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Abstract

Motivation: Biological knowledge is widely represented in the form of ontology-based annotations:

ontologies describe the phenomena assumed to exist within a domain, and the annotations associ-

ate a (kind of) biological entity with a set of phenomena within the domain. The structure and infor-

mation contained in ontologies and their annotations make them valuable for developing machine

learning, data analysis and knowledge extraction algorithms; notably, semantic similarity is widely

used to identify relations between biological entities, and ontology-based annotations are frequent-

ly used as features in machine learning applications.

Results: We propose the Onto2Vec method, an approach to learn feature vectors for biological enti-

ties based on their annotations to biomedical ontologies. Our method can be applied to a wide

range of bioinformatics research problems such as similarity-based prediction of interactions be-

tween proteins, classification of interaction types using supervised learning, or clustering. To

evaluate Onto2Vec, we use the gene ontology (GO) and jointly produce dense vector representa-

tions of proteins, the GO classes to which they are annotated, and the axioms in GO that constrain

these classes. First, we demonstrate that Onto2Vec-generated feature vectors can significantly im-

prove prediction of protein–protein interactions in human and yeast. We then illustrate how

Onto2Vec representations provide the means for constructing data-driven, trainable semantic simi-

larity measures that can be used to identify particular relations between proteins. Finally, we use

an unsupervised clustering approach to identify protein families based on their Enzyme

Commission numbers. Our results demonstrate that Onto2Vec can generate high quality feature

vectors from biological entities and ontologies. Onto2Vec has the potential to significantly outper-

form the state-of-the-art in several predictive applications in which ontologies are involved.

Availability and implementation: https://github.com/bio-ontology-research-group/onto2vec

Contact: xin.gao@kaust.edu.sa or robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological knowledge is available across a large number of resources

and in several formats. These resources capture different and often

complementary aspects of biological phenomena. Over the years,

researchers have been working on representing this knowledge in a

more structured and formal way by creating biomedical ontologies

(Bodenreider, 2008). Ontologies provide the means to formally

structure the classes and relations within a domain and are now

employed by a wide range of biological databases, webservices and

file formats to provide semantic metadata (Hoehndorf et al., 2015).

Notably, ontologies are used for the annotation of biological

entities such as genomic variants, genes and gene products or chemi-

cals, to classify their biological activities and associations (Smith

et al., 2007). An annotation is an association of a biological entity

(or a class of biological entities) and one or more classes from an

ontology, usually together with meta-data about the source and evi-

dence for the association, the author and so on (Hill et al., 2008).

Due to the wide-spread use of ontologies, several methods

have been developed to utilize the information in ontologies for data

analysis (Hoehndorf et al., 2015). In particular, a wide range of
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semantic similarity measures has been developed (Pesquita et al.,

2009) and applied to the similarity-based analysis of ontologies and

entities annotated with them. Semantic similarity is a measure

defined over an ontology and can be used to measure the similarity

between two or more ontology classes, sets of classes or entities

annotated with sets of ontology classes.

Semantic similarity measures can be classified into different types

depending on how annotations (or instances) of ontology classes are

incorporated or weighted, and the type of information from an

ontology that is used to determine the similarity (Harispe et al.,

2015; Pesquita et al., 2009). Most similarity measures treat ontolo-

gies as graphs in which nodes represent classes and edges an axiom

involving the connected classes (Harispe et al., 2015; Pesquita et al.,

2009). However, not all the axioms in an ontology can naturally be

represented as graphs (Hoehndorf et al., 2010; Rodrı́guez-Garcı́a

and Hoehndorf, 2018; Smith et al., 2005). A possible alternative

may be to consider all axioms in an ontology when computing se-

mantic similarity; the challenge is to determine how each axiom

should contribute to determine similarity beyond merely considering

their syntactic similarity.

In addition to similarity-based analysis, ontology-based annota-

tions are frequently used in machine learning approaches. Ontology-

based annotations can be encoded as binary vectors representing

whether or not an entity is associated with a particular class, and the

semantic content in ontologies (i.e. the subclass hierarchy) can be

used to generate ‘semantically closed’ feature vectors (Sokolov et al.,

2013). Alternatively, the output of semantic similarity measures is

widely used as features for machine learning applications, for ex-

ample, in drug repurposing systems (Gottlieb et al., 2011) or identi-

fication of causative genomic variants (Boudellioua et al., 2017;

Robinson et al., 2014). These approaches have in common that the

features generated through them contain no explicit information

about the structure of the ontology and therefore of the dependen-

cies between the different features; these dependencies are therefore

no longer available as features for a machine learning algorithm. In

the case of semantic similarity measures, the information in the

ontology is used to define the similarity, but the information used to

define the similarity is subsequently reduced to a single point (the

similarity value); in the case of binary feature vectors, the ontology

structure is used to generate the values of the feature vector but is

subsequently no longer present or available to a machine learning al-

gorithm. Feature vectors that explicitly encode for both the ontology

structure and an entity’s annotations would contain more informa-

tion than either information alone and may perform significantly

better in machine learning applications than alternative approaches.

