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Abstract: Maize is the third most important cereal crop worldwide. However, its production is
vulnerable to heat stress, which is expected to become more and more severe in coming years.
Germplasm resilient to heat stress has been identified, but its underlying genetic basis remains poorly
understood. Genomic mapping technologies can fill the void, provided robust markers are available
to tease apart the genotype-phenotype relationship. In the present investigation, we used data from
an RNA-seq experiment to identify single nucleotide polymorphisms (SNPs) between two contrasting
lines, LM11 and CML25, sensitive and tolerant to heat stress, respectively. The libraries for RNA-seq
were made following heat stress treatment from three separate tissues/organs, comprising the top leaf,
ovule, and pollen, all of which are highly vulnerable to damage by heat stress. The single nucleotide
variants (SNVs) calling used STAR mapper and GATK caller pipelines in a combined approach to
identify highly accurate SNPs between the two lines. A total of 554,423, 410,698, and 596,868 SNVs
were discovered between LM11 and CML25 after comparing the transcript sequence reads from
the leaf, pollen, and ovule libraries, respectively. Hundreds of these SNPs were then selected to
develop into genome-wide Kompetitive Allele-Specific PCR (KASP) markers, which were validated
to be robust with a successful SNP conversion rate of 71%. Subsequently, these KASP markers were
used to effectively genotype an F2 mapping population derived from a cross of LM11 and CML25.
Being highly cost-effective, these KASP markers provide a reliable molecular marker toolkit to not
only facilitate the genetic dissection of the trait of heat stress tolerance but also to accelerate the
breeding of heat-resilient maize by marker-assisted selection (MAS).
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1. Introduction

Maize ranks third behind wheat and rice as a staple cereal crop worldwide [1]. In terms of yield,
it is one of the most productive grain crops. However, its production is negatively impacted by high
temperature, which is likely to become a major stress in the future because of climate change [2,3].
Exposure to temperatures above 35 ◦C for a prolonged period is unfavorable for the growth and vigor
of most maize germplasm in general. But the heat stress caused by high temperatures (around 40 ◦C
and beyond) is especially damaging during flowering, reducing drastically the viability of pollen and
receptivity of silks, thereby plunging grain yields [4,5]. Fortunately, some maize lines do exist that are
able to withstand heat stress caused by these extreme temperatures, however, the genetic basis and
mechanisms underlying these heat-resilient lines remain poorly studied. Genomic studies provide a
promising tool to locate and identify genes/quantitative trait loci (QTL) responsible for the trait of heat
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resilience, thereby opening up opportunities to develop valuable genetic and molecular markers for
marker-assisted selection (MAS) to produce climate-resilient crops. Among the different molecular
markers, single nucleotide polymorphism (SNPs) are widely used in the current plant breeding
programs due to their low assay cost, high genomic abundance, bi-allelic nature, locus-specificity,
low mutation rate, potential for high throughput analysis, and relatively low genotyping error rates [6,7].
Hence, SNPs are the preferred markers for germplasm characterization, QTL mapping by genetic
linkage or association studies, allele mining, and genomic selection studies [7,8].

The genome sequencing data obtained either experimentally from the next-generation sequencing
(NGS) studies or gleaned from various databases available publicly have made it relatively simple and
cheap to mine genetic variation in crop plants using various bioinformatics approaches [9]. Most of
the methods detecting variation are based on sequencing data derived either from whole-genome
sequencing (WGS) or whole-exome sequencing (WES) [10,11]. In the last few years, NGS approaches
in the form of RNA-seq have been co-opted to provide global insights into the gene expression patterns
to understand the genetic networks and metabolic pathways involved in maize responses to heat
stress [12–18]. Apart from gene expression analysis, RNA-seq can also be used to identify genomic
variants in expressed genes alongside WGS and WES [19]. In fact, RNA-seq has emerged as a cheaper
and more efficient alternative to DNA sequencing platforms involving either WGS or WES [19,20].
While it remains challenging to detect genetic variants by RNA-seq because of the complexity of the
transcriptome and high false positive rates [21], there are multiple advantages in carrying out SNP
discovery using RNA-seq data. By providing an RNA signature or phenotype for a trait of interest,
it allows genes and SNPs to be prioritized for marker development for a thorough understanding of
that trait by genetic dissection [22,23]. In addition, by providing markers specifically associated with
the trait of interest, it facilitates crop genetic improvement program by MAS [10,24,25].

The whole genome or transcriptome sequencing-based genome-wide SNP (variant) calling
pipelines involve three steps: (i) pre-processing of the raw reads, (ii) mapping of cleaned reads to a
reference genome, and (iii) identification of sequence variants (SNPs/InDels). Firstly, raw sequence
reads obtained using NGS are processed by different tools to remove low quality reads and trim the
adapter sequences, and only high quality (HQ) reads with the quality scores of Phred33 or Phred64
are retained. Different NGS data processing tools are available for quality check and cleaning of
raw reads [26,27]. The mapping of cleaned reads to a reference genome is the next important step
in variant calling pipelines. Various mappers (aligners or assemblers) are available with different
algorithms and criteria for the alignment of cleaned reads to reference genomes [9,28,29]. However,
the outcome of mapping is widely influenced by the choice of mapping tools and parameters [29].
Lastly, SNP callers or variant callers are used in variant calling, and single nucleotide variants (SNVs)
or small insertions/deletions (InDels) can be identified [30,31]. Among the various available mappers
and callers, genome-guided, splice-aware assembly mapper STAR (Spliced Transcripts Alignment to a
Reference) has the highest performance compared to other mappers [28], whereas, GATK (Genome
Analysis Toolkit) [30] caller has the highest accuracy in combination with most mappers [29].

