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A temporal shift of the evolutionary principle
shaping intratumor heterogeneity in colorectal
cancer
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Advanced colorectal cancer harbors extensive intratumor heterogeneity shaped by neutral

evolution; however, intratumor heterogeneity in colorectal precancerous lesions has been

poorly studied. We perform multiregion whole-exome sequencing on ten early colorectal

tumors, which contained adenoma and carcinoma in situ. By comparing with sequencing data

from advanced colorectal tumors, we show that the early tumors accumulate a higher pro-

portion of subclonal driver mutations than the advanced tumors, which is highlighted by

subclonal mutations in KRAS and APC. We also demonstrate that variant allele frequencies of

subclonal mutations tend to be higher in early tumors, suggesting that the subclonal muta-

tions are subject to selective sweep in early tumorigenesis while neutral evolution is domi-

nant in advanced ones. This study establishes that the evolutionary principle underlying

intratumor heterogeneity shifts from Darwinian to neutral evolution during colorectal tumor

progression.
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Cancer evolution and intratumor heterogeneity (ITH) have
attracted increasing attention in the cancer research field
because ITH generated during cancer evolution pre-

sumably contributes to the therapeutic and diagnostic difficulties
of cancer. With the advent of next-generation sequencing tech-
nology, the multiregion sequencing approach has been popularly
used to understand ITH. Multiregion sequencing, in which
multiple samples from physically separate regions of a single
tumor are sequenced, typically identifies two categories of somatic
mutations: “ubiquitous” and “heterogeneous” mutations, which
are present in either all regions or a subset of regions, respectively.
Ubiquitous mutations are assumed to accumulate in the early
phase of cancer evolution. The parental clone that has acquired all
the ubiquitous mutations then branches into subclones, which
accumulate heterogeneous mutations and shape ITH. Multiregion
sequencing has revealed the landscapes of ITH for renal1,2,
breast3, esophageal4,5, lung6,7, ovarian8, prostate9,10, pancreatic11,
and other types of cancer. These studies have presented evidence
that Darwinian evolution shapes at least part of ITH: there exist
one or more subclonal driver events within distinct subclones of a
tumor (hereafter, this evidence will be referred to simply as
branched evolution). For a few types of tumors1–3,5, more con-
vincing evidence has been identified: multiple subclones harbor
genetic alterations in the same gene or genes that work in the
same pathway (hereafter, referred to as parallel evolution).

In the development of colorectal cancer (CRC), adenoma first
forms a polyp and then partially progresses to early carcinoma,
which subsequently grows beyond the muscularis mucosa to
invade surrounding tissues and finally metastasize12. To examine
ITH in advanced CRC (ACRC), we previously performed mul-
tiregion sequencing of nine locally advanced or metastatic
tumors13. While most of the known driver events represented by
APC and KRAS mutations were observed as ubiquitous muta-
tions, branched or parallel evolution was rarely observed in
evolutionary histories of ACRC. By additionally performing a
computational simulation of cancer evolution, we demonstrated
the possibility that ITH in ACRC could be generated by neutral
evolution. Other studies similarly combined multiregion analysis
and mathematical modeling to report that neutral evolution could
shape the majority of ITH in CRC as well as liver cancer14,15. The
neutral evolution model was also reported by analyzing the dis-
tribution of variant allele frequencies (VAFs) in single-region
sequencing data16,17.

Although differences in ITH across various cancer types have
been well studied, little has been reported on the changes in ITH
along the time course of tumorigenesis. To investigate ITH in the
early process of colorectal tumorigenesis, we performed multi-
region sequencing of ten colorectal tumors containing adenoma
and early carcinoma. In contrast to our previous report about
ACRC13, our multiregion analysis of the ten early colorectal
tumors strongly suggests that Darwinian evolution plays a critical
role in shaping ITH in the early phase of colorectal tumorigenesis.

Results
Multiregion sequencing of ten early colorectal tumor cases. To
characterize ITH in the early phase of colorectal tumorigenesis,
we performed multiregion whole-exome sequencing (WES) on
ten early colorectal tumor cases, the details of which are provided
in Supplementary Data 1. Although the samples subjected to our
analysis contained colorectal adenoma and carcinoma in situ, we
collectively refer to them as precancerous lesions of colorectal
cancers (PCRCs) in this study. We selected tumors that were
diagnosed as colorectal laterally spreading tumors (LSTs), which
have suitable forms for multiregion sampling. For each case, we
sequenced four to seven multiregion tumor samples and a paired

normal mucosa sample as a control, which amounted to 53 tumor
samples and 10 normal samples in total. Our WES, which had a
median fold coverage of 132.0 (range: 75.5–200.1), detected a
median of 150 (range: 82–244) mutations for each sample (Fig. 1,
Supplementary Fig. 1a, Supplementary Data 2 and 3). From this,
we estimated that each sample had a median mutation rate of 3.0
(range: 1.6–4.9) mutations per megabase. Considering that eight
non-hypermutated ACRCs in our previous study13 harbored a
median of 2.8 (range: 1.2–4.8) mutations per megabase (Supple-
mentary Figs. 1b and 2), PCRCs and ACRCs have comparable
somatic mutation rates. Our hierarchical Bayesian analysis, which
removed the residuals associated with samples and cases, also
confirmed that there were no clear differences in the distribution
of the corrected mean numbers of somatic mutations between
adenoma, early carcinoma, and ACRC (see Methods; Supple-
mentary Fig. 1c). Based on multiregion mutation profiles (Fig. 1),
mutations were categorized as either ubiquitous or heterogeneous
mutations. In this study, heterogeneous mutations were further
subcategorized into shared mutations, which existed in some of
the samples, and private mutations, which were observed in a
single sample. PCR-based deep sequencing of randomly sampled
mutations validated 100%, 100%, and 94.2% of ubiquitous,
shared, and private mutations, respectively. We also compared
the number of ubiquitous and heterogeneous mutations between
PCRC and ACRC after correcting for different number of sam-
ples across cases by downsampling (see Methods). PCRC tended
to harbor fewer ubiquitous mutations and more heterogeneous
mutations than ACRC; particularly, the number of shared
mutations was significantly large in PCRC (Supplementary
Fig. 1d–f; P= 0.011; Wilcoxon rank-sum test). We did not
observe any significant differences in mutation spectra between
ubiquitous and heterogeneous mutations across ten PCRCs
(Supplementary Fig. 3a; Wilcoxon signed-rank test) or between
PCRC and ACRC (Supplementary Fig. 3b; Fisher’s exact test).