Finally, semantic similarity measures are generally hand-crafted,

i.e. they are designed by an expert based on a set of assumptions

about how an ontology is used and what should constitute a similar-

ity. However, depending on the application of semantic similarity,

different features may be more or less relevant to define the notion

of similarity. It has previously been observed that different similarity

measures perform well on some datasets and tasks and worse on

others (Kulmanov and Hoehndorf, 2017; Lord et al., 2003; Pesquita

et al., 2008a, 2009), without any measure showing clear superiority

across multiple tasks. One possible way to define a common similar-

ity measure that performs equally well on multiple tasks may be to

establish a way to train a semantic similarity measure in a data-

driven way. While this is not always possible due to the absence of

training data, when a set of desired outcomes (i.e. labeled data

points) are available, such an approach may result in better and

more intuitive similarity measures than hand-crafted ones.

We develop Onto2Vec, a novel method to jointly produce dense

vector representations of biological entities, their ontology-based

annotations and the ontology structure used for annotations. We

apply our method to the gene ontology (GO) (Ashburner et al.,

2000) and generate dense vector representations of proteins and

their GO annotations. We demonstrate that Onto2Vec generates

vectors that can outperform traditional semantic similarity measures

in the task of similarity-based prediction of protein–protein

interactions; we also show how to use Onto2Vec to train a semantic

similarity measure in a data-driven way and use this to predict

protein–protein interactions and distinguish between the types of

interactions. We further apply Onto2Vec-generated vectors to clus-

tering and show that the generated clusters reproduce Enzyme

Commission numbers of proteins. The Onto2Vec method is generic

and can be applied to any set of entities and their ontology-based

annotations, and we make our implementation freely available at

https://github.com/bio-ontology-research-group/onto2vec.

2 Results

2.1 Onto2Vec
We developed Onto2Vec, a method to learn dense, vector-based

representations of classes in ontologies, and the biological entities

annotated with classes from ontologies. To generate the vector rep-

resentations, we combined symbolic inference (i.e. automated rea-

soning) and statistical representation learning. We first generated

vector-based representations of the classes in an ontology and then

extended our result to generate representations of biological entities

annotated with these classes. The vector-based representations gen-

erated by Onto2Vec provide the foundation for machine learning

and data analytics applications, including semantic similarity

applications.

Our main contribution with Onto2Vec is a method to learn a

representation of individual classes (and other entities) in an ontol-

ogy, taking into account all the axioms in an ontology that may con-

tribute to the semantics of a class, either directly or indirectly.

Onto2Vec uses an ontology O in the OWL format and applies the

HermiT OWL reasoner (Shearer et al., 2008) to infer new logical

axioms, i.e. equivalent class axioms, subclass axioms and disjoint-

ness axioms (for technical details on automated reasoning, see

Section 5.2). As an example, if axiom A SubClassOf B and axiom B

SubClassOf C both occur in the original set of ontology axioms, the

reasoner can infer axiom A SubClassOfC, which correctly describes

the ontology, but does not exist in the initial set of the ontology axi-

oms. We call the union of the set of axioms in O and the set of

inferred axioms the deductive closure of O, designated O‘. In con-

trast to treating ontologies as taxonomies or graph-based structures

(Rodrı́guez-Garcı́a and Hoehndorf, 2018), we assume that every

axiom in O (and consequently in O‘) constitutes a sentence, and the

set of axiom in O (and O‘) a corpus of sentences. The vocabulary of

this corpus consists of the classes and relations that occur in O and

the keywords used to formulate the OWL axioms (Grau et al., 2008;

W3C OWL Working Group, 2009). Onto2Vec then uses a skip-

gram model to learn a representation of each word that occurs in

the corpus. The representation of a word in the vocabulary (and

therefore of a class or property in O) is a vector that is predictive of

words occurring within a context window Mikolov et al. (2013a,b)

(see Section 5.3 for details).

Onto2Vec can also be used to learn vector-based representations

of biological entities that use ontologies for annotation and combine

information about the entities’ annotations and the semantics of the
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classes used in the annotation in a single representation. Trivially,

since Onto2Vec can generate representations of single classes in an

ontology, an entity annotated with n classes, C1; . . . ;Cn, can be rep-

resented as a (linear) combination of the vector representations of

these classes. For example, if an entity e is annotated with C1 and

C2, and � C1ð Þ and � C2ð Þ are the representations of C1 and C2 gener-

ated through Onto2Vec, we can use � C1ð Þ þ � C2ð Þ as a representa-

tion of e. Alternatively, we can use Onto2Vec directly to generate a

representation of e by extending the axioms in O with additional

axioms that explicitly capture the semantics of the annotation. If O0

is the ontology generated from annotations of e by adding new axi-

oms capturing the semantics of the annotation relation to O, then e

is a new class or instance in O0 for which Onto2Vec will generate a

representation (since e will become a word in the corpus of axioms

generated from O0‘).
As comprehensive use case, we applied our method to the GO and

