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The comprehensive and integrative analysis of RNA-seq data, in different molecular layers from diverse
samples, holds promise to address the full-scale complexity of biological systems. Recent advances in
gene set variant analysis (GSVA) are providing exciting opportunities for revealing the specific biological
processes of cancer samples. However, it is still urgently needed to develop a tool, which combines GSVA
and different molecular characteristic analysis, as well as prognostic characteristics of cancer patients to
reveal the biological processes of disease comprehensively. Here, we develop ARMT, an automatic tool for
RNA-Seq data analysis. ARMT is an efficient and integrative tool with user-friendly interface to analyze
related molecular characters of single gene and gene set comprehensively based on transcriptome and
genomic data, which builds the bridge for deeper information between genes and pathways, to further
accelerate scientific findings. ARMT can be installed easily from https://github.com/Dulab2020/ARMT.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

RNA-seq related applications have been greatly developed and
become one of the most important methods in the field of life
science research, especially in cancer researches [1–3]. With the
rapid development of the application of RNA-seq technology, a
large number of gene expression profile data sets have been accu-
mulated in GEO [4], ArrayExpress [5] and other databases. Based
on these gene expression profile data sets, researchers [6,7] have
used a large number of statistical studies including differential
analysis, enrichment analysis, survival analysis, correlation analy-
sis, to study gene function, analyze gene expression regulation,
and analyze in-depth the transcriptome gene map of cancer occur-
rence and development, which greatly promoted the development
of cancer research [8,9].

The upstream analysis processes of transcripts, such as quality
control (QC), mapping, quantification, have been standardized
[10]. However, downstream functional analysis like differential
analysis, and enrichment analysis, varies greatly due to different
experimental designs and research purposes [11–13].

Screening for differentially expressed genes is common in the
statistical analysis of RNA-seq data [14–16]. Many tools and algo-
rithms for differentially expressed genes of RNA-seq have been
developed, such as R packages: ‘edgeR’ [17], ‘DESeq20 [18], ‘limma’
[19], ‘SAMseq’ [20], ‘Cuffdiff/Cuffdiff20 [21,22], ‘baySeq’ [23],
‘sleuth’ [24] and other new tools[25–27]. Based on different statis-
tical principles, different tools may lead to different results [28,29].
Since 2017, the most frequently cited methods for differential anal-
ysis include ‘edgeR’, ‘limma’, ‘Cuffdiff/Cuffdiff2’, and ‘DEGseq2’
(Fig. 1 A) and the generally acknowledged packages in these R
packages include ‘edgeR’, ‘limma’ and ‘DESeq2’. Previous study
showed that the results calculated by ‘edgeR’ and ‘limma’ were
similar [30]. The calculation speed of ‘DESeq2’ is significantly
slower than that of ‘edgeR’ and ‘limma’ (Fig. 1 B).

Survival analysis is an important way to study disease [31],
among which the Kaplan-Meier method is most widely used in
the case of single factor and two variables. COVID-19 is widely
spread nowadays and causes many deaths, many researchers use
the survival analysis model and Cox model to look for the factors
related to the prognosis of disease caused by this virus [32].