Evolutionary histories of ten PCRCs. Ten PCRCs had already
acquired many non-silent mutations in known CRC driver
genes18 such as APC, KRAS, PIK3CA, FBXW7, SMAD4, and TP53
(observed in 8, 7, 3, 1, 1, and 1 patients, respectively; Fig. 1).
Mutation rates of APC, KRAS, PIK3CA, FBXW7, and SMAD4
were consistent with previous reports on typical CRC18,19 (Sup-
plementary Tables 1 and 2), while the mutation rate of TP53 in
PCRCs was less than that in the TCGA cohort18,19 (Supple-
mentary Table 2; 10% vs. 52.4%; P= 0.009; Fisher’s exact test).
This was partly due to higher proportion of granular-type LST
cases in our cohort, which was reported to harbor lower fre-
quency of TP53mutation compared to other CRC subtypes20. We
obtained evolutionary trees of the ten PCRCs by applying the
Treeomics algorithm21 to our multiregion sequencing data
(Fig. 2). While constructing an evolutionary tree, Treeomics
corrects potential sequencing artifacts so that all mutations have
mutation patterns compatible with the topologies of the evolu-
tionary tree. Based on this property, Treeomics produces a new
categorization of mutations based on parts of the inferred tree;
namely, we obtained “trunk” and “branch”mutations, which were
refined versions of ubiquitous and heterogeneous mutations,
respectively. Similarly, shared and private mutations were map-
ped to “internal branch” and “external branch” mutations,
respectively (hereafter, the two categorizations are referred to as
the ubiquitous-heterogeneous and the trunk-branch categoriza-
tions; Supplementary Fig. 4). Treeomics also employs boot-
strapping analysis, which demonstrated the robustness of our
evolutionary tree inference (Supplementary Fig. 5). In each evo-
lutionary tree, the length of the trunk and branches represented
the number of trunk and branch mutations, respectively. Some of
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the PCRC trees had “palm tree-like” shapes that were composed
of long trunks and short branches; such trees were typically
observed in the ACRC trees, which were reconstructed from our
previously published data using Treeomics (Supplementary
Figs. 6, 7 and 8a). However, five PCRC trees had “forked tree-
like” shapes, which were composed of short trunks and long
branches and were not observed in ACRC cases (Supplementary
Fig. 8c). These data are consistent with the observation that
PCRC harbored more heterogeneous mutations than ACRC
(Supplementary Fig. 1d–1f). To scrutinize the evolutionary his-
tory of each tumor, we mapped known driver genes with possible
functional mutations along the evolutionary trees, which con-
tained non-synonymous single-nucleotide variants (SNVs), stop-
gain SNVs, splicing SNVs, or insertion/deletions (indels). For
example, PCRC05 had two major branches, which appeared in
the relatively early stage of evolution. The first APC mutation
(R223X) was found in the trunk, while the second APC mutation
(S1338X) was found only in the left major branch. We also found
that both APC mutations in the left major branch had VAFs of
~0.4, while the first APC mutation (R223X) in the right major
branch had an allele frequency of ~0.8. These observations sug-
gest the two major subclones were subjected to two different
processes leading to biallelic inactivation of APC; an additional
mutation on the second allele was acquired in the left major
branch, while LOH accompanying the first mutation occurred in
the right major branch. Notably, the evolutionary tree of
PCRC15 showed that two major branches accumulated multiple
non-silent mutations in known driver genes; the right major
branch had KRAS (A59G) and ARID2 (splice site), whereas the
left major branch had KRAS (G12V) and ACVR1B (R474X).

PCRC12 had an extremely short trunk containing double muta-
tions in APC (Q1451X and R792fs) and long branches accumu-
lating mutations on five different genes. In this case, an NRAS
mutation (Q61K) was obtained as an internal branch mutation
after the first branching point, while a KRAS mutation (Q61H)
was obtained as an external branch mutation at the other side of
the branching point. Comparisons between the evolutionary tree
and physical positions of each sample suggest that subclonal
branching generally proceeded in physically correlated ways.
Treeomics optionally performs detection of subclonal mixing
between evolutionally separated samples; our analysis detected
subclonal mixing in seven of the ten cases (Supplementary Fig. 5).