to a joint knowledge base consisting of GO and proteins with manual

GO annotations obtained from the UniProt database. To generate the

latter knowledge base, we added proteins as new entities and con-

nected them using a has-function relation to their functions. We

then applied Onto2Vec to generate vector representations for each

class in GO (using a corpus based only on the axioms in GO) and fur-

ther generate joint representations of proteins and GO classes (using a

corpus based on the axioms in GO and proteins and their annota-

tions). We further generated protein representations by combining

(i.e. adding) the GO class vectors of the proteins’ GO annotations (i.e.

if a protein p is annotated to C1; . . . ;Cn and � C1ð Þ; . . . ; � C2ð Þ are the

Onto2Vec-vectors generated for C1; . . . ;Cn, we define the representa-

tion � pð Þ of p as � pð Þ ¼ � C1ð Þ þ � � � þ � Cnð Þ). In total, we generated

556 388 vectors representing proteins (each protein is represented

three times, either as a set of GO class vectors, the sum of GO class

vectors or a vector jointly generated from representing has-function

relations in our knowledge base), and 43 828 vectors representing

GO classes. Figure 1 illustrates the main Onto2Vec workflow to

construct ontology-based vector representations of classes and enti-

ties. A heatmap illustrating the protein representation vectors gener-

ated by Onto2Vec is available in the Supplementary Material.

2.2 Similarity-based prediction of biological relations
We applied the vectors generated for proteins and GO classes to the

prediction of protein-protein interactions (PPIs) by functional,

semantic similarity. As a first experiment, we evaluated the accuracy

of Onto2Vec in predicting protein–protein interactions. For this pur-

pose, we generated several representations of proteins: first, we used

Onto2Vec to learn representations of proteins jointly with represen-

tations of GO classes by adding proteins and their annotations to

the GO using the has-function relations; second, we represented

proteins as the sum of the vectors representing the classes to which

they are annotated; and third, we represented proteins as the set of

classes to which they are annotated.

We used cosine similarity to determine the similarity between

vectors. To compare sets of vectors (representing GO classes) to

each other, we used the best match average (BMA) approach

(Pesquita et al., 2009), where pairs of vectors are compared using

cosine similarity. We term the approach in which we compared vec-

tors generated from adding proteins to our knowledge base

Onto2Vec; Onto_AddVec when using cosine similarity between pro-

tein vectors generated by adding the vectors of the GO classes to

which they annotated; and Onto_BMA when using the BMA ap-

proach to compare sets of GO classes. To compare the different

approaches for using Onto2Vec to the established baseline methods,

we further applied the Resnik’s semantic similarity measure (Resnik

et al., 1999) with the BMA approach, and we generated sparse bin-

ary vector representations from proteins’ GO annotations (Sokolov

et al., 2013) and compared them using cosine similarity (termed

Binary_GO). In addition to Resnik, we also compare to three add-

itional semantic similarity measures: Lin’s measure (Lin et al., 1998)

and Jiang andConrath’s measure (Jiang and Conrath, 1997) com-

bined with the BMA approach as well as the sim GIC’s similarity

measure (Pesquita et al., 2008b). Furthermore, to evaluate the con-

tribution of using an automated reasoner to infer axioms, we also

included the results of using the Onto2Vec approach without apply-

ing a reasoner. The similarity measures we employed are formally

described in Section 5.4.

We evaluated the performance of our method using protein–pro-

tein interaction datasets in two species, human (Homo sapiens) and

baker’s yeast (Saccharomyces cerevisiae). Figure 2 shows the ROC

curves obtained for each approach on the human and the yeast data-

sets; the area under the ROC curve (ROCAUC) values are shown in

Table 1 (for details on how the evaluation was performed, see

Section 5.6). With the exception of Resnik’s measure, we found that

the other semantic similarity measures perform worse than the

Fig. 1. Onto2Vec Workflow. The blue-shaded part illustrates the steps to obtain vector representation for classes from the ontology. The purple-shaded part

shows the steps to obtain vector representations of ontology classes and the entities annotated to these classes

i54 F.Z.Smaili et al.

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty259#supplementary-data
Deleted Text: -
Deleted Text: B
Deleted Text: M
Deleted Text: A
Deleted Text: &hx0026;
Deleted Text: <sub>-</sub>
Deleted Text: <italic>H.</italic> 
Deleted Text: <italic>S.</italic> 


Onto2Vec model. Therefore, for the sake of conciseness, we do only

report the ROC curve of Resnik and not the other three measures.

