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Abstract

Background: Oxidative stress in placenta is associated with the occurrence of adverse pregnancy outcomes in sow,
but there are few satisfactory treatment strategies for these conditions. This study investigated the potential of
cysteamine (CS) as an antioxidant protectant for regulating the reproductive performance, redox status, and
placental angiogenesis of sows.

Methods: The placental oxidative stress status and vascular density of piglets with different birth weights: < 1.0 kg
(low birth weight, LBW) and 1.4–1.6 kg (normal birth weight, NBW) were evaluated, followed by allotting 84 sows to
four treatments (n = 21) and feeding them with a basal diet supplemented with 0, 100, 300, or 500 mg/kg of CS
from d 85 of gestation to d 21 of lactation, respectively. Placenta, serum, and colostrum samples of sows or piglets
were collected, and the characteristics of sows and piglets were recorded. Furthermore, the in vivo results were
validated using porcine vascular endothelial cells (PVECs).

Results: Compared with the NBW placentae, the LBW placentae showed increased oxidative damage and were
vulnerable to angiogenesis impairment. Particularly, H2O2-induced oxidative stress prompted intracellular reactive
oxygen species generation and inhibited the tube formation and migration of PVECs as well as the expression of
vascular endothelial growth factor-A (VEGF-A) in vitro. However, dietary CS supplementation can alleviate oxidative
stress and improve the reproductive performance of sows. Specifically, compared with the control group, dietary 100
mg/kg CS could (1) decrease the stillbirth and invalid rates, and increase both the piglet birth weight in the low yield
sows and the placental efficiency; (2) increase glutathione and reduce malondialdehyde in both the serum and the
colostrum of sows; (3) increase the levels of total antioxidant capacity and glutathione in LBW placentae; (4) increase
the vascular density, the mRNA level of VEGF-A, and the immune-staining intensity of platelet endothelial cell adhesion
molecule-1 in the LBW placentae. Furthermore, the in vitro experiment indicated that CS pre-treatment could
significantly reverse the NADPH oxidase 2-ROS-mediated inactivation of signal transducer and activator of transcription-3
(Stat3) signaling pathway induced by H2O2 inhibition of the proliferation, tube formation, and migration of PVECs.
Meanwhile, inhibition of Stat3 significantly decreased the cell viability, tube formation and the VEGF-A protein level in CS
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pretreated with H2O2-cultured PVECs.

Conclusions: The results indicated that oxidative stress and impaired angiogenesis might contribute to the occurrence of
LBW piglets during pregnancy, but CS supplementation at 100mg/kg during late gestation and lactation of sows could
alleviate oxidative stress and enhance angiogenesis in placenta, thereby increasing birth weight in low yield sows and
reducing stillbirth rate. The in vitro data showed that the underlying mechanism for the positive effects of CS might be
related to the activation of Stat3 in PVECs.
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Introduction
Pregnancy is an oxidative stress challenge for the
mother, especially during the late gestation period [1],
when the rapid development of the fetus increases the
metabolic burdens on pregnant sows or dams, leading to
elevated systemic oxidative stress [2, 3]. Increasing evi-
dence indicates that maternal oxidative stress is associ-
ated with several adverse outcomes, such as gestational
diabetes mellitus, proteinuria preeclampsia, postpartum
hemorrhage, fetal death, and low birth weight [4, 5].
Thus, reducing oxidative stress is a crucial issue for im-
proving the reproductive efficiency of both humans and
mammalian animals, but its underlying mechanisms still
remain elusive.
The placenta regulates fetal nutritional and hormonal

support, which, to a large degree, has a direct impact on
the pregnancy outcome [6]. In particular, placental blood
vessels play an important role in maternal-fetal material
exchange, suggesting the importance of proper placental
vasculature development for fetal growth. Moreover, the
placenta is highly sensitive to oxidative stress [7], which
could cause vascular dysfunction in the placenta [8, 9].
Our previous studies have uncovered that increased oxi-
dative stress induced by maternal obesity may decrease
the development of placental vasculature essential for
fetal growth during pregnancy [10], suggesting the in-
volvement of placental oxidative stress in the develop-
ment of adverse pregnancy outcomes. Mechanically, an
increased amount of reactive oxygen species (ROS)
could induce autophagy, dysfunction, and apoptotic
death of vascular endothelial cells [9]. The foregoing re-
ports indicate that targeting the placenta could be an at-
tractive strategy for modulating oxidative stress-related
pregnancy diseases.
Dietary intake of antioxidant nutrients to improve the

endogenous antioxidant defense capacity has been con-
sidered a plausible way to prevent oxidative stress [6, 11,
12]. Cysteamine (CS), a precursor of glutathione (GSH),
is widely used to protect a series of tissues and organs
such as gastrointestinal tract [13], brain [14], and kidney
[15] from oxidative stress under adverse conditions. We
selected CS based on its multiple beneficial modes of ac-
tion, i.e., CS could improve ileal mucosal health by