A single gene is effective to reveal biological significance to a
certain extent, but the biological reaction process, such as metabo-
lism, transcriptional regulation, stress response, is co-regulated by
multiple genes. Therefore, it is essential to analyze the gene sets or
signal pathways, which makes it easier to achieve the inter-
pretability of biological regulation [33–35]. Enrichment analysis
can be used to search for different genes with certain commonali-
ties and identify metabolic pathways or signal pathways associated
with phenotypes or diseases. At present, there are mainly four
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Fig. 1. Comparation of differential analysis tools A. The cite rate of tools for differential expression genes analysis B. The run time of differential analysis tools.
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methods for gene enrichment analysis: Over - representation Anal-
ysis(ORA) [36], Functional Class Scoring (FCS) [37], Pathway Topol-
ogy (PT) [38], Network Topology(NT) [39,40]. The most commonly
used method is ORA like Gene Ontology (GO) [41] and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [42] analysis based on
hypergeometric distribution hypothesis test, which can only per-
form enrichment analysis based on the pathways defined in the
databases with differentially expressed genes. While FCS can not
only work with custom gene sets, but also consider the genes
expression profile, which has higher calculation accuracy. The
most famous of the FCS methods is gene set enrichment analysis
(GSEA) [43], a supervised method based on population. While
GSEA is thought to lack consideration of correlations between
genes, resulting in an increase in the number of false positive gene
sets [44]. Compared with GSEA, gene set variation analysis(GSVA)
is an unsupervised and nonparameterized method for gene set
analysis [45], which can estimate changes in pathway activity in
the sample population. The GSVA also uses density estimates to
assess sample enrichment, and allows for more extensive down-
stream analysis by ignoring phenotypic information, which is
widely used in many studies recently [46–50].

The methods and tools, such as ‘metascape’ [51] for enrichment
analysis and ‘maftools’ [52] for mutant mapping, are to achieve a
certain type of function. There are also some tools for multiple
functions, such as TCGAbiolinks [53], but most of them are inflex-
ible in integrated analysis, too few of which can further analyze
GSVA score. The downstream function analysis of transcriptome
needs a more systematic and flexible analysis process to reveal
functional mechanism more deeply and comprehensive with gene
set analysis.
Table 1
The comparation of R packages for RNA-seq analysis.

KnowSeq RN

Create gene set file
Normalization for counts data

p p
Survival Analysis
Cox proportional hazards model
Detect DEG

p p
GO & KEGG

p p
Differential Analysis for mutation and GSVA score
Correlation Analysis
Mutant mapping
GSVA
GUI
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Base on some cancer studies by using TCGA multi-omics data
and multiple analysis methods [12,13,45,54–58], we developed a
tool--ARMT, for comprehensive and in-depth downstream statisti-
cal analysis of RNA-seq data. Given the widespread use of GSVA,
integrating multiple functions of GSVA, ARMT can carry out further
analysis on GSVA score. In addition, by incorporating some visual-
ization functions of maftools [52], ARMT has advantages in inte-
grated analysis and data mining between genome and
transcriptome. Besides, a GUI interface made by ‘shiny’ package
makes it easy for users to browse the visualized results. ARMT is
more multifunctional in downstream analysis than other R pack-
ages [53,59–61] for RNA-seq data (Table 1). The workflow and
function of ARMT would be elaborated in the following content,
and we would take a case to illustrate its flexible and convenient
use.
2. Method

2.1. Workflow overview

ARMT is an open-source R package on GitHub, which has com-
prehensive function with a GUI interface (Supplementary figure 1
and Supplementary figure 2) made by ‘shiny’ package, allowing
users to operate efficiently and browse the visualization results
conveniently. In ARMT, we integrate originally independent analy-
sis methods, including GSVA, survival analysis, differential analy-
sis, correlation analysis, enrichment analysis and mutant
mapping, and provide enough adjustable parameters. The frame-
work of ARMT is showed in Fig. 2 and its function can be described
AseqR RTCGA Toolbox TCGAbiolinksGUI ARMT
p
p

p p p
p

p p p
p p

p
p p

p p
p

p p



Fig. 2. The function & structure of ARMT. The data flow is illustrated and the framework can be divided to three parts (data preparation, analysis, mutant mapping).
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as three parts: data preparation, analysis and mutant mapping. The
user manual is included in the Supplementary data 1 and uploaded
it to the GitHub repository (https://github.com/Dulab2020/ARMT).

2.2. Data preparation

We built TCGA clinical data into ARMT, which can be obtained
directly by users in data preparation. The gene expression should
be normalized with gene length when calculating GSVA score,
and TPM is considered more suitable for with-in samples process
[62] and more comparable between samples of different origins
[10]. Therefore, before performing GSVA, the counts matrix should
be normalized to TPM matrix and transformed to log2(TPM + 1)
according to the official documentation, and the .gmt file of arbi-
trary gene sets can be built by ARMT. Then, clinical data, GSVA
score, gene expression profile data (TPM) and mutation profile data
can be merged through common samples, and this integrated data
is used to next comprehensive analysis.