However, the ROCAUC values of all measures are reported in

Table 1. We found that Resnik’s semantic similarity measure per-

forms better than all other methods we evaluated, and that the

Onto2Vec representation based on generating representations joint-

ly from proteins and GO classes performs second best. These results

demonstrate that Resnik’s semantic similarity measure, which deter-

mines similarity based on the information content (IC) of ontology

classes and the ontology structure, is better suited for this applica-

tion than our Onto2Vec representations using cosine similarity.

However, a key feature of Onto2Vec representations is their

ability to encode for annotations and the ontology structure; while

cosine similarity (and the derived measures) can determine whether

two proteins are similar, certain classes and axioms may contribute

more to predicting protein–protein interactions than others. To test

whether we can use the information in Onto2Vec representations in

such a way, we used supervised machine learning to train a similar-

ity measure that is predictive of protein–protein interactions. To this

end, we used three different machine learning methods, logistic re-

gression, support vector machines (SVMs) and neural networks (see

Section 5.5 for details). To obtain a baseline comparison, we also

trained each model using the Binary_GO protein representations.

Each model uses a pair of protein vectors as inputs and is trained

to predict whether the proteins provided as input interact or not.

Each supervised model also outputs intermediate confidence values

and can therefore be considered to output a form of similarity.

The ROC curves of all trained models using the Onto2Vec and bin-

ary representations of proteins are shown in Figure 3, and their

ROCAUC values are reported in Table 1. We observed that the

supervised models (i.e., the “trained” semantic similarity measures)

using Onto2Vec protein representations outperform the use of pre-

defined similarity measures in all experiments; while logistic regres-

sion performs comparable to Resnik semantic similarity, both SVMs

and artificial neural networks (ANNs) can learn similarity measures

that predict protein–protein interactions significantly better than

any pre-defined similarity measure. Onto2Vec representations fur-

ther outperform the sparse binary representations of protein func-

tions, indicating that the combination of annotations and ontology

axioms indeed results in improved predictive performance.

We further tested whether the supervised models (i.e. the trained

semantic similarity measures) can be used as similarity measures so

that higher similarity values represent more confidence in the exist-

ence of an interaction. We used the confidence scores associated

with protein–protein interactions in the STRING database and

determined the correlation between the prediction score of our

trained models and the confidence score in STRING. Table 2 sum-

marizes the Spearman correlation coefficients for each of the meth-

ods we evaluated. We found that our trained similarity measures

correlate more strongly with the confidence measures provided by

STRING than other methods, thereby providing further evidence

that Onto2Vec representations encode useful information that is

predictive of protein–protein interactions.

Finally, we trained our models to separate protein–protein inter-

actions into different interaction types, as classified by the STRING

database: reaction, activation, binding and catalysis. For compari-

son, we also reported results when using sparse binary representa-

tions of proteins in the supervised models, and we reported Resnik

semantic similarity and Onto2Vec similarity results (using cosine

Fig. 2. ROC curves for PPI prediction for the unsupervised learning methods

Table 1. AUC values of ROC curves for PPI prediction

Yeast Human

Resnik 0.7942 0.7891

Lin 0.7354 0.7222

Jiang and Conrath 0.7108 0.7027

sim GIC 0.7634 0.7594

Onto2Vec 0.7701 0.7614

Onto2Vec NoReasoner 0.7439 0.7385

Binary GO 0.6912 0.6712

Onto_BMA 0.6741 0.6470

Onto_AddVec 0.7139 0.7093

Onto2Vec LR 0.7959 0.7785

Onto2Vec SVM 0.8586 0.8621

Onto2Vec NN 0.8869 0.8931

Binary GO LR 0.7009 0.7785

Binary GO SVM 0.8253 0.8068

Binary GO NN 0.7662 0.7064

Note: The best AUC value among all methods is shown in bold. Resnik,

Lin, Jiang and Conrath and sim_GIC are semantic similarity measures;

Onto2Vec is our method in which protein and ontology class representations

are learned jointly from a single knowledgebase which is deductively closed;

Onto2Vec_NoReasoner is identical to Onto2Vec but does not use the de-

ductive closure of the knowledge base; Binary_GO represents a protein’s GO

annotations as a binary vector (closed against the GO structure); Onto_BMA

only generates vector representations for GO classes and compares proteins

by comparing their GO annotations individually using cosine similarity and

averaging individual values using the BMA approach; Onto_AddVec sums

GO class vectors to represent a protein. The methods with suffix LR, SVM,

and NN use logistic regression, a support vector machine, and an artificial

neural network, respectively, either on the Onto2Vec or the Binary_GO pro-

tein representations.
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similarity). Table 3 summarizes the results. While Resnik semantic

similarity and Onto2Vec similarity cannot distinguish between dif-

ferent types of interaction, we find that the supervised models, in

particular the multiclass SVM and ANN, are capable when using

Onto2Vec vector representations to distinguish between different

types of interaction. In addition, the Onto2Vec representations per-

form better than sparse binary vectors, indicating further that

encoding parts of the ontology structure can improve predictive

performance.