regulating the oxidation status and apoptosis in finishing
pigs [13], and L-cysteine, one of the downstream metab-
olites of CS could efficiently reduce the inflammatory re-
sponse in the maternal-fetal interface and improve the
placental efficiency in rats [16]. In this regard, CS ap-
pears to be a promising candidate for alleviating mater-
nal and placental oxidative stress. However, no data are
available currently regarding the effects of dietary CS
supplementation during gestation and lactation on the
reproductive performance and antioxidant status of
sows, especially the dose-effect relationship.
In this study, we addressed the hypothesis that CS

could enhance placental angiogenesis by alleviating ma-
ternal and placental oxidative stress, and ultimately
benefit the survival and growth of the fetus. Thus, the
purpose of this study was to evaluate the effects of CS
on sows’ reproductive performance, antioxidant status,
and placental angiogenesis through an in vitro-in vivo
method.

Materials and methods
Animals and experimental design
This study was conducted in Guangzhou DaBeiNong
Agri-animal Huabandry Science and Technology Co., Ltd.
A total of 84 Landrace × York sows (parities 2–5) were al-
located to four dietary treatment groups with each sow as
a replicate in a completely randomized design using body
weight at d 85 of gestation as a block (n = 21 per
treatment). The sows in the control group (CON) received
a basal gestation or lactation diet without added CS from
d 85 of gestation to d 21 of lactation, while the sows in the
CS group were fed a basal diet supplemented with 100,
300, or 500mg/kg of CS (CS100, CS300, and CS500 diet).
All diets were formulated to meet the National Research
Council (NRC, 2012) requirements of nutrient standards
for gestational and lactational sows. The ingredients and
compositions of the basal diet are shown in Supplemen-
tary Table S1.
Sows were housed in individual stalls and fed twice

(07:30 and 17:00) a d with a constant amount of 3 kg
during late gestation. During the entire lactation period
of 21 d, the piglets had no access to the sow’s feed or to
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creep feed. Sows and piglets were given free access to
water throughout the experiment. On the day of farrow-
ing, sows were offered 2.0 kg of the lactation diet,
followed by increasing the amount to 3.0 kg daily until
ad libitum feeding. The reasons for the sows eliminated
from this study were recorded in detail and shown in
Supplementary Table S2.

Measurements of reproductive performance and sample
collection
After farrowing, the number and weight of the piglets
born, born alive, stillbirths and mummies were recorded,
and invalid piglets included stillbirth and mummy. Pig-
lets were weaned at d 21 of lactation.
During sow farrowing, umbilical cords were tied with

a short silk line and each piglet was marked with a num-
bered tag to match the individual piglets with their pla-
centae. After placental expulsion and weight recording,
the placentae were collected and snap-frozen in liquid
nitrogen (3 to 4 cm from the cord insertion point), and
the other fresh placental tissues were immediately fixed
in 4% paraformaldehyde. Placental efficiency was calcu-
lated by dividing piglet weight by placental weight [17].
In this study, the mean birth weight of the 1,181 piglets
was 1.4 ± 0.22 kg (mean ± standard error). The placentae
were assigned to two categories according to piglet birth
weight: < 1.0 kg (low birth weight, LBW) and 1.4–1.6 kg
(normal birth weight, NBW). Litter size at birth was also
categorized into 2 classes based on the average number
of piglets born alive per litter (15.0 piglets): low yield
sow (the number of born alive piglets < 15.0) and high
yield sow (the number of born alive piglets ≥15.0).
The blood samples of sows (n = 8 per group) were col-

lected in 10mL centrifuge tubes from the ear vein of the
fasted sows at farrowing and at weaning, followed by
centrifugation at 3,000×g and 4 °C for 15 min to recover
the serum. The blood samples of piglets were collected
from the anterior vena cava of the piglet whose body
weight was closest to the average body weight of the lit-
ter at birth (NBW piglets, n = 6 per group) on the par-
turition day and centrifuged at 3,000×g and 4 °C for 15
min to recover the serum. At 0.5 h before the birth of
the first piglet, colostrum was collected from the func-
tional glands of each sow. Finally, these samples were
stored at − 80 °C until further analysis of the oxidative
parameters.

Oxidative stress parameters in serum, colostrum and
placenta
The levels of total antioxidant capacity (T-AOC), gluta-
thione (GSH), and malondialdehyde (MDA) were deter-
mined using the commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to
the manufacturer’s procedures.