The SNP genotyping data can be obtained using any of the numerous uniplex or multiplex
platforms that combine a variety of chemistries, detection methods, and reaction formats [32,33].
Some common ones are TaqMan, Kompetitive Allele-Specific PCR (KASP), and rhAmp, however,
the selection of the optimal platform depends on the size of the sample, number of markers,
assay platform, cost-effectiveness, and accuracy [34]. The KASP uniplex assay system has gained
wide popularity not only because of the advantages of having combined PCR amplification with
fluorescent detection but also because of its amenability to high throughput and automation that
makes it very cost-effective [7,33]. The KASP marker system has already been used for genetic and
genotyping analysis in many crop plants including pigeon pea [35], chickpea [36], maize [37], wheat [38],
and rice [39–41].

Recently, we performed RNA-seq analysis on two contrasting maize inbreds that differ in sensitivity
to heat stress [42]. The inbred extremely sensitive or susceptible to heat stress was LM11, whereas the
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tolerant inbred was CML25. Under heat stress, the susceptible inbred LM11 exhibited top leaf firing,
tassel blast, pollen sterility, and reduced pollen shedding duration, thereby resulting in small ears,
reduced kernel number, kernel weight, and yield [42]. The tolerant inbred CML25 endured high heat
stress without symptoms, and with no yield penalties [42]. We identified more than 2000 genes that
underwent differential regulation in response to heat treatment [42]. While a number of reports have
been published on transcript profiling studies aimed at identifying maize heat stress-related genes,
none seem to have taken advantage of the information generated to develop KASP assay markers
that could be ideally used in breeding programs. Therefore, this study was undertaken in maize with
the following objectives: (i) identification of genome-wide SNP markers from transcriptomics data,
(ii) development of novel KASP assays for cost-effective SNP genotyping, and (iii) validation of KASP
assay markers using parental inbred lines LM11 (HS) and CML25 (HT) and an F2 mapping population
derived from the cross of LM11 × CML25. This study reports the compilation of informative SNP data
sets and the development and validation of KASP assays.

2. Results

2.1. Mapping of High-Quality (HQ) Reads to Reference Genome

The high quality (HQ) reads from the leaf, pollen and ovule RNA-seq libraries of both LM11
and CML25 were cleaned and then mapped to the B73 reference genome using assembly tool STAR
2-pass method v2.5.2b (https://github.com/alexdobin/STAR) with default parameters. A summary
of all the mapped reads is given in Table 1. For LM11, the number of total cleaned reads for the
leaf, pollen and ovule libraries were 27,014,405, 18,415,967, and 21,603,284, respectively. Out of
these, 24,077,296 (89.13%) of the leaf, 14,657,912 (79.58%) of the pollen, and 10,875,298 (50.34%) of
the ovule reads were uniquely mapped to individual loci in the B73 reference genome. In contrast,
1,291,087 (4.78%), 1,410,947 (7.66%), and 5,902,841 (27.32%) reads from the leaf, pollen, and ovule,
respectively were mapped to multiple loci in the reference genome. There were a number of reads
that were too short to be mapped against the B73 genome, and their proportion was 5.31%, 10.40%,
and 5.47% in the leaf, pollen, and ovule libraries, respectively. In addition, some other reads that did
not find counterparts in the reference genome were 0.28%, 0.26%, and 3.19% from the leaf, pollen,
and ovule, respectively (Table 1).

Table 1. Summary statistics of LM11 and CML25 reads mapped to B73 reference genome.

Parameters
LM11 CML25

Leaf Pollen Ovule Leaf Pollen Ovule

Number of input reads 27,014,405 18,415,967 21,603,284 24,873,578 21,310,663 26,208,530

Average input read length (bp) 292 292 292 291 292 291

Uniquely mapped reads number 24,077,296 14,657,912 10,875,298 21,152,840 17,387,192 21,286,482

Uniquely mapped reads (%) 89.13 79.58 50.34 85.04 81.59 81.22

Average mapped length (bp) 288.67 287.76 288.43 287.61 288.06 287.17

Number of reads mapped to
multiple loci 1,291,087 1,410,947 5,902,841 1,308,873 1,438,295 2,235,321

Reads mapped to multiple loci (%) 4.78 7.66 27.32 5.26 6.75 8.53

Reads unmapped: too short (%) 5.31 10.40 5.47 8.86 10.60 8.74

Reads unmapped: other (%) 0.28 0.26 3.19 0.30 0.42 0.35

In CML25 inbred, a total of 24,873,578, 21,310,663, and 26,208,530 cleaned reads were counted in
the leaf, pollen, and ovule libraries, respectively. Out of these, 21,152,840 (85.04%), 17,387,192 (81.59%),
and 21,286,482 (81.22%) reads from the leaf, pollen, and ovule, respectively were mapped to unique
sites or loci in the B73 reference genome. The reads that mapped to multiple loci were 1,308,873 (5.26%),
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1,438,295 (6.75%), and 2,235,321 (8.53%) from the leaf, pollen, and ovule, respectively. Among the
unmapped reads from the leaf, pollen and ovule libraries, respectively, 8.86%, 10.60%, and 8.74% were
too short to be matched with the reference genome. The reads that did not map for other reasons were
0.30%, 0.42%, and 0.35%, respectively, in the leaf, pollen, and ovule samples (Table 1).

The average length of the mapped forward and reverse (FR) paired-end reads was approximately
292 bp in the three libraries from both LM11 and CML25 (Table 1, Figure S1). The percentage of
uniquely mapped reads in LM11 ranged from 50.34 to 89.13, whereas it ranged from 81.22 to 85.04 in
CML25. The lowest number of uniquely mapped reads was from the LM11 ovule sample (50.34%),
and the highest number of uniquely mapped reads (89.13%) was from the LM11 leaf sample (Table 1).