2.3. Analysis

After data preparation and integration, ARMT can carry out sur-
vival analysis, Cox proportional hazards regressive analysis, differ-
ential analysis, enrichment analysis and correlation analysis.

Survival analysis and Cox proportional-hazards regressive anal-
ysis can be carried out by various grouping of integrated data
including mutation information, GSVA score, gene expression level
and clinical information. Survival analysis is conducted for classifi-
cation variables, ARMT divides samples into two groups for sur-
vival analysis through the selected factors in integration data. If
the factor is a continuous variable, the samples will be grouped
according to the level of values (top and bottom 50%, respectively).
The result of survival analysis is demonstrated in Kaplan-Meier
curve. The Cox proportional hazards model is also available in
ARMT to analyze the combined effect of multiple factors, and the
result is demonstrated with forest plot. The survival analysis and
cox proportional-hazards model are carried out by R package
‘survival’.

In differential analysis, the samples can be grouped by any fac-
tor in integration data. We provide enough adjustable parameters,
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including the threshold for the result (logFC, p-value and FDR) and
the top and bottom threshold of the continuous factors (high and
low). We employ ‘edgeR’ [17] packages to detect differentially
expressed genes (DEGs) for high efficiency. To address the bias
from normalization of counts matrix, four methods are provided,
including ‘TMM’, ‘TMMwsp’, ‘RLE’, ‘upperquartile’. As the GSVA
score is decimal and ‘edgeR’ requires integer input, the differential
analysis of GSVA score is carried out by ‘limma’ [19]. As mutant
mapping by ARMT needs collaboration with ‘maftools’ [52], the dif-
ferential analysis of mutation is also provided.

In enrichment analysis, the DEGs obtained by differential anal-
ysis or any gene list input by users can be enriched to GO or KEGG
pathway by ‘clusterprofiler’ [63]. The result of enrichment can be
screen by adjustable p-value and q-value.

The Spearman correlation coefficient and Pearson correlation
coefficient could also be calculated by ARMT between any contin-
uous variables, such as GSVA score and TPM value.

The above analysis method can be applied to multiple sets of
data (such as pan-cancer) automatically in ARMT.
2.4. Mutant mapping

Here, the mutation information of genes can be plot out in sum-
mary, but only some specific genes or pathways are focused on by
researchers. ARMT incorporates the ‘maftools’ [52] package’s abil-
ity to read MAF mutation files and produce the mutant mapping
(Supplementary figure 3), plotting out the distribution of specific
genes mutations and the interaction heatmap between them (co-
occurrence or mutually-exclusive), with an oncoplot of specific
types of mutations. In the oncoplot, gene mutations can be dis-
played together with sample data and gene data from the tran-
scriptome, facilitating the mining of deeper relationships
between the genome and the transcriptome.
2.5. Visualization

ARMT’s analysis results can be automatically visualized in the
user interface with heat plots, volcano plots, forest plots and other
methods; meanwhile, a searchable and sortable chart is also pro-
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vided to display the calculation results (Supplementary figure 4,
Supplementary figure 5 and Supplementary figure 6).

3. Result

3.1. Data

We downloaded the transcriptome data (counts matrix), muta-
tion data, and clinical data of lung adenocarcinoma (LUAD) sam-
ples from TCGA. Then the transcriptome data has been
standardized to obtain the TPM matrix of the cancer sample by
ARMT. The data used in this paper is referenced to Wei JF [12]
and has been agreed by the author.