Total protein concentrations in placenta and colos-
trum were measured according to the instructions of the
bicinchoninic acid protein assay kit (Beyotime, Beijing,
China). T-AOC, GSH, and MDA in placenta and colos-
trum were normalized to the total protein. T-AOC is as-
sociated with the elimination of free radicals and ROS,
blocking peroxidation and thus preventing lipid peroxi-
dation and removing catalytic metal ions, while MDA is
the end product of lipid peroxidation and an excellent
indicator of oxidative stress [18].

Placental vascular density
Eight sows were selected from each group, and 12 pla-
centa samples were analyzed, including 6 NBW and 6
LBW placental samples. The number of vessels was de-
termined via image analysis by estimating the average
value of 3 slices of one placenta. Briefly, fresh placental
tissues fixed in 4% paraformaldehyde were embedded in
paraffin and sectioned at 5 μm thickness, followed by
staining with hematoxylin and eosin. The area occupied
by placental tissues was traced, and the placental vessels
in these areas were also traced using a projecting micro-
scope (Olympus CX41, Japan). For each of the 5-μm sec-
tions, the total number of vessels in the placental stroma
areas were determined, then corrected with the total pla-
cental stroma areas measured (per unit area as mm2) [10].

Cell culture and treatments
Porcine vascular endothelial cells (PVECs) were obtained
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and cultured in 1,640 medium with
10% fetal bovine serum, 100 U/mL penicillin, and
100 μg/mL streptomycin at 37 °C in 5% CO2 atmosphere.
The PVECs with cobblestone morphology were passaged
at 90% confluence and used for experiments within five
passages.
To establish in vitro oxidative stress model, H2O2 was

applied to the PVECs. For the H2O2 treatment experi-
ments, the PVECs were treated with different concentra-
tions (0, 100, 200 or 300 μmol/L) of H2O2 for 24 h, or
200 μmol/L H2O2 for 0, 6, 12, 24 or 48 h. After treat-
ments, the PVECs were used for subsequent analysis or
treatment.
For the CS treatment experiments, the PVECs were

pretreated with various concentrations of CS (0.5, 1 or 2
mmol/L) and/or 5 μmol/L stattic (a selective Stat3 in-
hibitor) for 2 h, and then challenged with 200 μmol/L
H2O2 for 24 h. After treatments, the PVECs were used
for subsequent analysis or treatment.

Cell viability assay
The PVECs (15,000 cells per well) were seeded in 96-
well plates. After treatment as described above, cell via-
bility was measured by cell counting kit-8 assay (CCK-8)
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(Beyotime) as instructed by the manufacturer. The ab-
sorbance of each well at 450 nm was measured using a
microplate reader (Bio-Rad Laboratories, Hercules, CA).

Measurement of intracellular ROS generation
The accumulation of intracellular ROS was examined
using the ROS assay kit (Beyotime) according to the man-
ufacturer’s instructions. Briefly, the PVECs (15,000 cells
per well) were grown in a 96-well plate and subjected to
different treatments as described above. After incubation
with 10 μmol/L 2,7-dichlorofluorescein diacetate at 37 °C
for 20min, the fluorescence intensity of the cells was
measured using the fluorescence plate reader (BD Falcon,
Bedford, MA, USA) at Ex./Em. = 488/525 nm.

Scratch healing assay
The wound healing scratch assay was used to assess cell
migration as previously described [19]. Briefly, cells were
seeded onto a 6-well plate and cultured overnight until
the formation of a confluent monolayer, followed by
making a scratch wound with a 200-μL pipette tip and
measuring the effects of H2O2, CS, and stattic on scratch
healing at 24 h after the scratch. The images of the
wounded areas were captured using an Olympus
inverted microscope and quantified using the ImageJ
software.

In vitro tube formation assay
Matrigel tube formation assays were used to assess the
in vitro angiogenic activity of PVECs. Briefly, after treat-
ment as described above, PVECs were seeded in 96-well
plates precoated with 50 μL Matrigel (BD company,
USA) at a density of 1 × 104 cells per well. After 4 h in-
cubation, matrigel-induced morphological changes in
PVECs and their tubular networks were photographed at
50 or 100× magnification for analysis using Image J
software.

Trans-well migration assay
The chemotactic migration of PVECs was assayed using
a trans-well chamber equipped with a polycarbonate fil-
ter with a diameter of 6.5 mm and a pore size of 8 μm.
Briefly, after different treaments as described above,
PVECs were suspended in 1,640 medium to a final con-
centration of 5 × 104 cells/ml and were then placed in
the upper wells of the chamber, while the lower chamber
was filled with 600 μL medium containing 10% FPS.
After incubation at 37 °C for 48 h, the cell culture inserts
were collected. The cells on the upper side of the filters
were removed with cotton-tipped swabs, while the cells
on the underside of the filters were fixed with 4% for-
maldehyde for 30 min, which were stained with crystal
violet for 20 min and counted in five randomly chosen
fields.