2.3 Clustering and visualization
Onto2Vec representations cannot only be used to compute semantic

similarity or form part of supervised models but can also provide the

foundation for visualization and unsupervised clustering. The ability

to identify sets of biological entities that are more similar to each

other within a dataset can be used for clustering and identifying

groups of related biological entities. We visualized the GO-based

vector representations of proteins generated by Onto2Vec. Since the

Onto2Vec representations are of a high dimensionality, we applied

the t-distributed Stochastic Neighbor Embedding (t-SNE)

dimensionality reduction (Maaten and Hinton, 2008) to the vectors

and represented 10 000 randomly chosen enzyme proteins in

Figure 4 (see Section 5.7 for details).

The visual representation of the enzymes shows that the proteins

are separated and form different functional groups. To explore what

kind of information these groups represent, we identified the EC

number for each enzyme and colored the enzymes in six different

groups depending on their top-level EC category. We found that

some of the groups that are visually separable represent mainly

enzymes within a single EC top-level category. To quantify whether

Onto2Vec similarity is representative of EC categorization, we

applied k-means clustering (k¼6) to the protein representations.

We evaluated cluster purity with respect to EC top-level classifica-

tion and found that the purity is 0.42; when grouping enzymes based

on their second-level EC classification (k¼62), cluster purity

increases to 0.60.

3 Discussion

3.1 Ontologies as graphs and axioms
We have developed Onto2Vec, a novel method for learning feature

vectors for entities in ontologies. There have been several recent

related efforts that use unsupervised learning to generate dense fea-

ture vectors for structured and semantically represented data.

Notably, there is a large amount of work on knowledge graph

embeddings (Bordes et al., 2013; Nickel et al., 2016a; Perozzi et al.,

2014; Ristoski and Paulheim, 2016), i.e. a set of feature learning

methods applicable to nodes in heterogeneous graphs, such as those

defined by linked data (Bizer et al., 2009). These methods can be

applied to predict new relations between entities in a knowledge

graph, perform similarity-based predictions, reason by analogy, or

in clustering (Nickel et al., 2016b). However, while some parts of

ontologies, such as their underlying taxonomy or partonomy, can

naturally be expressed as graphs in which edges represent well-

defined axiom patterns (Hoehndorf et al., 2010; Smith et al., 2005),

it is challenging to represent the full semantic content of ontologies

in such a way (Rodrı́guez-Garcı́a and Hoehndorf, 2018).

It is possible to materialize the implicit, inferred content of for-

mally represented knowledge bases through automated reasoning,

and there is a long history in applying machine learning methods to

the deductive closure of a formalized knowledge base Bergadano

(1991) and Valiant (1985). Similar approaches have also been

applied to knowledge graphs that contain references to classes in

ontologies (Alshahrani et al., 2017). However, these approaches

are still limited to representing only the axioms that have

materialization in a graph-based format. Onto2Vec is, to the best of

our knowledge, the first approach that applies feature learning to ar-

bitrary OWL axioms in biomedical ontologies and includes a way to

incorporate an ontology’s deductive closure in the feature learning

process. While Onto2Vec can be used to learn feature representa-

tions from graph-structures (by representing graph edges as axioms

or triples), the opposite direction is not true; in particular axioms

involving complex class expressions, axioms involving disjointness

Fig. 3. ROC curves for PPI prediction for the supervised learning methods, in addition to Resnik’s semantic similarity measure for comparison

Table 2. Spearman correlation coefficients between STRING confi-

dence scores and PPI prediction scores of different prediction

methods

Yeast Human

Resnik 0.1107 0.1151

Onto2Vec 0.1067 0.1099

Binary GO 0.1021 0.1031

Onto2Vec LR 0.1424 0.1453

Onto2Vec SVM 0.2245 0.2621

Onto2Vec NN 0.2516 0.2951

Binary GO LR 0.1121 0.1208

Binary GO SVM 0.1363 0.1592

Binary GO NN 0.1243 0.1616

Note: The highest absolute correlation across all methods is highlighted in

bold.
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and axioms involving object property restrictions are naturally

included by Onto2Vec while they are mostly ignored in feature

learning methods that rely on graphs alone.

3.2 Toward ‘trainable’ semantic similarity measures
Another related area of research is the use of semantic similarity

measures in biology. Onto2Vec generates feature representations of

ontology classes or entities annotated with several ontology classes,

and we demonstrate how to use vector similarity as a measure of se-

mantic similarity. In our experiments, we were able to almost match

the performance of an established semantic similarity measure

(Resnik et al., 1999) when using cosine similarity to compare pro-

teins. It is traditionally challenging to evaluate semantic similarity

measures, and their performances differ between biological prob-

lems and datasets (Kulmanov and Hoehndorf, 2017; Lord et al.,

2003; Pesquita et al., 2008a; Pesquita et al., 2009). The main advan-

tage of Onto2Vec representations is their ability to be used in train-

able similarity measures, i.e. problem- and dataset-specific similarity

measures generated in a supervised way from the available data. The

training overcomes a key limitation in manually created semantic

similarity measures: the inability to judge a priori how each class

and relation (i.e. axiom) should contribute to determining similarity.

