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ABSTRACT: β-Amino acid derivatives are key structural elements in synthetic and biological chemistry. Despite being a hallmark
method for their preparation, the direct Mannich reaction encounters significant challenges when carboxylic acid derivatives are
employed. Indeed, not only is chemoselective enolate formation a pitfall (particularly with carboxamides), but most importantly the
inability to reliably access α-tertiary amines through an enolate/ketimine coupling is an unsolved problem of this century-old
reaction. Herein, we report a strategy enabling the first direct coupling of carboxamides with ketimines for the diastereo- and
enantioselective synthesis of β-amino amides. This conceptually novel approach hinges on the innovative deployment of enantiopure
sulfinimines in sulfonium rearrangements, and at once solves the problems of chemoselectivity, reactivity, and (relative and absolute)
stereoselectivity of the Mannich process. In-depth computational studies explain the observed, unexpected (dia)stereoselectivity and
showcase the key role of intramolecular interactions, including London dispersion, for the accurate description of the reaction
mechanism.

β-Amino acids are privileged structural motifs in natural
products1 and indispensable building blocks in medicinal
chemistry and chemical biology (e.g., for the synthesis of β-
peptides2a or β-lactam antibiotics2b,c). These highly sought-
after properties have resulted in a long-standing interest in
methods for the synthesis of β-amino acids and amides.3

Methods for the preparation of β-amino amides are numerous
(Scheme 1A).4,5 The century-old Mannich reaction4 and
conjugate addition5 are arguably the most commonly
employed approaches, albeit often requiring the use of
prefunctionalized, activated starting materials with limited
structural flexibility.

Although asymmetric Mannich reactions with easily
enolizable carbonyl compounds or the corresponding enolate
equivalents have been established,6 owing to the high α-C−H
pKa values of amides (pKa around 35),7 chemoselective enolate
formation becomes an almost insurmountable barrier in these
cases (Scheme 1B). This renders the classical Mannich
reaction a highly challenging prospect for this critical class of
donors, and, to this date, successful direct Mannich reactions
of carboxamides mostly rely on designer amides bearing a 1-
acyl-7-azaindole moiety.4b,c,e Recently, the Kobayashi group
developed a catalytic system enabling asymmetric Mannich
reactions of aldimines with amides.4h However, ketimines were
shown to reside outside of the scope of the reaction, as both
the steric hindrance and the α-C−H acidity thwarted a general
enantioselective route to quaternary stereocenters at C(3).
Despite significant advances in the field, the challenges
associated with combining poorly C−H acidic carboxamides
with readily enolizable ketimines appear to render their
efficient direct Mannich coupling nearly impossible.

Enantioenriched organosulfur compounds have emerged as
reagents of choice for stereoselective synthesis through chiral
propagation.8 We herein show that, by synergistically

combining enantioenriched sulfinimines in sulfonium rear-
rangements9 with the chemoselectivity of amide activation,10 a
diastereo- and enantioselective strategy to access acyclic,
polysubstituted β-amino amides results (Scheme 1C). This
traceless and enantioselective direct coupling effectively solves
the problems of chemoselective enolate formation, sluggish
reactivity, and competing enolizability of ketimines in Mannich
processes.

Our investigations initially focused on the coupling of
enantiomerically pure (R)-sulfinimine 2a (readily prepared
from (R)-tert-butylsulfinamide and acetophenone), with
(pyrrolidin-1-yl)pentan-1-one (1a). Under the optimized
reaction conditions (see SI for details, S3), β-amino amide
3a was formed in 73% yield (major diastereomer) with a d.r. of
10:1 and an e.r. of 99.9:0.1. X-ray crystallographic diffraction of
3a (CCDC 2153021, S72), produced from an (R)-configured
sulfinimine, allowed establishment of the (S,S)-configuration at
the newly generated stereocenters of the product.

Turning our attention to the substrate scope (Table 1), we
initially probed variations of the amide carbon chain and found
that side chains of varying lengths were transformed with very
good levels of enantioselectivity (3b, 3c). The reaction
displayed good functional-group tolerance: reactive handles
such as halides 3d, nitriles 3e, ethers 3f, imides 3g, alkenes 3j,
and alkynes 3k were all tolerated under the reaction
conditions. Additionally, the β-amino amides 3h and 3i,
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bearing ester and ketone functionality, were successfully
obtained in good yields and selectivities and showcase the
exceptional chemoselectivity of electrophilic amide activa-
tion.10 Notably, this unusual chemoselectivity between amides
and other carbonyls cannot be achieved by classical Mannich
reaction protocols, as those are controlled by α-C−H pKa
values. Whereas, in the absence of external nucleophiles,
amides 1k have been previously shown to readily undergo
intramolecular lactone formation/rearrangement at high
temperatures,11 this room-temperature Mannich surrogate
protocol remarkably overrides the intramolecular reaction.