Quantitative real-time RT-PCR (qRT-PCR) analysis
Total RNA from placenta or PVECs was extracted with
the reagent box of Total RNA Kit according to the man-
ufacturer’s instructions. The concentration of RNA was
quantified using a NanoDrop® 2000 (Thermo Fisher,
USA). After reverse transcription using Primer Script
TM RT reagent Kit (Takara, Qingdao, China), qRT-PCR
was conducted using SYBR Green on a QuantStudio 6
RealTime PCR System (Thermo Fisher, USA) under the
conditions of denaturation at 95 °C for 10 min, amplifi-
cation at 95 °C for 15 s and 60 °C for 1 min for 40 cycles.
Each target gene was individually normalized to the ref-
erence gene β-actin by using the quantification method
of 2−ΔΔct. Primers used in this study are shown in Sup-
plemental Table S3.

Western blotting
Total proteins were extracted from PVECs using the
protein extraction kit (Beyotime, Beijing, China) accord-
ing to the manufacturer’s guide. Briefly, an amount of
10 μg protein was loaded and separated by SDS–PAGE
gel electrophoresis, followed by transferring the proteins
onto the polyvinylidenedi fluoride membranes (Merck
Millipore). After blocking with TBS/T buffer containing
5% milk, the membranes were incubated with the pri-
mary antibodies against vascular endothelial growth
factor A (VEGF-A) (19003–1-AP, Proteintech, USA,
1:1,000), NADPH oxidase 2 (NOX2) (19013–1-AP,
Proteintech, USA, 1:1,000), signal transducer and
activator of transcription-3 (Stat3)(ab76315, Abcam,
USA, 1:1,500), p-Stat3 (ab68153, Abcam, USA, 1:1,500),
and β-actin (4970, CST, USA, 1:1,000). Subsequently, the
membranes were incubated with appropriate HRP-
conjugated anti-rabbit IgG secondary antibody (AS014,
Abclonal, China, 1:5,000). Images were captured using the
ChemiDoc MP system (Bio-Rad, Hercules, CA, USA), and
band densities were quantified using Image Lab soft-
ware (Bio-Rad, Hercules, CA, USA) and then normal-
ized to β-actin content.

Immunofluorescence
Placental tissues fixed in 4% paraformaldehyde were em-
bedded in paraffin and sectioned at 5 μm thickness for
platelet endothelial cell adhesion molecule-1 (CD31) im-
munofluorescence as described previously [19]. The
slides were visualized under a fluorescent microscope
(Nikon Eclipse C1, Tokyo, Japan). Fluorescence inten-
sities were quantified using ImageJ software (National
Institutes of Health, Bethesda, MD).

Statistical analysis
Data are presented as mean ± SEM and were statistically
analyzed using one-way ANOVA and Duncan’s multiple-
range test in SPSS 20.0 (SPPS Inc., Chicago). Tamhane’s
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T2 test was used to assess variance heterogeneity. The
stillbirth, LBW, and invalid rates were analyzed using the
Chi-square test. Pearson’s correlation coefficient was used
to analyze the correlation between piglet birth weight and
placental vascular density, T-AOC, and MDA. Addition-
ally, polynomial contrasts were used to evaluate the linear
and quadratic effects of CS supplementation on the vari-
ous parameters measured in the sow experiment. Differ-
ences were considered significant at P < 0.05, and a
tendency was considered at 0.05 ≤ P < 0.1.

Results
Correlation between birth weight and placental
characteristics of piglets
When compared with the NBW placenta, the LBW pla-
centa showed significantly lower (P < 0.05) blood vessel
density (Fig. 1A, B) and immunostaining intensity of
CD31 (biomarker of the endothelial cell in small vessels)
(Fig. 1C, D). Meanwhile, piglet birth weight showed a
significant positive correlation with placental vascular
density (R2 = 0.7146, P < 0.0001) (Fig. 1E), or T-AOC in
placenta (R2 = 0.2744, P = 0.0086) (Fig. 1F), but a nega-
tive correlation with placental MDA level (R2 = 0.3700,
P = 0.0016) (Fig. 1G).

Reproductive performance
The four groups showed significant differences in sow
performance (Fig. 2). When compared with the CON
group, the CS100 group showed significantly lower (P <
0.05) stillbirth and invalid piglet rates, but higher (P <
0.05) placental efficiency. In addition, piglet birth weight
showed significantly higher (P < 0.05) for the low yield
sows of the CS100 group versus the CON group.