For example, for predicting protein–protein interactions, it should

be more relevant that two proteins are active in the same (or neigh-

boring) cellular component than that they both have the ability to

regulate other proteins. Trainable similarity measures, such as those

based on Onto2Vec, can identify the importance of certain classes

(and combinations of classes) with regard to a particular predictive

task and therefore improve predictive performance significantly.

Furthermore, Onto2Vec does not only determine how classes, or

their combinations, should be weighted in a similarity computation.

Semantic similarity measures use an ontology as background know-

ledge to determine the similarity between two (sets of) classes; how

the ontology is used is pre-determined and constitutes the main dis-

tinguishing feature among semantic similarity measures (Pesquita

et al., 2009). Since Onto2Vec vectors represent both an entity’s

Table 3. AUC values of the ROC curves for PPI interaction type prediction

Yeast Human

Reaction Activation Binding Catalysis Reaction Activation Binding Catalysis

Resnik 0.5811 0.6023 0.5738 0.5792 0.5341 0.5331 0.5233 0.5810

Onto2Vec 0.5738 0.5988 0.5611 0.5814 0.5153 0.5104 0.5073 0.6012

Onto2Vec LR 0.7103 0.7011 0.6819 0.6912 0.7091 0.6951 0.6722 0.6853

Onto2Vec multiSVM 0.7462 0.7746 0.7311 0.7911 0.7351 0.7583 0.7117 0.7724

Onto2Vec NN 0.7419 0.7737 0.7423 0.7811 0.7265 0.7568 0.7397 0.7713

Binary GO LR 0.6874 0.6611 0.6214 0.6433 0.6151 0.6533 0.6018 0.6189

Binary GO multiSVM 0.7455 0.7346 0.7173 0.7738 0.7246 0.7132 0.6821 0.7422

Binary GO NN 0.7131 0.6934 0.6741 0.6838 0.6895 0.6803 0.6431 0.6752

Note: The best AUC value for each action is shown in bold.

Fig. 4. t-SNE visualization of 10, 000 enzyme vectors color-coded by their first level EC category (1, 2, 3, 4, 5 or 6)
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annotations and (parts of) the ontology structure, the way in which

this structure is used to compute similarity can also be determined in

a data-driven way through the use of supervised learning; it may

even be different between certain branches of an ontology. We

demonstrate that supervised measures outperform binary represen-

tations, which shows that combining ontology-based annotations

and the ontology structure in a single representation has clear

advantages.

4 Conclusions

Onto2Vec is a method that combines neural and symbolic methods

in biology and demonstrates significant improvement over state-of-

the-art methods. There is now an increasing interest in the integra-

tion of neural and symbolic approaches to artificial intelligence

(Besold et al., 2017). In biology and biomedicine, where a large

amount of symbolic structures (ontologies and knowledge graphs)

are in use, there are many potential applications for neural-symbolic

systems (Hoehndorf and Queralt-Rosinach, 2017).

The current set of methods for knowledge-driven analysis (i.e.

analysis methods that specifically incorporate symbolic structures

and their semantics) in biology is limited to ontology enrichment

analysis (Subramanian et al., 2005), applications of semantic simi-

larity (Pesquita et al., 2009), and, to a lesser degree, network-based

approaches (Dutkowski et al., 2013). With Onto2Vec, we introduce

a new method in the semantic analysis toolbox, specifically targeted

at computational biology and the analysis of datasets in which

ontologies are used for annotation. While we already demonstrate

how Onto2Vec representations can be used to improve predictive

models for protein–protein interactions, additional experiments

with other ontologies will likely identify more areas of applications.

We expect that future research on neural-symbolic systems will fur-

ther extend our results and enable more comprehensive analysis of

symbolic representations in biology and biomedicine.

5 Materials and methods

5.1 Dataset
We downloaded the gene ontology (GO) in OWL format from the

GO Consortium Website (http://www.geneontology.org/ontology/)

on September 13, 2017. We obtained the GO protein annotations

from the UniProt-GOA website (http://www.ebi.ac.uk/GOA) on

September 26, 2017. We filtered all automatically assigned GO

annotations (with evidence code IEA and ND) which results in 5:5

�106 GO annotations.

We obtained the protein–protein interaction networks for both

yeast (S.cerevisiae), and human (H.sapiens) from the STRING data-

base (Szklarczyk et al., 2017) (http://string-db.org/) on September

16, 2017. The human protein dataset contains 19 577 proteins and

11 353 057 interactions while the yeast dataset contains 6392 pro-

teins and 2 007 135 interactions. We extracted Enzyme Commission

(EC) number annotations for 10 000 proteins from Expasy

(Gasteiger et al., 2003) (ftp://ftp.expasy.org/databases/enzyme/en

zyme.dat) on October 4, 2017.