According to Wei JF [12], the 14 gene signatures (ALDOA, MIF,
TUBB6, P4HA1, SLC2A1, PGAM1, ENO1, LDHA, CDKN3, TPI1, NDRG1,
VEGFA, ACOT7 and ADM) and the 22 gene signatures (SLC2A1,
HK1, HK2, HK3, GPI, PFKL, PFKM, PFKP, ALDOA, ALDOB, ALDOC,
TPI1, GAPDH, PGK1, PGAM1, PGAM4, ENO1, ENO2, ENO3, PKLR, PKM
and LDHA) had been verified to represent hypoxia and glycolysis
gene set, respectively. These two gene sets were used to calculated
GSVA score by ARMT in the following study.
Fig. 3. Differential analysis for TCGA-LUAD samples according to hypoxia GSVA sc
mutation genes C. Bar plot of GO enrichment analysis for differential expression genes.
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3.2. Case

As previous studies have proposed hypoxia is associated with
malignant progression, treatment resistance and poor clinical
prognosis in various cancer types [64–67], thus, in this study, we
focus on hypoxia for exploring hypoxia associated molecular char-
acteristics to demonstrate the function and potential application of
ARMT. In this paper, we will use an example to demonstrate the
function of ARMT and to illustrate the use and highlight the anal-
ysis on GSVA score, we take a case of five steps for various analyt-
ical methods.

3.2.1. Step1: Differential analysis
In order to comprehensively reveal the molecular characteris-

tics related to hypoxia, we first assessed the hypoxia level in each
LUAD sample based on the GSVA score of hypoxia gene sets
mentioned above, then grouped the samples into hypoxia-high
and -low groups, respectively, according to hypoxia GSVA score
(top and bottom 30%) to perform DEGs analysis. We obtained
6684 DEGs (p < 0.05, -log10(FDR) > 2, logFC > 1) (Fig. 3 A)
and then filtered 1174 up-regulated genes with high criterion
ore. A. Volcano plot of differential expression genes B. Forest plot of differential
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(p < 0.05, -log10(FDR) > 20, logFC > 1) to do KEGG enrichment anal-
ysis, and found they were enriched in cell cycle and glycolysis-
related pathways (Fig. 3 C). We then verified the difference of gly-
colysis by differential analysis on GSVA score (adj.p = 2.45*10-128)
(Supplementary data 2). In order to identify genomic changes that
associated with hypoxia, we conducted a differential analysis of
the mutation data of LUAD sample between hypoxia-high and -
low samples (Fig. 3 B). As Fig. 3 B showed five genes with SNV
including TP53, CSMD3, TTN, CD163L1, OR4C15 were significantly
mutated in hypoxia-high groups (p < 0.05, FDR < 0.01), it is sug-
gested that these genes were associated with hypoxia in tumor
microenvironment.

3.2.2. Step2: Survival analysis & Cox Proportional-hazards model
In order to evaluate whether there was an effect of hypoxia and

glycolysis on the survival of clinical patients, we grouped the clin-
ical data of LUAD samples into GSVA-high and -low groups accord-
ing to the level of glycolysis and hypoxia GSVA score for survival
analysis. We found that both higher hypoxia and glycolysis score
Fig. 4. Survival analysis and cox proportional hazards model. A. Kaplan-Meier curve o
regression analysis C. Forest plot for multivariate cox proportional hazards regression a
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were significantly associated with poorer survival probability in
LUAD patients (Fig. 4 A). The univariate and multivariate Cox pro-
portional hazards regression analysis was also performed on gly-
colysis and hypoxia with other clinical features including gender,
stage, and age (Fig. 4 B & Fig. 4 C), and the result indicated that
hypoxia was an independent factor, but glycolysis was not
independent.

3.2.3. Step3: Correlation analysis
The correlation between two variables is an important index of

scientific research. ARMT can flexibly calculate correlation
between any continuous variables, such as TPM value and GSVA
score. Here, focusing on hypoxia and glycolysis, we used ARMT
to calculate the Spearman correlation coefficient between their
GSVA score and the TPM value of specific genes. The correlation
heatmap is showed in Fig. 5, showing that glycolysis-related genes
were correlated with hypoxia score and hypoxia-related genes
were correlated with glycolysis score, which further verified the
close correlation between glycolysis and hypoxia.
f glycolysis and hypoxia level B. Forest plot for univariate cox proportional hazards
nalysis.



