content typical of shade

acclimated leaves [30], regardless of the shading level, the

photosynthetic apparatus of Z. marina tended to acclimate as

shading levels increased. Nevertheless it was only at the 75%

shading level that significant increases of the neoxanthin, lutein

pool, violaxanthin and b-carotene foliar contents (Figs. 2 and 3)

were detected in Z. marina. Although most pigment content and

ratios were higher in C. nodosa regardless of light treatment (Table 2

and Fig. 3), this difference was attenuated by the increment on Z.

marina photosynthetic pigments as shade treatment increased

(Fig. 3). The foliar concentrations of b-carotene and of the

xanthophylls neoxanthin, lutein epoxide plus lutein (LxL), and

violaxanthin were always significantly higher in control C. nodosa

plants (Fig. 3), being neoxanthin and LxL foliar contents similar to

the median values found in several shade leaves of different species

[30]. The xanthophylls violaxanthin, neoxanthin and Lx have

been associated to a more stable and efficient structure of the

LHCII, thus contributing to more efficient light harvesting and

transmission of excitation energy to chlorophyll a [9] [10] [42]

[43] [44]. b-carotene is a precursor of xanthophylls [45] and its

increment in Z. marina leaves in response to the highest level of

shading might be related with the need for neoxanthin and

Figure 3. Foliar content of photosynthetic pigments in Zostera
marina and Cymodocea nodosa. Plants submitted to shading
treatments of 24, 40 and 75% of naturally available photosynthetically
active radiation (CTRL). A- Neoxantin, B - Lutein plus Lutein epoxide
(LXL), C -Violaxanthin, D –b-Carotene. Different letters indicate
significant differences between treatments, * indicates differences
between species (n = 5, p,0.05).
doi:10.1371/journal.pone.0081058.g003

Figure 4. Epoxidation state of xanthophyll cycle pigments [EPS
= (V + 0.5A)/(V+A+Z)] in Zostera marina and Cymodocea nodosa.
Plants submitted to shading treatments of 24, 40 and 75% of naturally
available photosynthetically active radiation (CTRL). Different letters
indicate significant differences between treatments, * indicates
differences between species (n = 5, p,0.05).
doi:10.1371/journal.pone.0081058.g004

Table 2. Photosynthetic pigment contents and ratios in
leaves of Zostera marina and Cymodocea nodosa.

Z. marina C. nodosa

Chl T (mmol g DW21) 2.3160.21 4.41*60.34

Chl a/b (mmol/mmol) 2.3060.05 2.42*60.03

L/Chl T (mmol/mol) 121.9068.85 125.70611.71

Lx/Chl T (mmol/mol) 2.0360.37 6.95*60.75

Lx/VAZ (mmol/mol) 0.02460.004 0.160*60.011

VAZ/Chl T (mmol/mol) 88.266.5 42.3*63.0

b-car/Chl T (mmol/mol) 107.667.4 92.368.3

Values are means 6 se (n = 20, p,0.001). Chl T = total chlorophyll, Chl a/b =
chlorophyll a to chlorophyll b ratio, L = lutein, Lx = lutein epoxide, VAZ = sum
of violaxanthin, antheraxanthin and zeaxanthin, b-car = b-carotene.
*indicates significant differences between species.
doi:10.1371/journal.pone.0081058.t002
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violaxanthin synthesis. On the other hand the difference in the

LxL content between the two species resulted mainly from the

difference in the lutein epoxide (Lx) content, which was

significantly higher in C. nodosa, both on a total chlorophyll and

on a xanthophyll cycle pigments basis (data not shown). The

epoxidation state (EPS = (V + 0.5A)/VAZ) reflects the proportion

of the VAZ cycle pigments that resulted from the epoxidation of

zeaxanthin [21]. Shading did not induce any alteration in C. nodosa

EPS but this index increased significantly in Z. marina (Fig. 4),

mainly due to the significant increase in violaxanthin. At the 75%

shading level, the foliar concentration of violaxanthin was

significantly higher in Z. marina than in C. nodosa, whose

violaxanthin levels were unaffected by the shading treatments.

These pigment data indicate that C. nodosa has a constitutively

higher efficiency on light processing at the antennae level when

compared to Z. marina, which changed its pigment contents to

acquire a better capacity to use light as shading increased.

The epoxidation of zeaxanthin to violaxanthin is an O2

and energy consuming process [46]. Thus the epoxidation of

zeaxanthin to violaxanthin may also contribute to lower

photosynthetic efficiency and competes with other metabolic

processes for energy, adding yet another disadvantage for Z. marina

under low light conditions.