5.2 Automated reasoning
We used the OWL API version 4.2.6 (Horridge et al., 2007) to pro-

cess the GO in OWL format (Gene Ontology Consortium, 2013).

Our version of GO contains 577 454 logical axioms and

43 828 classes. We used the HermiT reasoner (version 1.3.8.413)

(Shearer et al., 2008) to infer new logical axioms from the asserted

ones. We used HermiT as it supports all OWL 2 DL axioms and has

been optimized for large ontologies (Shearer et al., 2008). These

optimizations make HermiT relatively fast that is particularly help-

ful when dealing with ontologies of the size of GO. We infer three

types of axioms: subsumption, equivalence and disjointness, result-

ing in 80 133 new logical axioms that are implied by GO’s axioms

and materialized through HermiT.

5.3 Representation learning using Word2Vec
We treated an ontology as a set of axioms, each of which constitutes

a sentence. To process the axioms syntactically, we used the

Word2Vec (Mikolov et al., 2013a, b) methods. Word2Vec is a set of

neural-network based tools that generate vector representations of

words from large corpora. The vector representations are obtained

in such a way that words with similar contexts tend to be close to

each other in the vector space.

Word2Vec can use two distinct models: the continuous bag of

word (CBOW), which uses a context to predict a target word, and

the skip-gram model that tries to maximize the classification of a

word based on another word from the same sentence. The main

advantage of the CBOW model is that it smooths over a lot of the

distributional information by treating an entire context as one ob-

servation, while the skip-gram model treats each context-target as a

new observation, which works better for larger datasets. The skip-

gram model has the added advantage of producing higher quality

representation of rare words in the corpus (Mikolov et al., 2013a,b).

Here, we chose the skip-gram architecture since it meets our need to

produce high quality representations of all biological entities occur-

ring in our large corpus, including infrequent ones. Formally, given

a sequence of training words x1, x2,. . ., xT, the skip-gram model

aims to maximize the following average log likelihood:

1

T

XT

t¼1

X
�c� j� c;j6¼0

log p xtþjjxt

� �
; (1)

where c is the size of the training context, T is the size of the set of

the training words and xi is the i-th training word in the sequence.

We identified an optimal set of parameters of the skip-gram

model through limited gridsearch on the following parameters: the

size of the output vectors on the interval [50–250] using a step

size of 50, the number of iterations on the interval [3–5] and

negative sampling on the interval [2–5] using a step size of 1.

Table 4 shows the parameter values we used for the skip-gram in

our work.

5.4 Similarity
We used cosine similarity to determine similarity between feature

vectors generated by Onto2Vec. The cosine similarity, cossim, be-

tween two vectors A and B is calculated as follows:

cossim A;Bð Þ ¼ A � B
jjAjjjjBjj ; (2)

where A � B is the dot product of A and B.

We used Resnik’s semantic similarity measure (Resnik et al.,

1999) as the baseline for comparison. Resnik’s semantic similarity

measure is widely used in biology (Pesquita et al., 2009). It is based

on the notion of IC that quantifies the specificity of a given class in

the ontology. The IC of a class c is defined as the negative log likeli-

hood, �log p cð Þ, where p(c) is the probability of encountering an
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instance or annotation of class c. Given this definition of IC, Resnik

similarity is formally defined as:

simResnik c1; c2ð Þ ¼ �log p cMICAð Þ; (3)

where cMICA is the most informative common ancestor of c1 and c2

in the ontology hierarchy, defined as the common ancestor of c1 and

c2 with the highest IC value. In addition to Resnik’s similarity we

also compare to three other semantic similarity measures: Lin’s

measure (Lin et al., 1998), Jiang and Conrath measure (Jiang and

Conrath, 1997) and sim GIC measure (Pesquita et al., 2008b). Lin’s

similarity measure is defined as:

simLin c1; c2ð Þ ¼ 2 � log p cMICAð Þ
log p c1ð Þ þ log p c2ð Þ

; (4)

Jiang and Conrath similarity (simJ&C) uses the same components

used in Lin’s similarity but with a different formulation:

simJ&C c1; c2ð Þ ¼ 2 � log p cMICAð Þ � log p c1ð Þ � log p c2ð Þ; (5)

sim_GIC measure is different than the three previously defined

measures in the sense that it calculates the similarity between entities

instead of concepts. Given entities e1 and e2, their pairwise similarity

according to sim GIC is the following:

simGIC e1; e2ð Þ ¼
P

c2e1\e2
�log p cð ÞP

c2e1[e2
�log p cð Þ ; (6)

where e1 \ e2 is the set of ontology concepts that both A and B are

annotated with, while e1 [ e2 is the union of all concepts that A and

B are annotated with (not just the shared concepts). Resnik’s, Lin’s

and Jiang andConrath similarity measures only measure the similar-

ity between two ontology classes. We applied the BMA method

(Azuaje et al., 2005) to compute the similarity between two sets of

classes using these measures. For two biological entities e1 and e2,

the BMA is defined as:

BMA e1; e2ð Þ

¼ 1

2

1

n

X
c12S1

maxc22S2
sim c1; c2ð Þ þ 1

m

X
c22S2

maxc12S1
sim c1; c2ð Þ

 !
;

(7)

where S1 is the set of ontology concepts that e1 is annotated

with, S2 is the set of concepts that e2 is annotated with, and

sim c1; c2ð Þ is the similarity value between concept c1 and

concept c2, which could have been calculated using Resnik

similarity or any other semantic similarity measure (e.g. cosine

similarity).