2.2. Variant Calling Using Genome Analysis Toolkit (GATK) SNP Caller

On comparing the reads of the inbred LM11 with the B73 reference genome, the numbers of
variants identified from the leaf, pollen and ovule libraries were found to be 471,442, 308,187 and
418,789, respectively. Out of the 471,442 variants identified from the leaf library, 349,470 were SNPs
and 121,972 were InDels (Figure 1a). In the sample derived from the pollen, 244,340 of the variants
were SNPs and 63,847 were InDels (Figure 1b). Likewise, out of the 418,789 variants identified from
the ovule, 318,100 were SNPs and 100,689 were InDels (Figure 1c). The number of SNPs varied among
the chromosomes, and the average number (variant rate) was 4461, 6819, and 5016 in the leaf, pollen,
and ovule samples, respectively (Table 2).

Table 2. Chromosome-wise distribution of variants in LM11.

Chromosome
Length

(bp)
LM11 Leaf LM11 Pollen LM11 Ovule

Variants Variant Rate Variants VariantRate Variants Variant Rate

1 307,041,717 73,811 4159 46,237 6625 65,232 4694
2 244,442,276 56,785 4304 35,385 6895 49,689 4905
3 235,667,834 51,722 4556 33,505 7019 44,373 5297
4 246,994,605 44,735 5521 32,385 7613 41,052 6002
5 223,902,240 54,162 4133 35,380 6310 48,434 4608
6 174,033,170 39,028 4459 26,073 6659 35,112 4943
7 182,381,542 38,371 4753 24,981 7284 35,189 5170
8 181,122,637 43,402 4173 27,336 6610 38,038 4749
9 159,769,782 35,597 4488 24,002 6640 32,400 4917

10 150,982,314 34,529 4372 22,903 6579 29,270 5143

Total 2,106,338,117 472,142 4461 * 308,187 6819 * 418,789 5016 *

* Average variant rate.

For the other inbred (CML25), the comparison of the total reads with the reference genome identified
438,499 variants from the leaf sample; 287,527 variants from the pollen sample; and 584,809 variants
from the ovule sample. Of the total variants in the leaf sample, 326,047 were SNPs and 112,452
were InDels (Figure 1a). In the pollen sample, these variants were divided into 225,294 SNPs and
62,233 InDels (Figure 1b), and in the ovule 441,556 and 143,253 variants were SNPs and InDels,
respectively (Figure 1c). Again, the number of SNPs varied among the chromosomes, with the average
variant rate being 4795, 7313, and 3594 in the leaf, pollen, and ovule, respectively (Table 3).

Overall, the highest number of variants was observed in the CML25 ovule library and the
lowest number in the CML25 pollen library. To look into the distribution of variants across different
chromosomes, the variants (SNPs and InDels) density in the leaf, pollen and ovule samples of LM11
and CML25 were plotted for each chromosome in the non-overlapping window of 1000/kb by using
the R package circlize v0.4.10 (https://cran.r-project.org/web/packages/circlize/index.html) (Figure 2).
Uneven distribution of variants across the 10 maize chromosomes was observed. The highest density of
variants was observed in chromosome 1, whereas the lowest variant density was found in chromosome
10 in all the libraries of both LM11 and CML25 (Figure 2, Tables 2 and 3).

https://cran.r-project.org/web/packages/circlize/index.html


Int. J. Mol. Sci. 2020, 21, 7386 5 of 21

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 23 

 

numbers of variants identified as unique to LM11 were 293,683, 215,679, and 215,424 in the leaf, 
pollen, and ovule libraries, respectively. Likewise, 260,740, 195,019, and 381,444 variants were unique 
or specific to CML25 in the leaf, pollen, and ovule, respectively. The total number of variants that 
were identified as monomorphic between LM11 and CML25 were 170,718, 89,249, and 197,023, 
respectively, in the leaf, pollen, and ovule samples. In the third category of overlapping variants 
between LM11 and CML25, there were 7,041, 3,259, and 6,342 variants in the leaf, pollen, and ovule 
libraries, respectively (Figure 3). 

 

Figure 1. Variants identified in LM11 and CML25 with B73 reference mapping using Genome 
Analysis Toolkit (GATK) platform. (a) leaf variants, (b) pollen variants, (c) ovule variants. 

(b) 

(c) 

(a) 

Figure 1. Variants identified in LM11 and CML25 with B73 reference mapping using Genome Analysis
Toolkit (GATK) platform. (a) leaf variants, (b) pollen variants, (c) ovule variants.

Although the initial mapping of the reads and variant calling was done against the reference
genome of B73, our ultimate goal was to identify SNVs that are unique or specific to LM11 and CML25.
Therefore, the VCFtools (https://sourceforge.net/projects/vcftools/files/) analyses were performed to
compare the output Variant Call Format (VCF) file of LM11 and CML25. Based on these comparisons,
the variants were categorized into three different types-unique, monomorphic, and overlapping.
The unique variants are those that are specific to either LM11 or CML25. The monomorphic or
common variants have the same SNP position in LM11 and CML25 but polymorphic with the B73
reference genome. The overlapping variants are the non-matching overlapping sites in LM11 and
CML25 with reference to the B73 genome. Based on these criteria, the numbers of variants identified as
unique to LM11 were 293,683, 215,679, and 215,424 in the leaf, pollen, and ovule libraries, respectively.

https://sourceforge.net/projects/vcftools/files/
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Likewise, 260,740, 195,019, and 381,444 variants were unique or specific to CML25 in the leaf, pollen,
and ovule, respectively. The total number of variants that were identified as monomorphic between
LM11 and CML25 were 170,718, 89,249, and 197,023, respectively, in the leaf, pollen, and ovule samples.
In the third category of overlapping variants between LM11 and CML25, there were 7041, 3259,
and 6342 variants in the leaf, pollen, and ovule libraries, respectively (Figure 3).

Table 3. Chromosome-wise distribution of variants in CML25.