Oxidative stress parameters in serum, colostrum and
placenta
As shown in Fig. 3A-C, when compared with the CON
group, the sows in the CS100 group showed significantly
higher (P < 0.05) serum GSH levels at farrowing and
weaning, and the sows in the CS500 group showed sig-
nificantly higher (P < 0.05) serum T-AOC levels at far-
rowing and weaning and serum GSH levels at farrowing.
For these parameters in colostrum, when compared with
the CON group, the CS100 group showed a significantly
higher colostrum GSH level but a lower colostrum
MDA level (P < 0.05) (Fig. 3D-F). Additionally, these oxi-
dative stress parameters in neonatal serum were also in-
vestigated (Fig. 3G-I), with a significantly higher (P <
0.05) serum GSH level for the NBW piglets in the
CS500 group than in the CON group.
Importantly, we observed that the placentae of piglets

with different birth weights react differently with mater-
nal CS supply (Fig. 4). Compared with the CON group,
the CS100 group showed significantly higher (P < 0.05)

contents of T-AOC and GSH in the LBW placentae,
with no difference observed in the NBW placentae
among the four dietary treatments (P > 0.05).
The effects of CS on placental function were further

explored by analyzing the placental vascular density and
the expression of angiogenesis-related genes. Figure 5A,
B present the effects of CS supplementation on the pla-
cental vascular density in LBW or NBW piglets. The pla-
cental vascular density showed significantly higher (P <
0.05) for the LBW piglets of the CS100 group versus the
CON group. For the NBW placentae, the CS supplemen-
tation did not significantly change the placental vascular
density (P > 0.05). Immunostaining analysis also revealed
higher (P < 0.05) expression levels of CD31 in the LBW
placenta in the CS100 group versus the CON group
(Fig. 5C, D), and similar results were also found in the
mRNA level of VEGF-A (P < 0.05) (Fig. 5E).
Collectively, dietary 100 mg/kg CS could produce posi-

tive effects on the antioxidant capacity and placental
angiogenesis of sows.

Oxidative stress induced by H2O2 inhibits tube formation
and migration in vitro
The relationship between placental oxidative status and
angiogenesis was further investigated by using PVECs to
evaluate the effects of oxidative stress on angiogenesis
in vitro. As shown in Fig. 6A, B, compared with the con-
trol group (0 μmol/L H2O2), the viability of PVECs was
significantly decreased (P < 0.05) under H2O2 treatment
in a dose- and time-dependent manner. Whether the
redox state of PVECs could be changed by H2O2 was in-
vestigated by analyzing the mRNA expression of
antioxidant-related genes and the endoplasmic stress
markers. The mRNA expression level showed a signifi-
cant decrease (P < 0.05) for GPX1, SOD1, SOD2 and
CAT while a significant increase for GRP78 (P < 0.05) in
a dose-dependent manner (Fig. 6C). The ROS level also
increased significantly (P < 0.05) in a dose-dependent
manner (Fig. 6D, E). Meanwhile, tube formation (Fig. 6F,
G) and migration (Fig. 6H, I) were significantly impaired
(P < 0.05) in PVECs after treatment with H2O2 for 24 h.
As 200 μmol/L H2O2 treatment for 24 h could signifi-
cantly decrease the viability, tube formation and migra-
tion to about 50% and change the redox state of PVECs,
this concentration was used for further experiments.

Oxidative stress impairs the Stat3/VEGF-A pathway in
PVECs
A growing body of evidence supports an important role
of Stat3 in placental angiogenesis [20]. In our previous
study, Stat3/VEGF-A pathway was found to be impaired
in LBW placenta (Hu et al., unpublished data), leading
to the question of whether H2O2-mediated angiogenesis
inhibition is controlled by Stat3. After treatment with
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H2O2 (200 μmol/L) for 24 h, the relative mRNA expres-
sion of Stat3-regulated genes (IL6, IL8, and VEGF-A) in
PVECs significantly decreased (P < 0.05), in contrast to a
significant increase (P < 0.05) in the expression of NOX2
(the upstream negative regulator of Stat3) (Fig. 7A-B).
Similar results were obtained from Western blotting
analysis (Fig. 7C, D).

CS rescues H2O2-induced Stat3 signaling pathway activity
The effects of CS on the ROS level and endothelial dys-
function in H2O2-induced PVECs were also evaluated. As
shown in Fig. 8A, E, the ROS level induced by H2O2 was
reduced in the cells pretreated with CS (P < 0.05). In
addition, the impaired migration by scratch healing assay
(P < 0.05) (Fig. 8B, F) or by trans-well assay (P < 0.05) (Fig.
8C, G), and tube formation (P < 0.05) (Fig. 8D, H) induced

by H2O2 were partially recovered in PVECs pretreated
with CS (P < 0.05). Similarly, H2O2 resulted in a significant
decrease in cell viability, but CS supplementation could al-
leviate the negative effect of H2O2 on cell viability (P <
0.05) (Fig. 8I).
Previous studies have shown that CS could activate Stat3