Zostera marina is a shallow growing species, most likely due to its

relatively high light requirement [23]. In Ria Formosa, these

plants grow in their southern distribution limit in Europe, where

the high summer temperatures lead to increased respiratory rates

and the plant carbon balance may be negative, as is the case in the

east American coast [47]. On the other hand, winter conditions of

increased turbidity reduce the available light and require an

efficient photoacclimation as a condition to maintain a positive

carbon balance. Z. marina has been previously reported as being

able to photoacclimate to low irradiance levels under summer

conditions [48] and in a much lesser degree also during winter

periods, where it is much more vulnerable [49]. In this study,

whereas some photoacclimation effort was evidenced, namely in

the adjustment of the photosynthetic rates and the pigments pool,

it appears that the crucial factor playing against Z. marina was its

carbon allocation strategy.Under reduced light conditions, sea-

grasses mobilize stored carbohydrates to maintain metabolic

Figure 5. Soluble sugars (A and B) and starch (C and D) content in leaves and rhizomes of Zostera marina (A, C) and Cymodocea
nodosa (B, D). Plants submitted to shading treatments of 24, 40 and 75% of naturally available photosynthetically active radiation (CTRL). Different
letters indicate significant differences between treatments, * indicates differences between leaves and rhizomes (n = 5, p,0.05).
doi:10.1371/journal.pone.0081058.g005
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processes [7]. Our data show that Z. marina, while normally

maintaining leaf soluble sugar levels identical to C. nodosa, had ca.

3.5 fold less sugars stored in the rhizomes (control plants data).

Furthermore, while [50], [23] reported higher (up to 10 times)

soluble sugar contents in the rhizomes than in the leaves of Z.

marina, in our study rhizomes had only ca. 1.6 times more sugar

than leaves, in control plants. After shading, sugar levels were

always significantly lower in rhizomes than in leaves, indicating a

severe degradation of the energy storage conditions. Finally, the

absolute values of soluble sugars determined in this study for both

leaves and rhizomes were 4 to 6 times lower than those found in

Californian populations of Z. marina by [49]. Similarly lower values

were reported by [23] for plants collected in the southern

distribution limit of this species in the east American coast, which

corroborates the idea that Z. marina’s apparent limited flexibility to

allocate and use carbohydrate reserves is greatly evidenced closer

to its southern distribution limits. Relatively low starch values also

appear to be characteristic of this species [47], [23], probably as

means of saving inter-conversion energy and maintaining a more

readily available energy source. The fact is that in this study no

rhizome starch mobilization was observed after the shading

treatment. On the other hand, C. nodosa showed only some

decrease in the leaf sugar content in response to shading and the

rhizome pool was not affected. The leaf and rhizome starch

contents only declined following the most severe level of the

shading treatment.

The different carbohydrate energy storage strategies shown

between C. nodosa and Z. marina clearly favour C. nodosa’s resilience

to light deprivation. This C. nodosa’s carbohydrate storage strategy

is also likely to be beneficial in response to other environmental

disturbances, besides being effective in coping with light reduction.

For example, it has been shown that C. nodosa is highly resilient to

disturbances such as burial and transplanting [51], [52], [53].

Although the effects of the different shading levels are noticeable

in some aspects, what emerges as the most striking outcome of this

experiment is the remarkable difference between the strategies

adopted by the two species in dealing with a short-term decline in

light availability. This difference configures C. nodosa as a more

resilient species to transient light attenuation periods, mostly due

to its constitutive arrangement of the pigment pool and to its

carbohydrate storage and allocation strategy. On the other hand,

Z. marina revealed a lower tolerance to light reduction, mostly due

to a higher energy-requiring re-arrangement of the pigment pool

under low-light conditions and also to a less effective strategy of

carbohydrate storage and use.

The results suggest that Z. marina is close to a light mediated

ecophysiological threshold in Ria Formosa, with only a short

margin to deal with transient changes in light availability, which

are common in a costal system such as Ria Formosa lagoon. Thus,

potentially increasing disturbances in the light environment of the

lagoon can only further contribute to its decline. On the other

hand, our results also indicate that this kind of experimental

approach can be a useful tool to investigate interspecific

competition processes from the ecophysiological point of view,

particularly as it allows some degree of trend prediction based on

the specific photophysiological characteristics and acclimation

potential of target species.
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