Chromosome
Length

(bp)
CML25 Leaf CML25 Pollen CML25 Ovule

Variants Variant Rate Variants Variant Rate Variants Variant Rate

1 307,041,717 69,000 4439 44,550 6878 91,423 3348
2 244,442,276 51,818 4711 32,465 7518 70,413 3464
3 235,667,834 48,352 4865 31,409 7489 64,403 3653
4 246,994,605 41,606 5923 29,443 8372 56,537 4359
5 223,902,240 51,231 4363 32,303 6922 67,852 3293
6 174,033,170 36,881 4709 24,613 7057 49,337 3517
7 182,381,542 35,354 5152 24,164 7538 46,977 3874
8 181,122,637 40,237 4492 26,764 6755 52,739 3429
9 159,769,782 32,948 4843 21,679 7361 43,906 3633

10 150,982,314 31,072 4850 20,137 7487 41,222 3656

Total 2,106,338,117 438,499 4795 * 287,527 7313 * 584,809 3594 *

* Average variant rate.
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Figure 3. Classification of variants into different categories in CML25 and LM11. (a) leaf variants,
(b) pollen variants, (c) ovule variants.

2.3. Development and Validation of Kompetitive Allele Specific PCR (KASP) Markers

For the development of KASP assay markers, the polymorphic SNPs identified between the leaf
libraries of LM11 and CML25 were used. These variants were filtered further to search for suitability
of SNPs for KASP assay development. After filtering, out of 293,683 unique variants in the LM11 leaf,
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only 149,435 SNPs were retained. Likewise, out of 260,740 unique variants in CML25 leaf, only 134,491
were retained. These filtered SNPs were further subjected to more stringent selection by culling SNPs
that were within 20 bp of each other. Finally, a total number of 129,804, and 117,550 SNPs were
retained for LM11 and CML25, respectively. Next, a total of 100 genome-wide SNPs (10 SNPs per
chromosome) were chosen to cover the entire genome for KASP assay development. The list of the
KASP markers along with the flanking sequences and chromosomal locations are given in supporting
data S1. The primer sequences are presented in supporting data S2, and schematic representation of
KASP assay primers are presented in Figure 4.
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(8%) failed to generate a useful amplification signal and thus were unusable (Figure 5). 

(a) 

(b) 

bp 

bp 

Figure 4. Allele specific forward and common reverse primers designed for Kompetitive Allele Specific
PCR (KASP) assay marker MKAM_04_031. (a) allele X (LM11), (b) allele Y (CML25).

These KASP assay markers have been designated as maize KASPar assay markers, MKAMs in
short. All 100 MKAMs were validated on the parental lines LM11 and CML25, and subsequently
genotyped on ninety F2 mapping population derived from the cross LM11 × CML25, indicating
that this SNP-based KASP assay markers could be used effectively in maize heat resilience breeding
program. 71 (71%) of these MKAMs were found to be polymorphic, while 21 (21%) were monomorphic
and/or heterozygous type and were deemed unusable as markers. The remaining 8 (8%) failed to
generate a useful amplification signal and thus were unusable (Figure 5).
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Figure 5. Snapshots showing single nucleotide polymorphism (SNP) genotyping in parental inbred
line LM11, CML25, and their F2 mapping populations with KASP marker assays. The snapshots
show (a) polymorphic pattern, occurrence of allele specific to LM11 (blue spots) and CML25
(red spots), and heterozygosity for the corresponding alleles (green spots) in F2 mapping population.
(b) occurrence of only one allele (blue spots), and heterozygosity for corresponding allele (green spots).
(c) monomorphic pattern, occurrence of allele specific to LM11 (blue spots). (d) monomorphic pattern,
occurrence of allele specific to CML25 (red spots), and missing data (pink spot). (e) the majority
of missing data (pink spots), and one allele (red spots), occurrence of failed amplification signals
i.e., invalid markers, in all snapshots black spots represent no template controls (NTCs).

2.4. Impact Analysis and Functional Classification of SNPs

In terms of the types of SNP shifts, transition (Ts) and transversion (Tv) have a larger effect on the
regulation of gene expression. A transition is a point mutation, which converts a purine nucleotide into
another purine (A ↔ G) or a pyrimidine nucleotide into another pyrimidine (C ↔ T). Transversion
refers to a purine (A or G) being substituted for a pyrimidine (C or T), or vice versa. The Ts/Tv mutation
ratios of SNPs produced from GATK were 1.62, 1.83, and 1.64, respectively, in leaf, pollen, and ovule
of LM11. Similarly, CML25 leaf, pollen, and ovule showed 1.64, 1.83, and 1.66 Ts/Tv mutation ratios,
respectively. In our previous study, it was observed that numbers of differentially expressed genes
(DEGs) identified in leaf were higher in number than pollen and ovule; and indicates leaf is most
responsive to heat stress [42]. Therefore, impact analysis of identified SNPs in LM11 and CML25 leaf
was performed using SnpEff tool (https://pcingola.github.io/SnpEff/). Based on the SnpEff results,
SNPs of LM11 and CML25 leaf showed the highest impact compared to pollen and ovule SNPs, and it
included exon followed by downstream impacts (Figure 6). Further, SNP impacts on the functionality
of the genes were categorized into four types: modifier, low, moderate, and high. In LM11 leaf, SNPs
with modifier (68.28%), low (12.89%), moderate (8.44%), and high (10.40%) impacts were identified.

https://pcingola.github.io/SnpEff/
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Similarly, in CML25 leaf, SNPs with modifier (67.44%), low (13.12%), moderate (8.66%), and high
(10.78%) impacts were detected. The majority of SNPs in the LM11 leaf sample were identified as
exonic variants (22.69%), and downstream variants (21.72%), followed by upstream (13.14%), intron
(11.54%), 3′ UTR (11.36%), splice region (8.96%), synonymous (7.18%), 5′ UTR (7.12%), and missense
(5.93%) variants (Figure 6). In the CML25 leaf sample, SNPs were detected as exonic variants (23.18%),
and downstream variants (20.72%), followed by upstream (13.14%), intron (11.63%), 3′ UTR (11.47%),
splice region (9.25%), synonymous (7.18%), and 5′ UTR (7.32%) variants (Figure 6).
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2.5. Variants Detected in the Heat Stress Response (HSR) Genes