Comparative analysis of ITH between PCRC and ACRC. These
evolutionary trees suggest that branched evolution and parallel
evolution are prominent in PCRC evolution, which is in contrast
to the result from our ACRC study13. To consolidate this finding,
we directly compared the clonal distribution of driver mutations
between PCRC and ACRC; in the 10 PCRC cases, 25 of 51 driver
mutations were branch mutations, while only 10 of 45 driver
mutations were branch mutations in the 8 ACRC cases (Fig. 3a).
Thus, compared with ACRC, PCRC had a stronger tendency to
acquire driver mutations as branch mutations (Fig. 3b; P= 0.010;
Fisher’s exact test). When examined on the ubiquitous-
heterogeneous categorization, this tendency was more statisti-
cally significant (Supplementary Fig. 9a, b; P= 0.00090; Fisher’s
exact test), which reflects the fact that several heterogeneous
driver mutations were judged as trunk driver mutations by
Treeomics. The contribution of natural selection to ITH can also
be measured by the distribution of VAFs; if a set of subclonal
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mutations consisted of driver and associated passenger mutations,
natural selection should have made their allele frequencies high,
compared with those from a set without driver mutations22.
Based on this idea, we compared the distribution of VAFs
between PCRC and ACRC, for each type of mutation on the

trunk-branch categorization. To correct the effects of tumor
content and read depth, as well as to remove the residuals asso-
ciated with individual mutations, samples and cases, we employed
hierarchical Bayesian analysis, which demonstrated that PCRC
harbored internal branch mutations at clearly higher VAFs than
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ACRC (see Methods; Fig. 3c). We confirmed the same tendency
in cancer cell fractions (CCFs), which were obtained by removing
effects of copy number alterations (CNAs) from VAFs (see
Methods; Supplementary Fig. 10a). Analysis on the ubiquitous-
heterogeneous categorization also reproduced the same result,

although with less clearness (Supplementary Figs. 9c and 10b).
Collectively, these results strongly suggest that evolutionary
principles underlying ITH substantially differ between PCRC and
ACRC; Darwinian evolution plays a more critical role in gen-
erating ITH in PCRC than in ACRC.

7p 7q 8q 13
p

13
q

20
p

20
q

10
p

10
q

17
p

18
p

18
q 6p 6q 8p 17
q

21
q 5p 5q 8p 15
p

15
q

PCRC05_4C
PCRC05_3C
PCRC05_2C
PCRC05_1C

8q 20
p

20
q

18
p

18
q 2p 2q 8p 5q

PCRC06_3C
PCRC06_3A
PCRC06_2A
PCRC06_1A
PCRC06_4A

6p 6q 7p 7q 9p 12
p

12
q

PCRC08_3A
PCRC08_2A
PCRC08_1A
PCRC08_5A
PCRC08_4A
PCRC08_4C

7p 7q 20
p

20
q

17
p

18
p

18
q

PCRC12_2A
PCRC12_1A
PCRC12_4A
PCRC12_5C
PCRC12_4C
PCRC12_3C
PCRC12_2C

21
p

PCRC13_3A
PCRC13_2A
PCRC13_5A
PCRC13_4A
PCRC13_6A
PCRC13_1A

9p 9q 12
p

12
q

13
p

13
q

PCRC15_3C
PCRC15_2A
PCRC15_3A
PCRC15_4A
PCRC15_1A
PCRC15_6A
PCRC15_5A

19
q

PCRC16_3A
PCRC16_2A
PCRC16_4A
PCRC16_1A

8q 21
p 1q 12
p

12
q

19
q

PCRC01_2A
PCRC01_1C
PCRC01_2C
PCRC01_4C
PCRC01_3C

7p 7q 18
p

18
q

PCRC03_4A
PCRC03_3A
PCRC03_2A
PCRC03_1A

a

A
C

R
C

1

A
C

R
C

2

A
C

R
C

3

A
C

R
C

4

A
C

R
C

5

A
C

R
C

6

A
C

R
C

7

A
C

R
C

8

0

5

10

15

20

25

30

# 
of

 a
rm

-le
ve

l C
N

A
s

22q
22p
21q
21p
20q
20p
19q
19p
18q
18p
17q
17p
16q
16p
15q
15p
14q
14p
13q
13p
12q
12p
11q
11p
10q
10p
9q
9p
8q
8p
7q
7p
6q
6p
5q
5p
4q
4p
3q
3p
2q
2p
1q
1p

ACRC
% of cases
with loss

PCRC

100  50 0 50 100100 50 0 50  100 

% of cases
with gain

% of cases
with loss

% of cases
with gain

# 
of

 a
rm

-le
ve

l C
N

A
s

PCRC ACRC PCRC ACRC

0

5

10

15

20 n.s.