5.5 Supervised learning
We used supervised learning to train a similarity measure between

two entities that is predictive of protein-protein interactions. We

applied our method to two datasets, one for protein–protein interac-

tions in yeast and another in human. We filtered the STRING data-

base and kept only proteins with experimental annotations, which is a

total of 18 836 proteins in the human dataset and 6390 proteins in

the yeast dataset. We randomly split each dataset into 70% and 30%

for training and testing, respectively. The positive pairs are all those

reported in the STRING database, while the negative pairs are ran-

domly sub-sampled among all the pairs not occurring in STRING, in

such a way that the cardinality of the positive set and that of the nega-

tive set are equal for both the testing and the training datasets.

We used logistic regression, SVMs and ANNs to train a classifier

for protein-protein interactions. We trained each of these methods

by providing a pair of proteins (represented through their feature

vectors) as input and predicting whether the pair interacts or not.

The output of each method varies between 0 and 1, and we used the

prediction output as a similarity measure between the two inputs.

Logistic regression does not require any selection of parameters. We

used the SVM with a linear kernel and sequential minimal optimization.

Our ANN structure is a feed-forward network with four layers: the first

layer contains 400 input units; the second and third layers are hidden

layers which contain 800 and 200 neurons, respectively; and the fourth

layer contains one output neuron. We optimized parameters using a lim-

ited manual search based on best practice guidelines (Hunter et al., 2012).

We optimized the ANN using binary cross entropy as the loss function.

In addition to binary classification, we also trained multi-class classi-

fiers to predict the type of interaction between two types of proteins.

We used a multi-class SVM as well as ANNs; the parameters we used

are identical to the binary classification case, except that we used an

ANN architecture with more than one output neuron (one for each

class). We implemented all supervised learning methods in MATLAB.

5.6 Evaluation
The receiver operating characteristic (ROC) curve is a widely used

evaluation method to assess the performance of prediction and clas-

sification models. It plots the true-positive rate (TPR or sensitivity)

defined as TPR ¼ TP
TPþFN against the false-positive rate (FPR or

1�specificity) defined as FPR ¼ FP
FPþTN, where TP is the number of

true positives, FP is the number of false positives and TNis the num-

ber of true negatives (Fawcett, 2006). We used ROC curves to evalu-

ate protein–protein interaction prediction of our method and

baseline methods, and we reported the area under the ROCAUC as

a quantitative measure of classifier performance. In our evaluation,

the TP value is the number of protein pairs occurring in STRING re-

gardless of their STRING confidence score and which have been pre-

dicted as interacting. The FP value is the number of protein pairs

that have been predicted as interacting but do not appear in

STRING. And the TN is the number of protein pairs predicted as

non-interacting and which do not occur in the STRING database.

5.7 Clustering and visualization
For visualizing the ontology vectors we generated, we used the

t-SNE (Maaten and Hinton, 2008) method to reduce the dimension-

ality of the vectors to two dimensions and plotted the vectors in the

2D space. t-SNE is similar to principal component analysis but uses

probability distributions to capture the non-linear structure of the

data points, which linear dimensionality reduction methods, such as

PCA, cannot achieve (Maaten and Hinton, 2008). We used a per-

plexity value of 30 when applying t-SNE.

Table 4. Parameter we use for training the Word2Vec model

Parameter Definition Default

value

sg Choice of training algorithm (sg¼1:

skip-gram; sg¼0: CBOW)

1

size Dimension of the obtained vectors 200

min_count Words with frequency lower than this

value will be ignored

1

window Maximum distance between the current

and the predicted word

10

iter Number of iterations 5

negative Whether negative sampling will be used

and how many ‘noise words’ would

be drawn

4
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The k-means algorithm is used to cluster the protein vectors, and

we quantitatively measured the quality of these clusters with respect

to EC families using cluster purity. Cluster purity is defined as:

purity T;Cð Þ ¼ 1

N

Xk

i¼0

max
j

ck [ tj

� �
; (8)

where N is the total number of data points, C ¼ c1; c2; . . . ; ck is the

set of clusters, and T ¼ t1; t2; . . . ; tJ is the set of classes which is in

this case the set of EC families. Since there are six first-level EC cate-

gories, the number of classes in this case is six and the number of

clusters used in k-means is also set to six.
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