In this study, we observed point mutations (Ts and Tv) in the significant heat stress response
(HSR) genes based on comparisons of SNP variants between LM11 and CML25. These HSR genes
included transcription factors (MYB, AP2/EREBP and NAC), brassinosteroids (BRs), heat shock proteins
(HSPs) viz. HSP70 and DNAJ, genes related to photosynthesis (Rubisco), antioxidation (APX and
Glutathione S-transferase), and kinases (Table 4). Metabolic pathways analysis using MapMan tools
(https://mapman.gabipd.org/) revealed that HSR genes were involved in oxidation-reduction process,
response to reactive oxygen species (ROS), photosynthesis (photosystem I and chloroplast thylakoid
membrane), cytochrome-c peroxidase activity, photorespiration, secondary metabolism (terpenes and
flavonoids), amino acid metabolism, nucleotides metabolism, and C-1 metabolism (Figure 7).

https://mapman.gabipd.org/
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Table 4. Heat stress response (HSR) genes with SNP variants in LM11 and CML25.

Gene Id Chromosome SNP
Position

LM11
Allele

CML25
Allele Gene Descriptions

Zm00001d028325 1 30799147 G C brs1;brassinosteroid synthesis1

Zm00001d029149 1 60531451 A G Zinc finger protein
CONSTANS-LIKE 13

Zm00001d029892 1 92734626 T C Metalloendoproteinase 1-MMP

Zm00001d033805 1 274242109 G A Glutamate decarboxylase 1

Zm00001d002597 2 16399614 T G Rho GTPase-activating protein 3

Zm00001d003643 2 51510367 A G L-ascorbate peroxidase S
chloroplastic/mitochondrial

Zm00001d006036 2 195894333 G C Heat shock 70 kDa protein 9
mitochondrial

Zm00001d041701 3 133891803 G A Acyl carrier protein 2 chloroplastic

Zm00001d048592 4 920844 C T rca2; RUBISCO activase2: encodes
the beta form of RUBISCO activase

Zm00001d051056 4 139237665 T A S-adenosylmethionine
decarboxylase proenzyme

Zm00001d017729 5 205460426 C T Serine/threonine-protein kinase
MHK

Zm00001d017992 5 211554167 T G Metalloendoproteinase 1

Zm00001d037273 6 119044168 T C Peptide methionine sulfoxide
reductase msrB

Zm00001d037663 6 133420821 C T NADH-ubiquinone oxidoreductase
10.5 kDa subunit

Zm00001d039188 6 172189672 A T
Putative leucine-rich repeat

receptor-like protein kinase family
protein

Zm00001d008546 8 12514212 C G Putative AP2/EREBP transcription
factor superfamily protein isoform

Zm00001d010227 8 104777615 A T Putative NAC domain transcription
factor superfamily protein isoform

Zm00001d011760 8 160944801 A G DNAJ heat shock N-terminal
domain-containing protein

Zm00001d044785 9 2409913 A G putative MYB DNA binding family
protein-G2-like 1

NIP2-3 9 4090209 T G aquaporin NOD26-like membrane
integral protein ZmNIP2-3

Zm00001d045220 9 16482063 C A Late embryogenesis abundant
protein group 2

Zm00001d046363 9 84132237 C T
S-adenosyl-L-methionine-dependent

methyltransferases superfamily
protein
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3. Discussion

The discovery of single nucleotide variants (SNPs or InDels) using a RNA-seq dataset is often
challenging for at least two reasons. The first reason, is that it could present a poor quality of the
sequencing results, including poor read length, sequencing depth, and sequencing platforms. Second,
it could also be the poor selection or operation of downstream analyses to sort SNPs [43]. We have
successfully built a pipeline from using multiple bioinformatics tools for RNA-seq-based variants
discovery with a high rate of accuracy. The decent sequencing quality combined with efficient
bioinformatics tools allowed us to develop an excellent set of genome-wide and cost-effective KASP
assay markers for high-throughput SNP genotyping of the maize germplasm for heat stress resilience.
The choice of SNP mapper and caller are crucial in downstream analyses of RNA-seq data for SNP
discovery. Our study demonstrated that the combination of STAR mapper and GATK variant caller are
the best performers for RNA-seq based single nucleotide variants discovery.

Our findings are in line with a few recent reports showing the appropriate use of STAR mapper
and GATK variant caller for SNP discovery from RNA-seq data [9,28,29,43]. For instance, Zhao et al. [9]
described a high throughput SNP discovery strategy for RNA-seq data from peach and mandarin.
Their study constituted a comprehensive comparison of two paired-end read lengths (125 bp and
150 bp), five assemblers (Trinity, IDBA, oases, SOAPdenovo, Trans-abyss), and two SNP callers
(GATK and GBS). They observed that the rate of false positive SNPs was significantly lower when
the paired-end read length was 150 bp compared with 125 bp. Trinity was found to be superior to
the other four assemblers that they used, and GATK was significantly superior to GBS due to a low
rate of missing authentic SNPs. This combination of the assembler Trinity, SNP caller GATK, and the
paired-end read length of 150 bp had the best performance in SNP discovery with 100% accuracy both
in peach and mandarin.