Ubiquitous Heterogeneous

Log
2
R

0.5–0.5 0

eb

c

d

P
C

R
C

01

P
C

R
C

03

P
C

R
C

05

P
C

R
C

06

P
C

R
C

08

P
C

R
C

10

P
C

R
C

12

P
C

R
C

13

P
C

R
C

15

P
C

R
C

16

0

5

10

15

20

25

30

# 
of

 a
rm

-le
ve

l C
N

A
s

P = 0.047

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05226-0

6 NATURE COMMUNICATIONS |  (2018) 9:2884 | DOI: 10.1038/s41467-018-05226-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Multiregion analysis of CNAs. Finally, we estimated CNAs from
WES data and comparatively analyzed multiregion CNA profiles
between PCRC and ACRC (Supplementary Fig. 11a–11d). In
contrast to single-nucleotide mutations, our hierarchical Bayesian
analysis demonstrated that the number of CNAs increased during
progression from adenoma through early carcinoma to ACRC
(Supplementary Fig. 11e), consistent with previous studies23–25.
Tumor ploidy profiles estimated from WES data also suggest that
polyploidization was prevailing in ACRC but not in PCRC
(Supplementary Fig. 12). Similar to ITH of mutations, ITH of
CNAs was observed in both PCRC and ACRC (Fig. 4a, Supple-
mentary Figs. 13 and 14). By focusing on chromosomal arm-level
CNAs, we compared the distributions of ubiquitous and hetero-
geneous CNAs between PCRC and ACRC. Overall, ACRC
acquired significantly more ubiquitous CNAs than PCRC, while
the numbers of heterogeneous CNAs were not significantly dif-
ferent (see Methods; Figs. 4b–d; P= 0.047 and 0.16, respectively;
Wilcoxon rank-sum test). It should be noted that all samples were
carcinoma in PCRC05, which harbored the maximum number of
ubiquitous CNAs among PCRCs. By contrast, ACRC7, the ACRC
case with a heterogeneous TP53 mutation, harbored no ubiqui-
tous CNAs; heterogeneous CNAs were observed only in samples
with the TP53 mutation (Supplementary Figs. 2, 5, and 13). We
also found that ACRCs harbored an increased number of ubi-
quitous alterations for some of the chromosomal arms that are
recurrently altered in the CRC population19,23–26. Such CNAs
contain 20q amplification, which is established as a driver event
for CRC progression26–29 (Fig. 4e). Collectively, our data suggest
that CNAs act as a driver and are subject to selective sweep
during progression from PCRC to ACRC.

Discussion
In this study, we thoroughly characterized and compared ITH in
PCRC and ACRC. Although some studies30–32 have examined
ITH of PCRC, no conclusive view has been established. Similar to
ITH in ACRC13, our multiregion sequencing unveiled extensive
ITH in PCRC. In contrast to the neutral evolution model pre-
viously proposed for ACRC13, multiple lines of evidence indicate
that at least a part of ITH of PCRC is shaped by Darwinian
evolution. We found that multiple PCRC cases have evolutionary
trees of forked tree-like shapes, which were not observed for
ACRC. More direct evidence of Darwinian evolution was the
observation that a significantly higher proportion of driver
mutations accumulated as heterogeneous mutations in PCRC
than in ACRC. (For simplicity, we discuss all results of the
ubiquitous-heterogeneous categorization since analyses of the
trunk-branch categorization also produced similar results.) In
particular, heterogeneous mutations in APC and KRAS were
noteworthy; these mutations were completely recognized as ubi-
quitous events in ACRC13,14. Our observation is perfectly sup-
ported by a prescient study that focused on only well-known
driver mutations and LOH and reported that early colorectal
tumors harbored more subclonal alterations than advanced
tumors33. We also demonstrated that VAFs of shared mutations

were higher in PCRC, additionally supporting the Darwinian
evolution model22. We found that the number of somatic
mutations per sample did not differ much between PCRC and
ACRC. Although this finding may appear to contradict the fact
that cancer genomes progressively accumulate mutations, it can
be explained by the higher VAFs of PCRC subclonal mutations,
which increased the sensitivity of mutation detection by WES. We
also found that PCRC tended to harbor fewer ubiquitous muta-
tions and more heterogeneous mutations than ACRC. However,
the small cohort size limited the power of the statistical analysis
(the ten PCRC cases vs. the eight ACRC cases); larger cohort size
is necessary to confirm this tendency.

As for CNAs, their number progressively increased from ade-
noma through early carcinoma to ACRC; the increase in ubi-
quitous CNAs was especially prominent in ACRC. Together with
the observation that mutations in well-known driver genes were
already present in PCRC, these findings suggest that CNAs play
more critical roles in the progression from PCRC to ACRC. This
view is consistent with a recent report that CRISPR–Cas9-
mediated engineering of canonical driver genes was not sufficient
to confer invasive capacity to human intestinal organoids; the
report also found that a chromosomal instability phenotype was
necessary for metastatic behavior34. A number of recent studies
have demonstrated that genome-wide mutational events such as
whole-genome duplication (WGD)4,7,35,36 and chromothripsis36

play essential roles in tumor progression. Although our WES-
based tumor ploidy profiling identified signatures of poly-
ploidization in ACRC but not in PCRC, copy number analysis
with a higher resolution is required to prove that WGD is
involved in the progression from PCRC to ACRC. It is also
possible that chromothripsis delineates a boundary between
PCRC and ACRC; we should explore this possibility in future
studies employing whole-genome sequencing.

Finally, we propose a model of CRC evolution that can simply
explain our data (Fig. 5). In our model, multiple subclones are
generated by driver mutation acquisition and subsequent selective
sweep in PCRC because early tumor growth is inevitably ham-
pered by obstacles such as spatial and nutritional limitation37 and
immune attack38. However, out of the multiple subclones gen-
erated by Darwinian evolution, the parental clone that can con-
quer the obstacles emerges. In addition to a sufficient set of driver
mutations, such a clone possibly acquires driver CNAs that
endow a tumor with malignant phenotypes such as invasion,
angiogenesis, and immune escape, and then it dominantly
regrows by overcoming the obstacles. This evolutionary bottle-
neck establishes all driver mutations composing the parental
clone in PCRC as ubiquitous mutations in ACRC, and the par-
ental clone then branches into numerous subclones by neutral
evolution. This model is consistent with the well-established
multi-step carcinogenesis model of CRC12, in which mutations in
major driver genes such as APC, KRAS, and TP53 are sequentially
accumulated in adenoma and then additional CNAs are acquired
during the progression from adenoma to carcinoma. The neutral
evolution phase in our model is also consistent with the recently