signaling and provide the critical protection required for
the survival of intestinal epithelial cells in vivo [21]. There-
fore, we hypothesized that Stat3/VEGF-A might mediate
the enhanced endothelial function in oxidative stress with
CS supplementation. The data showed that CS could
largely reverse the H2O2-downregulated Stat3/VEGF-A ac-
tivity (P < 0.05) (Fig. 9A, B). Furthermore, pretreatment
with stattic, a selective Stat3 inhibitor, abrogated the effects
of CS-mediated pro-angiogenesis (P < 0.05) (Fig. 9C, D) and
pro-viability (P < 0.05) (Fig. 9E) against H2O2 in PVECs.
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Meanwhile, inhibition of Stat3 significantly decreased (P <
0.05) the cell viability and the VEGF-A protein level in CS
pretreated with H2O2-cultured PVECs (Fig. 9F, G).
The above data confirmed that the Stat3/VEGF-A sig-

naling pathway is invovled in the endothelial protection
of CS against oxidative stress.

Discussion
Previous studies have shown that increased oxidative
stress in placenta is associated with the occurrence of
adverse pregnancy outcomes, including intrauterine
growth restriction and stillbirth [22, 23], suggesting that
oxidative stress might contribute to the occurrence of
low birth weight and stillbirth. However, the molecular
mechanism underlying this link remains unclear. In pigs,
high occurrence of intrauterine growth restriction and
stillbirth is widely reported [24]. Additionally, pigs are
one of the animals most commonly used in biomedical
studies on human pregnancy, primarily because of their
physiological similarities to humans [25, 26]. The object-
ive of this study was to investigate whether maternal CS
supplementation during late gestation improves preg-
nancy outcomes by examining the changes in

antioxidant status and placental angiogenesis. Our study
demonstrated that the placentae for LBW neonates were
vulnerable to oxidative stress, which might contribute to
the occurrence of LBW piglets during pregnancy. How-
ever, CS supplementation was shown to have great
potential to improve pregnancy outcomes in sows, in-
cluding birth weight and stillbirth, by reducing oxidative
stress and enhancing angiogenesis in placenta.
Placenta plays an important role in fetal growth [27].

Thus, differences in the placental oxidation parameters
of piglets with different birth weights were first deter-
mined in the present study. We found that birth weight
was positively correlated with T-AOC, but negatively
correlated with MDA, which was in line with Takagi
et al., who reported that oxidative DNA damage was in-
creased in intrauterine growth- restricted placenta and
fetus [7]. Excessive ROS could be produced at certain
windows in placental development and in some patho-
logical pregnancies, such as those complicated by pre-
eclampsia and/or intrauterine growth restriction,
overpowering antioxidant defenses with deleterious out-
come [28, 29]. Placental blood vessels are important for
fetal growth and development [30], and increased
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oxidative stress might have a significant effect on placen-
tal function, including the proliferation and differenti-
ation of trophoblast cells and vascular reactivity [8, 31].
Likewise, in this study, the LBW placentae showed in-
creased oxidative damage and were vulnerable to angio-
genesis impairment. Particularly, oxidative stress
induced by H2O2 (a major type of ROS) prompted intra-
cellular ROS generation and inhibited the tube forma-
tion and migration of PVECs as well as the expression of
VEGF-A (a major driver for blood vessel formation)
in vitro. These findings suggest that birth weight is asso-
ciated with placental redox state, angiogenesis, or both.

Increased oxidative stress during late gestation could
lead to a greater percentage of stillbirth [32, 33], which
is a substantial cause of economic loss in livestock [34].
Our previous data indicated that alleviating serum oxi-
dative stress at day 109 of gestation contributed to redu-
cing the stillbirth of sows [18]. In this study, CS supply
during late gestation was shown to improve the preg-
nancy outcomes, including birth weight and stillbirth in
sows. To test whether the mechanism of CS in improv-
ing pregnancy outcomes is related to oxidative stress, we
analyzed the effect of dietary CS supplementation on the
related parameters in serum and colostrum, and found
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dietary CS supplementation could partially improve the
antioxidant status of sows and their offspring as well as
reduce the oxidative stress parameters. Meanwhile, ma-
ternal CS supplementation was also shown to partially
increase the antioxidant status of placentae for LBW pig-
lets. CS is a known antioxidant and anti-inflammatory
agent [35], and previous studies have proposed a number
of mechanisms for its protection against oxidative stress.
Firstly, CS was reported as a contributor to the cellular
redox state of hepatocytes by acting through sulfhydryl-
disulfide exchange reactions in cells [35]. Secondly, CS
could inhibit nucleotide-binding oligomerization domain-
like receptor containing pyrin domain 3 inflammasome by
metabolizing cysteine, thereby improving the redox status
of maternal-placental interface in sows [11]. Moreover,
when used at low concentrations, CS could promote the
transport of cysteine into cells, which can be further used
to synthesize GSH (one of the most potent intracellular an-
tioxidants) and influence the cellular redox homeostasis