Similarly, Tanaka et al. [43] used GATK SNP caller for the development of genome-wide SNP
markers in barley via reference-based RNA-seq analysis. They used 150 samples from 108 strains
(accessions) for this study. A total of 181,567 SNPs and 45,135 InDels located in the 28,939 transcribed
regions and distributed throughout the barley Morex reference genome were detected. They further
evaluated the quality of this polymorphism detection approach by analyzing 387 RNA-seq-derived
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SNPs using amplicon sequencing. More than 85% of the RNA-seq SNPs were validated using the
highly redundant reads from the amplicon sequencing, and this demonstrated the accuracy of GATK
caller. Likewise, using GATK caller, we discovered a total of 554,423, 410,698, and 596,868 SNVs
between LM11 and CML25 after comparing the RNA-seq transcript reads of leaf, pollen, and ovule,
respectively. This RNA-seq-based SNPs discovery approach led us to develop 100 KASP markers
(MKAMs), and these were validated to work with a 92% success rate using the parental inbreds LM11
and CML25, and their F2 population, indicating the high accuracy of GATK caller.

Variant calling pipeline with a high sensitivity or high specificity is thus essential to accelerate
the power of analyses by identifying true positive variants [29,44]. An evaluation of seven different
RNA-seq alignment tools, BWA, CLC, HISAT2, Kallisto, RSEM, Salmon, and STAR on RNA-seq data
from the model plant Arabidopsis thaliana showed that mapper BWA had the lowest performance and
STAR had the highest [28]. In another report, GATK in combination with CLC-mapper, Novoalign,
and BWA-MEM yielded the best and most consistent results across all a number of datasets of A. thaliana
that were evaluated [29]. In addition, the rate of authentic variant identification from RNA-seq data
depends on the detection of true splice junctions (SJ). The splice junction detection is significantly
improved by paired-end and longer read length (>100 bp) [45] and the splice-aware assembly tool
STAR [20]. Our results are in line with previous studies, and we found that the combination of assembler
STAR and SNP caller GATK with paired-end read length of 150 bp showed the best performance.

For SNP calling and discovery to be useful for practical plant breeding applications, low-cost,
breeder-friendly predictive markers are needed to develop from these polymorphic sites for
marker-assisted selection in small-scale breeding programs. Different platforms are available to
detect and genotype SNPs, and their selection relies on numerous factors such as the precision,
reproducibility, high-throughput, and multiplexing, as well as the time and cost-effectiveness of
the protocol used [7]. In this investigation, we demonstrate the convenience of using RNA-seq
data to develop the SNP-based KASP assay markers, and how they were subsequently used in a
timely and cost-effective manner to genetically dissect the trait of heat stress tolerance in maize.
Several reports have been published on the development of KASP assays in other plants as well.
The SNP based KASP analysis has been successfully used in pigeon pea [35], chickpea [36], maize [37],
wheat [38], tomato [46], rice [40,41,47], and radish [7] for diversity analysis, genetic purity test, quality
control, cultivar discrimination, and economic trait advancement to enhance molecular breeding.
A comparison involving genotyping of 100 chickpea lines with 500 SNPs using GoldenGate and KASP
assays showed that the KASP assays were superior to GoldenGate assays in terms of both cost and
time [36]. In summary, all these studies address the utility of KASP assays for SNP genotyping on a
large scale with low error rates and cost-effectiveness. In the present study, 100 genome-wide SNP
sites were selected for KASP assay designing from SNPs captured using RNA-seq data. All selected
100 SNP sites (100%) were converted to KASP assay markers. Out of 100 KASP markers, a total of 71%
were polymorphic and were deemed usable as markers. A total of 21% KASPs were generated only one
or heterozygous type genome call and were deemed unusable as markers, and 8% failed to generate a
useful amplification signal (unusable type). The failure of the remaining SNP markers (29%) could be
due to the presence of paralogous sequences, incorrect primer designing near the SNP, identification
of false or unreal SNPs initially, and/or the need to optimize PCR conditions. This conversion rate
(71%) was higher than that of the other KASP studies on wheat (67%), rice (49.9%) but lower than in
chickpea (80.6%).

Recently, Yang et al. [47] developed KASP markers using SNP information from DNA sequencing
data available publicly on international rice genome databases. A total of 565 out of 596 SNP sites
were successfully converted to KASP markers with a 94.8% success rate of assay designing. This rate
of conversion from selected SNPs to functional KASP assays could probably be increased with
optimization of primer designing and amplification conditions. However, we have made no attempt to
optimize the failed assays. This emphasizes the need for stringent selection criteria and the validation
of in silico identified SNPs via allele re-sequencing. The number of polymorphic KASP markers
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identified in our study resulted in a much lower genotyping error rate than that obtained with markers
such as SSRs.

The SNP conversion rate is composed of two components—the design success rate and the work
success rate. The ratio of the SNP sites that can be used to design primers to the total number of SNP
sites is called the design success rate. The work success rate refers to the number of SNP sites that can
generate genotype calls via primers to the number of SNP sites with successfully designed primers [8].
Two studies in rice, which used DNA sequencing data, and reported the KASP assay design success
rate of 49.9% [41] and 94.8% [47], whereas their work success rate was 96.6% and 93.6%, respectively.
In our study, we developed KASP markers with an assay design success rate of 100% and a work
success rate of 92%. In addition, we used RNA-seq data which, compared to the DNA sequencing
data, exhibits higher sensitivity and specificity in SNP calls. The KASP assay design and work success
rate in our study are thus in accordance with previous reports by Cheon et al. [41] and Yang et al. [47].

The impacts of SNPs on the function of genes they are in can be considered high, low, or moderate
(also termed modifiers) [48]. High impact SNPs usually cause a gain or loss of a stop codon, thereby
resulting in a major change in the function of a gene. SNPs are low impact when they have a minimal
or no impact on the function of a gene, and such SNPs often cause synonymous changes in which a
nucleotide change does not translate into an amino acid change. The moderate impact or modifier SNPs
result in missense mutations and thus can dampen or modify the function of a gene. Modifier SNPs
are often in the coding region but can also be present in the 3′ or 5′ UTR. In the present study, the SNPs
with the modifier effects were identified predominantly as the exonic, downstream, and upstream
variants in both LM11 and CML25. Similarly, Kim et al. [7] studied SNPs impact on the functionality of
genes using SnpEff. In their study, most SNPs with the modifier effect were observed as downstream
gene variants (29.7%), upstream gene variants (27.0%), and synonymous variants (18.3%).