Fig. 4Multiregion analysis of CNAs. aMultiregion CNA profiles of PCRCs. Chromosomal arm-level CNAs were called from theWES data of the ten PCRCs.
Heat maps represent the presence of chromosomal arm-level CNAs (red, gain; blue, loss) for each case, and the shades of color are proportional to log2-
scaled ratios between normalized tumor and normal read depths (log2R). PCRC10, in which no CNAs were detected, was omitted. Samples in each case are
sorted in the same order as in Fig. 1. b, c Bar plots showing the number of ubiquitous and heterogeneous CNAs in each case of the PCRCs (b) and ACRCs
(c). Effects of different number of samples between cases were corrected by downsampling (Methods). d Violin plots showing the distribution of the
number of ubiquitous and heterogeneous CNAs based on b and c. ACRCs harbored a significantly larger number of ubiquitous CNAs than PCRCs (P=
0.047; Wilcoxon rank-sum test), while the number of heterogeneous CNAs in ACRCs is comparable to that in PCRCs (P= 0.16; Wilcoxon rank-sum test).
e Bar plots showing the frequencies of ubiquitous (orange) and heterogeneous (green) CNAs for PCRCs and ACRCs. For ACRCs, CNAs were called from
our previously published WES data of the eight non-hypermutated ACRCs
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proposed Big Bang model14, where a tumor predominantly grows
as a single expansion without selective sweep. The extensive ITH
generated by neutral evolution definitively works as a rich source
of therapy-resistant subclones. However, considering recent
reports that certain subclones that have branched out from a
primary tumor in the early evolutionary phase constitute recur-
rent lesions after chemotherapy or radiotherapy39–42, it is also
possible that subclones that appear in PCRC but that were wee-
ded out by the evolutionary bottleneck remain as minimal resi-
dual clones, eventually contributing to therapeutic resistance.
Further sequencing studies targeting recurrent lesions are
necessary to elucidate more details of CRC evolutionary history.

For a long time after the establishment of the multi-step car-
cinogenesis model12, CRC was assumed to be a clonal cell
population originating from linear clonal evolution. However,
this view has recently been revised by a series of studies proposing
that neutral evolution shapes extensive ITH in ACRC13,14,17. As
an extension of these studies, this study provides a detailed view
of ITH in PCRC and demonstrates that the evolutionary principle
shaping ITH shifts from Darwinian to neutral evolution during
CRC progression. We believe that our model of CRC evolution
not only provides deep insights into the origin of ITH but also
constitutes a foundation for conquering this malignancy.

Methods
Ethics statement. The study design was approved by the institutional review
boards and ethics committees of the patients’ hospitals (Oita University Hospital
Institutional Review Board: Protocol Number P-14-09, Kyushu University Insti-
tutional Review Board: Protocol Number 595-01). The study was conducted
according to the principles expressed in the Declaration of Helsinki. We obtained
written informed consent from all the patients in this study. There were no animal
experiments in the study.

Sample collection and preparation. We obtained 53 samples of colorectal tumors
from ten patients with colorectal LST who underwent endoscopic submucosal
dissection or radical resection at Kyushu University Beppu Hospital (Beppu, Japan)
or Oita University Hospital (Yufu, Japan). These samples were histologically
diagnosed by two qualified pathologists as adenoma or carcinoma in situ. Cancer
cells were only found in the epithelium or lamina propria without vessel invasion.
Following the 2010 WHO classification of tumors of the digestive system, the
pathologists evaluated low- and high-grade dysplasia of each sample, which cor-
responded to adenoma and carcinoma in situ, respectively. Detailed information
about participants and samples is provided in Supplementary Data 1. To use high-
purity tumor samples, we performed microdissection of all frozen multiregion

tumor samples using a Leica Laser Microdissection System (Leica Microsystems,
Wetzlar, Germany), distinguishing between adenoma and carcinoma based on the
diagnosis of the pathologists. However, when the volume of samples that consisted
of both adenoma and early carcinoma was not sufficient, we captured only one of
them. We included the diagnostic information in the sample names: the last
character of the sample name, “A” or “C”, meant “adenoma” or “carcinoma”,
respectively. DNA was extracted from these captured tumor samples and adjacent
normal intestinal mucosa with AllPrep DNA/RNA Mini Kit (Qiagen, Hiden,
Germany)43.

Whole-exome sequencing. Whole-exome capture was performed on all PCRC
samples with the SureSelect Human All Exon V5 Kit (Agilent Technologies, Tokyo,
Japan). The captured targets were subjected to sequencing using HiSeq 2500
(Illumina, San Diego, CA, USA) with the pair-end 100 bp read option. Information
on read depth is provided in Supplementary Data 2. The sequence data were
processed through an in-house pipeline44. Briefly, the sequencing reads were
aligned to the NCBI Human Reference Genome Build 37 hg19 with BWA version
0.7.8 using default parameters (http://bio-bwa.sourceforge.net/). PCR duplicate
reads were removed with Picard (http://www.picard.sourceforge.net). Mutation
calling was performed using the EBcall algorithm45 with the following parameters:
(i) mapping quality score ≥ 20, (ii) base quality score ≥ 15, (iii) both the tumor and
normal depths ≥ 8, (iv) variant reads in tumors ≥ 4, (v) VAF in tumor samples ≥
0.05, (vi) VAF in paired normal samples ≤ 0.1, (vii) minus logarithm of p value of
Fisher’s exact test ≥ 1.3, and (viii) minus logarithm of p value of EBcall ≥ 5. The
filtered mutations were annotated by ANNOVAR ver.2015Dec14 (http://www.
openbioinformatics.org/annovar/). As for ACRC, the WES data obtained in our
previous study13 were reanalyzed by the same pipeline as for PCRC.