Varying substitution at the amide nitrogen was also
tolerated, and several tertiary amides were transformed to
the corresponding β-amino amides, including those derived
from piperidine 3l, azepine 3m, dimethylamine 3n, and
indoline 3o. The established protocol also enabled formation
of β-amino amides derived from Febuxostat 3p, Indomethacin
3q, and vitamin E 3r.

Various sulfinimines were then prepared and employed as
the reaction partners of amide 1a, as shown in Table 1. A large
degree of flexibility was found with regard to the nature of the
aromatic group attached to the sulfinimine. Different halogens
were well tolerated (3s−3v), as were derivatives bearing both
electron-withdrawing (3w) and electron-donating (3x−3aa)
substituents. Reaction of a sulfinimine endowed with an ortho-
substituted aryl group also provided the desired product
(3ab)�it is worth mentioning that the steric influence exerted
by the presence of this ortho-substituent positively affects the

stereoselectivity of the transformation. Other sterically
demanding sulfinimines, prepared from 1-(naphthalen-2-yl)-
ethan-1-one and propiophenone, were also found to furnish
the desired β-amino amides 3ac and 3ad. While the added
steric hindrance of the sulfinimine derived from propiophe-
none led to outstanding enantioselectivity, a significant
decrease of the yield was also observed (3ad). Sulfinimines
derived from dialkyl ketones were also employed, giving
moderate yields and good enantioselectivities (3af, 3ag). The
transformation also tolerates sulfinimines prepared from
bicyclic ketones such as 1-indanone (3ah), 4-chromanone
(3ai), 1-tetralone (3aj), as well as heterocyclic moieties (3ae).

Aiming for a direct comparison with classical Mannich
protocols employing sulfinimines, we performed an experiment
under reaction conditions developed by the Ellman group
(Scheme 2A).12,13 Despite the reported success for ester-based
Mannich reactions, the desired β-amino amide 4 was not
detected. This further underlines the unique character and
orthogonality of the coupling reaction presented herein.

The products lend themselves to rapid derivatization
(Scheme 2B,C). Cleavage of 3o, bearing an indoline amide,
can easily be achieved through oxidative conversion to the
corresponding indole analogue using DDQ,14,15 and subse-
quent hydrolysis, affording β-amino acid 5 in 54% yield (from
3o) with 98% enantiospecificity. The presence of two
contiguous stereocenters crafted with high stereoselectivity
can be harnessed for the synthesis of enantioenriched
piperidines (such as 6) with challenging substitution patterns.
The sequence shown proceeded smoothly to give the desired
product in 36% overall yield with excellent stereocontrol
(>20:1 d.r., 90:10 e.r.).

Aiming to pinpoint the intricacies of this unprecedented
process, we adopted a combined experimental/computational
approach. Subjecting an 18O-labeled amide to the standard
conditions led to exclusive formation of nonlabeled product,
suggesting that the sulfinimine acts as oxygen donor (SI,
S66).16

Our quantum chemical calculations (Scheme 3), based on
precedent and the observations described above, assumed
initial formation of a keteniminium intermediate A (Scheme
3A),17 which was used as the starting point. The computed
Gibbs free energy profile is depicted in Scheme 3A. As shown,
intermediate B is formed by O-addition of the sulfinimine to
the keteniminium species, giving two possible double-bond
isomers B_Z (cis) and B_E (trans). Both intermediates are
formed reversibly (endergonic step, ΔG(A → B_E) = 4.7 kcal
mol−1 and ΔG(A → B_Z) = 1.5 kcal mol−1), with a slight
preference for B_Z. Similarly, both intermediates B are capable
of undergoing the next step, a [3,3]-sigmatropic rearrange-
ment: Concerted S−O bond cleavage and C−C bond
formation lead to the intermediates C_SR and C_SS,
ultimately determining the diastereoselectivity.

Scheme 3A shows that the [3,3]-sigmatropic rearrangement
step is highly exergonic for both intermediates B_E and B_Z,
while the formation of C_SS, relative to the reference point A,
is thermodynamically more favorable than formation of C_SR
(ΔG(A → C_SS) = −19.1 kcal mol−1, ΔG(A → C_SR) =
−17.2 kcal mol−1).

Instead of reacting to the products C, intermediates B_E
and B_Z can, however, also revert to the starting state A with
different degrees of probability: While intermediate B_E is
more likely to revert to A (ΔG‡(B_E → A) = 4.5 kcal mol−1

and ΔG‡(B_E → C_SR) = 8.2 kcal mol−1), B_Z shows a

Scheme 1. Classical Mannich Reaction and Its Intrinsic
Limitations
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preference for undergoing the rearrangement to C_SS
(ΔG‡(B_Z → A) = 10.0 kcal mol−1 and ΔG‡(B_Z →
C_SS) = 9.2 kcal mol−1). This means that the [3,3]-
sigmatropic rearrangement is computed to be kinetically
more favorable for the intermediate B_Z than for B_E, for

which the probability of reversion to A is relatively high.
Ultimately, the favored formation of C_SS results from both
thermodynamic and kinetic factors: The main reason for the
observed diastereoselectivity is, thus, “hidden” in the Z/E
isomerism of the transient intermediate B.