In response to heat stress, plants accumulate different metabolites such as antioxidants,
osmoprotectants, and HSPs that trigger multiple pathways involved in signal transduction,
the scavenging of ROS, and maintaining cell membrane stability to improve damage and sustain cell
homeostasis [49]. In the recent past, many studies have been identified and analyzed HSR genes in
maize [12–18]. For example, in our previous study, we were observed differential expression of HSR
genes related to transcription factors viz. AP2, MYB, WRKY, PsbP, bZIP and NAM, HSPs (HSP20,
HSP70, and HSP101/ClpB), photosynthesis (PsaD and PsaN), antioxidation (APX and CAT), BRs,
and polyamines (Spd and Spm) in LM11 and CML25 under heat stress treatment [42]. In this study,
we identified SNP variants in reported HSR genes between LM11 and CML25 which indicates that
these SNP variations may be responsible for altering metabolic pathways in these two inbred lines
under heat stress.

4. Materials and Methods

4.1. Plant Materials and DNA Extraction

Two inbred lines contrasting for heat stress tolerance used were CML25, tolerant; and LM11,
sensitive. The F2 mapping population was derived from the cross of LM11 (HS) and CML25 (HT).
Both inbreds possessed contrasting phenological attributes comprising of top leaf firing, tassel blast,
pollen viability, pollen shedding duration, kernel number, kernel weight, and yield (Figure 8) [42].
These two lines and derived ninety F2 mapping populations were raised in a glasshouse using
standard agronomic practices at the School of Agricultural Biotechnology, Punjab Agricultural
University, Ludhiana, Punjab, India. Genomic DNA was extracted from 20-days old seedlings leaves
of parental inbred LM11 (HS) and CML25 (HT) and derived F2 mapping population using the cetyl
trimethylammonium bromide (CTAB) method [50]. The DNA which had RNA contaminant was
purified by RNase treatment given with 4 µL of RNase (10 mg/mL) and incubated at 37°C for 30 min.
Agarose gel (0.8 g/100 mL) electrophoresis was used to compare the light intensity of DNA samples
with the known concentration (10, 20, 50, and 100 ng/µL) of standard lambda DNA. DNA samples were
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normalized to 10 ng/µL for each sample using NanoDrop® ND-1000 spectrophotometer (NanoDrop
Technologies, Inc., Wilmington, DE, USA).
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4.2. Pre-Processing of RNA-Seq Data and Variants (SNP and InDels) Discovery

We have schemed variant calling and KASP assay development pipelines for RNA-seq data
(Figure 9). Each step of this pipeline is described hereafter.

RNA-seq of the top leaf, pollen, and ovule from LM11 (HS) and CML25 (HT) at reproductive
stage under heat-stressed conditions were performed using Illumina HiSeq 2500 sequencing platform
(Illumina, San Diego, CA, USA), and it was outsourced from Nucleome Informatics Pvt. Ltd., Hyderabad,
Telengana, India. RNA-seq raw reads were processed with FastQC v0.11.8 [26] to check the quality.
Trimmomatic v0.36 [27] were used to remove low-quality regions and adapter fragments; with options
2:30:10 and sliding window size kept as four to trim the reads having average PHRED score below 20.
Reads pairs with only one surviving read and reads with a cut-off value below 100 nt were discarded.
At the same time, FastQC performed on cleaned read, and Q20, Q30, and GC contents of the clean data
were calculated. All downstream analyses were based on high quality (HQ) cleaned reads.

RNA-seq high quality (HQ) cleaned read data from the top leaf, pollen, and ovule of LM11 (HS),
and CML25 (HT) was exploited for variant identification. The RNA-seq HQ cleaned reads exported in
FASTQ format were mapped with the maize reference genome (B73 RefGen_v4, MaizeGDB database)
using the splice-aware assembly tool STAR v2.5.2b 2-pass method with default parameters [51]. STAR is
considered as the most accurate mapper for RNA-seq reads and can detect splice-junctions [20,52].
It performs the first mapping pass (mapping pass 1) to compares the reads with the reference genome
encoded in a static genome index file. The first mapping pass produced a SAM output file that contains
the mapping location of each read to the reference; but it did not take into consideration that these RNA
reads are spliced (i.e., split) at multiple intermediate locations (so-called junctions). The SAM output
file produced after mapping pass 1 was discarded since the mapping was not accurate. In addition to
the SAM file, the first mapping pass produced a splice junction (SJ) file that contains the splice junction
information. STAR used that SJ file as a guide in the rebuilding of the genome index (rebuild genome
index), which produced a new genome index with splice junction information. Then, STAR starts a
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second mapping pass (mapping pass 2) to perform a more accurate mapping of the spliced reads in the
FASTQ file which again created an accurate SAM file with read mapping information.
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An analysis tool, SAMtools v1.4.1 [31] was used to convert the SAM mapping file to BAM format.
The BAM files were further processed for sorting, adding read groups, and marking of duplicates
reads using the Picard tools v2.13.2 package (https://broadinstitute.github.io/picard/). Subsequently,
the widely used SNP caller, GATK v4.0.4.0 [30] were applied to perform prediction of variants
(SNP or InDels). The SNP calling step uses the GATK toolkit i.e., splitting “N” cigar reads (splice
junction reads), BaseRecalibrator (base quality score recalibration), HaplotypeCaller (variants detection)
and VariantFiltration (variants filtration) [30]. The location of gaps in RNA reads was identified by
the Split’N’Trim tool, and then subsequently split a spliced read into exon segments. After that,
the BaseRecalibrator tool was used to reassign the base quality values of the reads in table format
that could be biased by the sequencing machines. Finally, the HaplotypeCaller tool was applied for
variant calling using the BAM file and the base quality table, and probable variants in the reads with
respect to the reference were identified and wrote into a variant call file (VCF) format. After that,
detected variants i.e., found in mapping plus SNP calling steps were filtered out to minimize false
positive variant calls and considered them as priority SNPs. The priority SNPs were filtered with
the set of read characteristics summarized by Adetunji et al. [10] using the GATK VariantFiltration
tool. In addition, after GATK VariantFiltration, VCFtools v0.1.13 [53] were used to further filter out
specific variants. The VCFtools allowed summarizing variants, converted them into different file types,
validated and merged files, created intersections and subsets of variants [53]. The VCFtools option
“–remove-filtered-all” was used for elimination of all sites with a filter flag other than “PASS”. Lastly,
variant call file (VCF) of inbreds LM11 (HS) and CML25 (HT) were compared using VCFtools with
the option “–diff-site” and polymorphic SNPs between inbreds LM11 (HS) and CML25 (HT) were
identified, and were further handled for KASP marker development. The filtered SNP variants were
annotated with SnpEff v4.3T [54] tool using the maize B73 RefGen_v4 reference genome to determine
the effects of the SNPs on the function of genes. The distribution of SNP variants on each maize
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chromosome was visualized in the non-overlapping window of 1000/kb using the R package circlize
v0.4.10 [55], and a circos plot was created using the R package RLumShiny v0.2.2 [56]. Biological
pathway analysis of HSR genes was carried out using MapMan v3.6.0RC1 [57].