Analysis of multiregion mutation profiles. For each case, we first obtained
variants satisfying both the following criteria: (i) it was judged as a somatic
mutation by EBcall in any sample and (ii) its position was covered by more than
ten reads in all the samples. For each of the passed variants, we reexamined the
presence of somatic mutations in each of the samples where EBcall did not judge
the variant as a somatic mutation. In this step, which aimed to rescue false
negatives missed by EBcall, we assumed the variant to be a somatic mutation if the
variant satisfied all the following criteria: (i) VAF in the tumor sample ≥ 0.05, (ii)
VAF ≤ 0.01 in the paired normal sample, and (iii) p value of Fisher’s exact test ≤
0.05. This procedure was applied to each case to obtain a multiregion mutation
profile, and then we defined mutations shared by all the samples in each case and
other mutations as ubiquitous mutations and heterogeneous mutations, respec-
tively. Heterogeneous mutations were further divided into shared mutations, which
were shared by multiple samples, and private mutations, which uniquely existed in
a single sample. Information for all the mutations is provided in Supplementary
Data 3. The multiregion mutation profile obtained for each case was visualized as a
heat map, in which intensities represented VAFs. In the heat map, ubiquitous
mutations were ordered along chromosomal positions; shared mutations were
ordered by a hierarchical clustering; private mutations were sorted for samples and
VAFs. The list of the driver genes indicated in the heat maps was based on the
significantly mutated genes that had been previously reported for CRC18 (Sup-
plementary Table 1). Colors of PCRC sample labels were obtained in the same way
as in our previous study13. Namely, from the multiregional mutation profile of each
case, we also deduced a color-coding scheme to prepare color labels of samples.
The multiregional mutation profile were regarded as an n ×m matrix, whose n
columns and m rows indexed n mutational positions and m samples, respectively.
We applied principle component analysis to the multiregional mutation profile and
obtained the first, second and third loading vectors. By multiplying these loading
vectors, n-dimensional vectors representing mutational profiles of each sample
were reduced into three-dimensional vectors. RGB colors used for sample labels are
finally papered by mixing red, green, and blue proportionally to the three vector
elements. In a color-coding scheme deduced by this approach, color similarity
reflects similarity of mutation profiles between samples. For ACRC samples, we
employed the same colors as used in our previous study13.

Mutation validation by targeted deep sequencing. We performed amplocon-
sequencing of tumor DNA for 73 candidate mutations chosen randomly from
ubiquitous, shared, and private mutations, based on a previously reported proto-
col46. Briefly, regions containing candidate mutations were amplified from 10 ng of
DNA using KOD plus neo (TOYOBO, Osaka, Japan) with primers that were
attached by NotI sequences at the 5′ end. Successful amplification was confirmed
by gel electrophoresis. Amplicons were pooled, purified using the FastGene Gel/
PCR 5 Extraction Kit (Nippon Genetics, Tokyo, Japan), and digested with NotI
restriction enzyme (Takara Bio, Shiga, Japan), according to the instruction manual.
Samples were ligated using T4 DNA polymerase (Takara Bio) and re-purified;
ligated DNA was sonicated into ~200 bp fragments using a Covaris sonicator
(Covaris inc., Massachusetts, USA), and prepared for generation of sequencing
libraries using NEBNext Ultra DNA Library Prep Kit for Illumina (New England
BioLabs, Massachusetts, USA). Libraries were then subjected to deep sequencing on
a Hiseq 2500 instrument. Candidate mutations were considered real if both of the

Normal cell Driver SNV

Darwinian evolution Neutral evolution

Fig. 5 Our model of colorectal cancer evolution. During early tumorigenesis,
multiple subclones harboring heterogeneous mutations on different driver
genes appear and constitute ITH by Darwinian evolution. The tumor is then
confronted with growth limitation before progressing to the late phase of
tumorigenesis. Out of the multiple subclones generated by Darwinian
evolution, the parental clone that can conquer the growth limitation
emerges. In addition to a sufficient set of driver single-nucleotide
mutations, such a clone possibly acquires driver CNAs. The parental clone
is selected to progress locally advanced cancer or metastatic cancer. During
the late phase, extensive ITH is generated by neutral evolution
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following criteria were satisfied: (i) VAF in the tumor ≥ 0.01 and (ii) sequencing
depth ≥ 500.

Construction of evolutionary trees. From the multiregion sequencing data for
each case, an evolutionary tree was constructed using the Treeomics algorithm21

(https://github.com/johannesreiter/treeomics) with default parameters. For every
mutation existing in the multiregion mutation profile, the numbers of variant
reads, read depth, chromosomal coordinates, gene symbol, and substitution pattern
were prepared as input data to Treeomics. Treeomics not only constructs an
evolutionarily tree but also corrects potential sequencing artifacts so that all
mutations have mutation patterns compatible with the topologies of the evolu-
tionary tree. Based on the parts of the tree that the mutations constituted, we
obtained trunk, branch, internal branch, and external branch mutations, which
were refined versions of ubiquitous, heterogeneous, shared and private mutations,
respectively. To remove potential sequencing artifacts, Treeomics also employs
mutation filters, which filtered out 1.3% of our input mutations. Information about
the trunk-branch categorization is also provided in Supplementary Data 3. We
were unable to apply Treeomics to the ACRC3 data, which contained 21 samples,
due to insufficient memory on our computer. To address this problem, we divided
the ACRC3 data into two parts which corresponded to two apparent sample
clusters in the multiregion profiles. After the divided data were subjected to
Treeomics, an evolutionary tree was constructed by merging the results. Except for
ACRC2 and ACRC3, the robustness of the evolutionary tree inference was
examined on 1000 bootstrapping samples from the input mutations. For ACRC2
and ACRC3, only 50 bootstrapping samples were obtained due to the memory
limitation. The inferred evolutionary trees were annotated with the same driver
gene list as used for the heat maps of the multiregion mutation profiles (Supple-
mentary Table 1). For detection of subclonal mixing, we reconstructed evolutionary
trees with the “-u” option and the obtained information of subclonal mixing was
added to the trees constructed without the “-u” option (Supplementary Figs. 6
and 7).