Table 1. Scope of the Reactiona

aReactions were performed on 0.2 mmol scale. Isolated yields of the major diastereomers are reported. Diastereomeric ratios (d.r.) were
determined by 1H NMR analysis of the crude product. Enantiomeric ratios (e.r.) determined by HPLC.
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Apart from identifying the nature of the individual reaction
steps and intermediates, our computational analysis also aided
in rationalizing another counterintuitive stereochemical aspect
of this transformation: As shown in Table 1, the major
diastereomer formed in this process possesses S,S-configu-
ration. However, this observation is at odds with an expected
preference for an all-equatorial chairlike six-membered
transition state (TS-2E; boat-like conformations were found
to be unfavorable), which would lead to the S,R-configured
product. The relative stability of the chairlike transition state
TS-2Z, with the propyl substituent in pseudoaxial orientation,

is surprising due to the expected high steric repulsion. In order
to deconvolute the underlying reasons for this stability, we
conducted an additional computational investigation. Encour-
aged by recent studies emphasizing the importance of
dispersion interactions for the enantioselectivity of organo-
catalytic processes,17,18 we tested the role of these effects for
geometry optimization of both transition states, TS-2E and TS-
2Z, comparing results of the B3LYP-D3(BJ) and the B3LYP
(without dispersion correction) DFT approaches. Indeed, if
dispersion is neglected, a substantial structural distortion is
observed for TS-2Z, while for TS-2E, the effect is less
significant (SI, S70, Table S3). To further clarify the role of
different energetic contributions of the interactions between
the sulfinimine and keteniminium fragments in the transition
state structures, we performed SAPT0 (Symmetry Adapted
Perturbation Theory) energy decomposition analysis (Scheme
3B),19 showing the following energy components: electro-
statics, exchange, induction, and dispersion. The exchange
term (i.e., Pauli repulsion) is large for both transition state
structures, showing significant steric repulsion which is, in line
with chemical intuition, substantially higher for TS-2Z.
However, this is outweighed by the three other terms, leading
to an overall preference for TS-2Z. The SAPT analysis
therefore clearly shows that the selectivity is not determined
by steric repulsion alone: importantly, three other components
(induction, electrostatics, and dispersion) are essential for
stabilizing TS-2Z, leading to the (S,S)-configured product.

Next, we sought to elucidate the mechanism of the
transformation of C_SS into the final β-amino amide product
(3a). Scheme 3C outlines a computationally suggested
intramolecular C−S bond cleavage with the formation of
isobutene as a side product (the computed free energy profile
is shown in the SI, S70 (Figure S1)). It is noteworthy that this
side product was also experimentally detected by in-situ NMR
analysis (SI, S61). The calculations further predict a barrierless
ion-pair collapse of D, forming the product after further N−S
bond cleavage. Hypothetically other nucleophiles, e.g., water,

Scheme 2. Comparison with the Classical Mannich
Approach and Postreaction Functionalizationsa

aReactions were performed on 0.2 mmol scale. Isolated yields of the
major diastereomers are reported.

Scheme 3. Mechanistic Insight into the Sulfonium Rearrangementa

a(A) Computed reaction profile (DLPNO−CCSD(T)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, ΔG298, DCM) for the formation of C_SR and
C_SS. The energy of A is taken as a reference (0.0 kcal mol−1). (B) SAPT0 analysis of TS-2Z and TS-2E. Level of theory: SAPT0/jun-cc-pvdz. (C)
Hypothetical path for the intramolecular C−S bond cleavage to form 3a.
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can also attack the transient intermediate D, ultimately leading
to the final product as proposed in Scheme 3C. Importantly,
the formation of a 1,3-dicarbonyl product16 from the coupling
of an aldimine can also be readily rationalized by this
mechanistic proposal via loss of the H substituent through
“imine-enamine” tautomerization in C_SS.

In conclusion, we have reported a conceptually novel
approach to the century-old Mannich reaction. This approach
hinges on the unprecedented deployment of readily available
enantioenriched sulfinamides in a sulfonium rearrangement.
These reagents serve as the source of both nitrogen and chiral
information, and the obtained β-amino amides carry two
contiguous stereogenic centers, including a fully substituted
carbon, formed with high levels of diastereo- and enantiose-
lectivity. Detailed computational studies reveal the intricacies
of the process, including counterintuitive transition states, and
emphasize the insufficiency of typical “chemical intuition”-
based approaches that rely primarily on estimated steric
repulsion. Most strikingly, this transformation constitutes an
apparent direct Mannich coupling of two reaction partners
that, paradoxically, cannot be coupled by a classical Mannich
transform. The chemistry presented herein decisively solves
the challenging problems of chemo-, diastereo-, and
enantioselectivity that are intrinsic to the classical Mannich
reaction and highlights the power of sulfonium rearrangements
for stereoselective C−C bond formation in contemporary
synthesis.
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