4.3. Variant Filtering for Designing KASP Assay Markers

Variant call format files processed by VCFtools were parsed using in-house customized Perl script
to retrieve the flanking sequences 50 bp either side of each variation site and variants suitable for
KASP markers were screened following a stepwise identification process [40]. The criteria for selection
were that the flanking sequences (a) did not contain any InDels, (b) contained a maximum of four
ambiguous bases, (c) had a base coverage of at least five at any position, (d) had no more than four
consecutive repeats of any one to five nucleotide sequences, and (e) SNP in homozygous condition.
Variants that passed this filtering were defined as potential KASP markers. The SNP positions of
the potential KASP markers were used in the genotyping of parental inbreds i.e., LM11 and CML25,
and derived F2 mapping population of the cross LM11 (HS) × CML25 (HT).

4.4. Development of KASP Assay Markers

For the development of potential KASP assay markers, genomic locations of DEGs that we
identified in our previous transcriptome study of the LM11 and CML25 was used as streamline [42],
and a total of 100 SNPs site spanning all 10 chromosomes of maize were selected from leaf
variants. The SNP sequence, 50 bp left-flanking sequence and 50 bp right-flanking sequence of
each SNP site were used to design two allele-specific forward primers carrying the standard FAM
(5′ GAAGGTGACCAAGTTCATGCT 3′) and HEX (5′ GAAGGTCGGAGTCAACGGATT 3′) tails and
with the targeted SNP at the 3′ end and a common reverse primer. The design and manufacture
of the KASP marker primers were performed by LGC, Biosearch Technologies (Beverly, MA, USA),
and ordered KASP primer oligos from LGC, Biosearch Technologies. The designed KASP assay
markers were visualized using SnapGene Viewer v4.2 (GSL Biotech LLC; http://www.snapgene.com/).

4.5. Validation of KASP Markers and Subsequent Use in Genotyping

Genotyping reaction reagents were purchased from the LGC, Biosearch Technologies (Beverly,
MA, USA). A total of 100 KASP assays were developed and validated on DNA of ninety F2 individuals,
parental DNA of LM11 (HS) and CML25 (HT) in duplicates and two non-template controls (NTC).
Assays were tested in 96-well formats with reaction set up of 10 µL [2 µL wet DNA (10 ng/µL final
concentration of DNA), 5 µL of 2X KASP master mixture, 0.14 µL of assay mix and 2.86 µL nuclease-free
water]. PCR cycling was performed in Flex Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) using the following conditions: hot start for 15 min at 95 ◦C, followed by ten touchdown
cycles (20 s at 95 ◦C; touchdown at 65 ◦C initially and decreasing by −1 ◦C per cycle for 25 s), followed
by 30 additional cycles of annealing (10 s at 95 ◦C; 60 s at 57 ◦C). An extension step was unnecessary
as amplicons are usually less than 100 bp long. The plate was read using a Tecan Safire plate reader
(TecanGroup Ltd., Männedorf, Switzerland) at room temperature.

4.6. Scoring of KASP Markers Data

Data analysis was performed manually using Klustercaller v2.22.0.5 software (LGC, Biosearch
Technologies, Beverly, MA, USA). Based on the fluorescence signal, the SNP allele call data were
graphically illustrated for individual markers assayed using the SNPviewer software (LGC, Biosearch
Technologies, Beverly, MA, USA).

5. Conclusions

In conclusion, the results presented in this paper reveal that large-scale SNP identification through
RNA sequencing is an attractive approach, and it has facilitated the development of a set of robust and
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cost-effective KASP markers for maize inbreds LM11 and CML25. To our knowledge, this study is the
first report on SNP based KASP assay development for heat stress-related responses in maize using
RNA-seq data. These KASP markers will be helpful in conducting mapping studies and underpinning
genes/QTLs for heat stress adaptive traits, and will ultimately accelerate the breeding of heat resilient
maize cultivars.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/19/
7386/s1. Figure S1: Statistical distribution of fragment lengths. (a) leaf CML25, (b) leaf LM11, (c) pollen CML25,
(d) pollen LM11, (e) ovule CML25, (f) ovule LM11, Supporting data S1: List of genome-wide KASP assay markers
developed using RNA-seq data, Supporting data S2: List of KASP primer sequences (two forward and one reverse)
designed for LM11 and CML25 alleles.
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