[36]. GSH status could reflect the antioxidant capacity of
developing embryos. Previous studies have shown that
GSH could reduce the formation of ROS and ultimately
protect embryos against oxidative stress [37, 38]. In guinea
pig, supplementation with GSH precursor N-acetylcysteine
was shown to normalize the endothelial function in intra-
uterine growth-restricted placenta and fetus, thereby nor-
malizing fetal growth [39]. In the present study, the GSH
levels were elevated in the LBW placentae of the CS100
group, which benefits the growth and survival of embryo
and protects the fetus against ROS damage. In addition, we
note that CS supplementation increased the birth weight of
piglets only in sows with a low number of piglets, which
may be related to their limited uterine capacity in sows with
a high number of piglets. Previous reports suggest that at
moderate intrauterine crowding, litter size reaches a peak,
and further crowding beyond this point could reduce
the number of viable embryos/fetuses and weight ac-
cumulation, probably by reducing the number of
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embryos and weight accumulation able to obtain suf-
ficient uterine space for survival due to intrauterine
competition for space among embryos [40]. One point
we must emphasize is that the litter size is much
higher for high yield sows (average 20) than low yield
sows (average 13) in this study, which may mask the
beneficial effects of CS on high yield sows. The po-
tential mechanism needs to be elucidated in further
studies.
Previous reports on the effects of dietary CS levels on

redox status and growth performance of animal models,
including finishing pigs, sheep and rats, are inconsistent
with each other [41]. For instance, previous studies in
pregnant rats have shown an increased risk of oxidative
stress and IUGR when high doses of CS (150 mg/kg) are
applied [41], suggesting the importance of CS dose. In
the present study, another important finding is that the
dose-effect relationship between CS supplementation
and the redox state and pregnancy outcomes is not lin-
ear. Compared with the higher dose, the minimum dose
(in vivo and in vitro doses were 100 mg/kg and 500
μmol/L, respectively) was shown as the suitable supple-
mental dose. A possible explanation is that when used at
higher doses, cysteamine oxidation in the presence of
transition metals generates H2O2 molecules, thus caus-
ing oxidative stress. In addition, high doses of CS dimin-
ish the activity of glutathione peroxidase, the enzyme

that catalyzes the oxidation of glutathione to its disulfide
[42]. Thus, divergent results of studies using cysteamine
could frequently be explained by the antioxidant effect
of the drug, which could be counteracted by its direct
toxicity when higher doses are used [36]. However, the
potential mechanism needs to be revealed in further
studies.
The dense blood vessel network in the placenta is

responsible for the exchange of respiratory gases, nu-
trients, and wastes between mother and fetus
throughout pregnancy, which is essential for normal
fetal growth [43]. Throughout gestation, the vascula-
ture of the placenta is constantly evolving to accom-
modate the mounting demands of the fetus and could
be directly influenced by a number of exogenous fac-
tors, such as maternal diet, smoking, oxidative stress,
and medication use [44]. Therefore, the effect of CS
on the placental vessel density in piglets with differ-
ent body weights was evaluated in the present study,
and 100 mg/kg CS dietary supplementation was found
to increase the placental vessel density in LBW pig-
lets. CD31 is a biomarker of endothelial cells in blood
vessels, and VEGF-A is a major driver of blood vessel
formation [19]. The increased CD31 immunofluores-
cence intensity and VEGF-A mRNA level further
demonstrated that the placental vessel density was
higher in the CS100 group than in the other three
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Fig. 6 Effects of oxidative stress induced by H2O2 on the tube formation and migration in porcine vascular endothelial cells (PVECs). A PVECs
were treated with various concentrations of H2O2 (0, 100, 200 or 300 μmol/L) for 24 h (n = 6). B PVECs were treated with 200 μmol/L H2O2 for 0, 6,
12, 24 or 48 h. CCK8 assay was used to measure cell viability (n = 6). C The mRNA relative expression of Glutathione peroxidase 1 (GPX1), Cu/Zn
superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT), activating transcription factor 4 (ATF4), and glucose-regulated
protein78 (GPR78). PVECs were treated with various concentrations of H2O2 (0, 100, 200 or 300 μmol/L) for 24 h (n = 3). D, E ROS generation in
PVECs treated with various concentrations of H2O2 (0, 100, 200 or 300 μmol/L) for 24 h (n = 3). F, G Scratch healing assay of migratory distance of
PVECs treated with various concentrations of H2O2 (0, 100, 200 or 300 μmol/L) for 24 h (n = 3; bar = 500 μm). H, I Representative images of tube
formation by PVECs treated with various concentrations of H2O2 (0, 100, 200 or 300 μmol/L) for 24 h (n = 5; bar = 100 μm). Data are presented as
mean ± SEM. Different letters indicate significant differences at P < 0.05
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groups. It is worth noting that changes in placental
vessel density were consistent with oxidative stress
levels only in the LBW placentae among the four
groups, further implying that oxidative stress might
play an important role in placental angiogenesis. An-
other key factor for efficient nutrient exchange is pla-
cental efficiency [17]. Variations in placental
efficiency, a measure of grams of fetus produced per
gram of placenta, were initially studied between swine
breeds, where increased placental efficiency was found
to be associated with larger litters. For instance, when
compared to Yorkshire pigs, Meishan pigs, which are
known for large litter sizes, have smaller placentae,
but higher vascularity [45]. These observations seem
logical in that proper placental vascularization facili-
tates the efficient exchange of nutrients, implying the
importance of improving overall placental efficiency
[46], which might also help explain the increased pla-
cental efficiency in the CS100 group. Overall, mater-
nal CS supply could decrease the oxidative stress
level, thus enhancing angiogenesis in placentae.