Analysis of CNAs. To detect CNAs from WES data, we used a software tool,
EXCAVATOR47 (http://sourceforge.net/projects/excavatortool/), that not only
reports chromosomal segments subjected to CNAs but also outputs the log-
transformed ratio of copy number intensities between tumor and normal samples
(log2R) for each locus. We used twice the median of the ubiquitous mutation allele
frequencies for each sample as the cellularity parameters. CNAs whose length was
larger than 50% of the chromosomal arm were classified as chromosomal arm-level
CNAs, while the others were classified as focal CNAs. For each case, we made a
multiregion arm-level CNA profile, which presented an average log2R for each of
the chromosomal arms subjected to CNAs. For each of the chromosomal arms that
EXCAVATOR reported to have CNAs in any sample, we reexamined a presence of
CNAs in each sample where EXCAVATOR did not report the chromosomal arm-
level CNA; we assumed that a CNA existed if the absolute value of log2R averaged
along the chromosomal arm was greater than 0.15. We also prepared a multiregion
focal CNA profile for each case, by focusing on candidate loci that were previously
reported to be recurrently altered19,26. For each candidate locus that had overlap
with EXCAVATOR-deduced focal CNAs in any sample, we calculated log2R
averaged along the locus for each sample. We assumed that a CNA existed if the
absolute value of the averaged log2R was greater than 0.15.

Estimation of tumor ploidy. To estimate tumor ploidy from WES data, we used
two software tools, FACETS48 (https://github.com/mskcc/facets) and sequenza49

(https://cran.r-project.org/web/packages/sequenza/index.html). In FACETS, we
prepared germ line polymorphic sites cataloged in the Human Genetic Variation
Database version 2.30 (http://www.hgvd.genome.med.kyoto-u.ac.jp) as a reference.
Other parameters were set by default in both FACETS and sequenza.

Comparison of the numbers of ubiquitous and heterogeneous alterations
between cases. We reanalyzed our previously published multiregion WES data
sets of ACRC13 in the same way that PCRC data were analyzed for calling
mutations and CNAs. Although the data set contained nine ACRCs, one hyper-
mutated case was excluded in this study. The prefix “case” in the previous sample
names was also replaced with “ACRC”. Each of the ten PCRC and eight ACRC
cases had a different number of samples from 4 to 21, which led to an unfair
comparison of the numbers of ubiquitous and heterogeneous alterations. We
addressed this problem by employing a down-sampling approach, where the
numbers of ubiquitous and heterogeneous alterations were estimated from ran-
domly sampled sub-datasets of an equal number of samples across all cases, using
the following steps: (i) for each case, we obtained every sub-dataset with four
samples, which was the minimum number of samples in our data set; (ii) for each
sub-dataset, the numbers of ubiquitous and heterogeneous alterations were cal-
culated (here, since heterogeneous alterations were associated with each sample, we
took the median across samples as the number of the heterogeneous alterations);
and (iii) medians across all sub-datasets were assumed to be corrected numbers of
ubiquitous and heterogeneous alterations. An explanatory example of our down-
sampling approach is provided in Supplementary Fig. 15.

Comparison of the numbers of alterations between different tumor stages. To
compare the number of mutations between different tumor stages, we employed
hierarchical Bayesian analysis (Supplementary Fig. 16), which enabled us to esti-
mate the mean number of mutations in each tumor stage, after removing the
residuals associated with samples and cases in which the mutations were found. As
the tumor stages, we assumed the following three categories: T(SNV)= {adenoma,
carcinoma, ACRC}. Let i and j denote the indices for samples and cases, respec-
tively. From multiregion sequencing data of I cases, each of which contains Ji
samples, we obtain the number of mutations in the j-th sample of the i case
(hereafter, simply referred as to sample ij) as nij(SNV) (i= 1,…, I and j= 1,…, Ji).
Sample ij is associated with any of the three tumor stages: tij∈ T(SNV). We assume
that nij(SNV) is sampled from a Poisson distribution: nij(SNV) ~ Poisson(μij(SNV)),
where μij(SNV) is expressed by the main term associated with tumor stages and the
residual term associated with samples and cases: μij(SNV) ~ exp(βij(SNV)+ rij(SNV)).
The main term βij(SNV) is obtained by substituting the tumor stage of sample ij, tij,
into variable βt(SNV), which represents the mean number of mutations in tumor
stage t∈ T(SNV): βij(SNV)← βtij(SNV). To ensure the robustness of parameter esti-
mation, we employed a Cauchy distribution as the prior distribution for βt(SNV):
βt(SNV) ~ Cauchy(β(SNV), τ(SNV)). The two hyper-parameters are also sampled from
Cauchy and half-Cauchy50 hyper-priors, respectively: β(SNV) ~ Cauchy(β0(SNV),
τ0(SNV)) and τ(SNV) ~ Half-Cauchy(λ0(SNV)), where we set β0(SNV)= 0, τ0 (SNV)= 1,
and λ0(SNV)= 1. The residual term rij(SNV) is hierarchically sampled from two
Cauchy distributions: ri(SNV) ~ Cauchy(r0 (SNV), t(SNV)) and rij(SNV) ~ Cauchy
(ri(SNV), ti(SNV)). We set r0(SNV)= 1 while the scale parameters are sampled from
half-Cauchy hyper-priors: t(SNV) ~ Half-Cauchy(l0(SNV)) and ti(SNV) ~ Half-Cauchy
(l1(SNV)), where we set l0(SNV)= 1 and l1(SNV)= 1. For each of the 123 samples in
the ten PCRCs and eight ACRCs, the number of all mutations and tumor stage was
prepared as nij(SNV) and tij, respectively. We estimated the posterior distribution of
βt(SNV) by running MCMC on JAGS 4.2.051 with the following parameter settings:
number of chains= 20, number of burn-in iterations= 100,000, number of total
iterations= 200,000 and thinning interval= 5. Convergence of Markov chains was
confirmed by the Gelman-Rubin convergence diagnostic52. The density plot in
Supplementary Fig. 1c shows the distribution of the MCMC samples of βt(SNV) for
each tumor stage on the exponential scale. To compare of the number of CNAs, the
numbers of CNAs in the 123 samples were prepared and processed in the same
way, except for the MCMC parameter settings: number of chains= 20, number of
burn-in iterations= 50,000, number of total iterations= 100,000 and thinning
interval= 5 (Supplementary Fig. 11e).

Comparison of VAFs between different categories of mutations. Hierarchical
Bayesian analysis was employed to compare VAFs between different categories of
mutations, similarly to the comparison of the numbers of alterations between
different tumor stages (Supplementary Fig. 17). We estimated the mean VAFs for
each category of mutations, after correcting for the effects of tumor content and
read depth, as well as removing the residuals associated with individual mutations,
samples and cases in which the mutations were found. We assume that mutations
are categorized into the following six categories: T(VAF)= {PCRC, ACRC} × {trunk,
internal branch, external branch} (or {PCRC, ACRC} × {ubiquitous, shared, pri-
vate} on the ubiquitous-heterogeneous categorization). In addition to the case
index i and sample index j, let k denote the index for mutations. We assume that Kij

(=nij(SNV)) mutations are identified in sample ij and the k-th mutation (hereafter,
simply referred as to mutation ijk) is categorized as tijk (k= 1,…,Kij). For mutation
ijk, we obtain the numbers of total and variant reads, which are represented as dijk
and bijk, respectively. We assume that bijk is sampled from the binomial distribution
with parameters dijk (the number of trials) and Pijk(m) (the success probability): bijk
~ Binomial(dijk, Pijk(m)). Pijk(m) is a modified VAF, which is obtained by multiplying
the true VAF and the tumor content of sample ij: Pijk(m)← Pijk(t) × TCij. As with
μij(SNV), Pijk(t) is expressed by the main term associated with mutation categories
and the residual terms associated with individual mutations, samples and cases:
Pijk(t) ~ logistic(βijk(VAF)+ rijk(VAF)). The main term βijk(VAF) is obtained by sub-
stituting the category of mutation ijk, tijk, into variable βt(VAF), which represents the
mean VAF of mutations of category t∈ T(VAF): βijk(VAF)← βtijk(VAF). βt(VAF) is
hierarchically sampled from Cauchy and half-Cauchy distributions in the same way
as βt(SNV). The residual term rijk(VAF) is sampled from a Cauchy distribution:
rijk(VAF) ~ Cauchy(rij(VAF), tij(VAF)). rij(VAF) is obtained in the same way as rij(SNV),
while tij(VAF) is sampled from a half-Cauchy hyper-prior: tij(VAF) ~ Half-Cauchy
(l2(VAF)), where we set l2(VAF)= 1. For each of the mutations found in the
123 samples of the 10 PCRCs and 8 ACRCs, the numbers of total and variant reads
and the mutation categories were prepared as dijk, bijk and tijk. For each sample, the
tumor content estimated by Treeomics was used as TCij. The posterior distribution
of βt(VAF) was estimated by MCMC on JAGS with the following parameter settings:
number of chains= 20, number of burn-in iterations= 50,000, number of total
iterations= 50,000 and thinning interval= 5. The density plot in Fig. 3c and
Supplementary Fig. 9c show the distribution of the MCMC samples of βt(VAF) for
each mutation category after logistic conversion.

Comparison of CCFs between different categories of mutations. To compare
CCFs between different categories of mutations, we used a hierarchical Bayesian
model similar to the one for the comparison of VAFs (Supplementary Fig. 18).
Instead of Pijk(t)and Pijk(m), we introduced Cijk and Pijk, which represent CCF and
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VAF, respectively. We also added CNijk, which represents the absolution copy
number of the locus where mutation ijk exists. VAF is then represented as follows;
Pijk ← TCij•Cijk/{(1−TCij)•2+ TCij•CNijk}53. Except for these points, the CCF
model is the same as the VAF model. As input data, we prepared absolute copy
numbers estimated by EXCAVATOR in addition to the input data used for the
VAF model. Mutations on sex chromosomes were removed from the input to the
CCF analysis. The posterior distribution of βt(CCF) was estimated by MCMC on
JAGS with the following parameter settings: number of chains= 20, number of
burn-in iterations= 200,000, number of total iterations= 200,000 and thinning
interval= 5. The density plot in Supplementary Fig. 10 shows the distribution of
the MCMC samples of βt(CCF) for each mutation category after logistic conversion.

Data availability. All WES data have been deposited in the Japanese Genotype-
phenotype Archive with accession number JGAS00000000092 [https://humandbs.
biosciencedbc.jp/en/hum0095-v1].
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