Previous studies have reported Stat3 as an important
regulator of the adaptive response to oxidative stress in
the placenta, which might be related to the increased oxi-
dative stress and the altered trophoblast invasion and pla-
cental angiogenesis [44]. The expression of Stat3 and
Stat3-mediated genes was shown to be downregulated in
our recent study (unpublished data). In the present study,
Stat3 targeting genes (VEGF-A, IL-6, and IL-8) and up-
stream negative regulators (NOX2) were used to validate
the in vitro modulation of H2O2. The data of our study
and others have demonstrated that H2O2 inhibits the pro-
liferation and migration of PVECs by upregulating NOX2-
ROS-mediated inactivation of Stat3 signaling pathway
in vitro [47], indicating that Stat3 might play an important
role in placental angiogenesis in porcine. Previous studies
have also shown that CS could activate Stat3 signaling and
provide the critical protection required for the survival of
intestinal epithelial cells in vivo [21]. Here, we found a
novel function of CS, modulating the repair of H2O2-in-
duced PVECs oxidative stress through the Stat3 signaling
pathway. The pretreatment of PVECs with statttic (a

,

Fig. 7 Effects of oxidative stress induced by H2O2 on the Stat3/VEGF-A pathway in porcine vascular endothelial cells (PVECs). A The mRNA
expression of angiogenesis-related factors (vascular endothelial growth factor A, VEGF-A; interleukin-6/8, IL-6/8; NADPH oxidase 2, NOX2). B
Schematic for the mechanism of H2O2-induced angiogenesis impairment. C, D Western blotting analysis of the expression of phospho-Stat3 (p-
Stat3), NOX2, and VEGF-A. Cells were treated with 200 μmol/L H2O2 for 24 h. Data are presented as mean ± SEM (n = 3). Different letters indicate
significant differences at P < 0.05
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selective Stat3 inhibitor) and CS failed to prevent the de-
crease of VEGF-A protein expression and tubification
ability induced by H2O2, strongly suggesting that Stat3
mediates the endothelial protective effect of CS in vitro.

Conclusions
In this study, oxidative stress and impaired angiogenesis
were shown to contribute to the occurrence of low-birth-
weight piglets during pregnancy, but maternal CS supply
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,

Fig. 8 Cysteamine (CS) pretreatment attenuates the effects of H2O2 on angiogenesis. A, E The levels of ROS. PVECs were pretreated with various
concentrations of CS (0.5, 1 or 2 mmol/L) for 2 h and then treated with 200 μmol/L H2O2 for 24 h (n = 6; bar = 100 μm). B, F Scratch healing assay
of migratory distance. PVECs were pretreated with various concentrations of CS (0.5, 1 or 2 mmol/L) for 2 h and then treated with 200 μmol/L
H2O2 for 24 h (n = 3; bar = 500 μm). C, G Trans-well migration assay of the migratory number of PVECs. After different treatments as described
above, PVECs were added to the upper chamber of a trans-well and incubated for 48 h, followed by quantifying PVECs that invaded through the
chamber (n = 3; bar = 500 μm). D, H Representative images of tube formation of PVECs after different treatments as described above (n = 5; bar =
100 μm). I CCK8 assay was used to measure cell viability after different treatments as described above (n = 6). Data are presented as mean ± SEM
(n = 3). Different letters indicate significant differences at P < 0.05
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at 100mg/kg during late gestation and lactation of sows
could alleviate oxidative stress and enhance angiogenesis
in LBW placentae, thereby enhancing pregnancy out-
comes, including increased birth weight in low yield sows
and reduced stillbirth. The in vitro data showed that the
underlying mechanism for the positive effects of CS might
be related to Stat3 activation in PVECs.
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