Fig. 5. Heatmap of Spearman correlation coefficient. The horizontal axis represents the glycolysis and glycolysis-related genes; the vertical axis represents the hypoxia and
hypoxia-related genes.

Fig. 6. The mutant map of TCGA-LUAD samples A. Variant allele frequency of differential mutation genes B. Mutation correlation heat map C. The GSVA score of glycolysis
D. Differential analysis result of GSVA score E. Oncoplot of SNV mutation with data in C&D.
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Fig. 7. Correlation analysis and survival analysis in pan-cancer. A. Heatmap of correlation coefficient between the GSVA score of glycolysis and hypoxia with hypoxia
related-genes B. Heatmap of correlation coefficient between the GSVA score of hypoxia and glycolysis with glycolysis-related genes C. Kaplan-Meier curve of glycolysis and
hypoxia level.
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3.2.4. Step4: Mutant mapping
ARMT can associate GSVA and gene mutation information with

the oncoplot so that we can set up a bridge between the transcrip-
tome and genomes, which can further explore the potential rela-
tionship between the key genetic mutation and gene expression
pattern. As the results shown above, TP53, CD163L1, CSMD3, TTN,
OR4C15 were the mutated genes in hypoxia score high samples
(Fig. 3 B). Here, we visualized the variant allele frequency (VAF)
of these five genes (Fig. 6 A), and presented their mutation correla-
tion heat map to reveal that their mutation is independent. (Fig. 6
B).

Then, the differential analysis based on glycolysis GSVA score
was preformed between samples with specific hypoxia-related
gene mutation or neutral samples, to obtain their relationship. As
shown in Fig. 6 C and Fig. 6 D, the samples were arranged by gly-
colysis GSVA score of all samples and the -log10(FDR) was shown
based on differential analysis of glycolysis GSVA score between
samples with TP53, CD163L1, CSMD3, TTN, OR4C15 mutation or
not (Fig. 6 D). Then, we used ARMT to display these two results
data from GSVA score with oncoplot of mutation data together,
which can reveal the potential relationship between hypoxia and
glycolytic activation at mutation level (Fig. 6 E). The results
showed that hypoxia score high mutated genes including TP53,
CSMD3 and TTN were also mutated in glycolysis score high sam-
ples, which suggested they may be the bridge molecular connect-
ing hypoxia and glycolysis.
3.2.5. Step 5: Analysis of multiple sets of data (For Pan-Cancer et.al)
To make the analysis process more convenient, multiple sets of

data can be automatically separated to analyze in one batch, which
means ARMT has the ability of pan-cancer analysis.
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Including all cancer samples in TCGA according to the cancer
types, correlation analysis (between glycolysis score and expres-
sion of hypoxia-related genes or hypoxia score and glycolysis-
related genes) and survival analysis (grouping based on hypoxia
and glycolysis GSVA value) for each cancer were carried out in step
5. In Fig. 7 A, we found a high correlation between glycolysis score
and hypoxia genes. In Fig. 7 B, there was a high coefficient between
hypoxia score and glycolysis genes across 33 cancer types.

The survival analysis showed that high glycolysis and hypoxia
score were associated with poorer survival probability in specific
cancer types including BLCA, CESC, HNSC and pan-cancer patterns,
which demonstrated these two factors may be the significant prog-
nostic factors in these cancer types (Fig. 7 C).
4. Discussion

With the exponential growth of omics data, it is of great signif-
icance for life science and medicine research to explore valuable
molecular mechanisms by comprehensive and integrated analysis.
In the early stage, our group had conducted several Pan-cancer
studies by using TCGA multi-omics data and multiple analysis
methods [12,13,54–58]. According to the experience of previous
studies, we believe that a comprehensive approach to integrated
omics analysis is particularly predominant in revealing molecular
mechanisms, and multiple valuable analysis approaches can be
integrated and standardized. At present, there are many web tools
for integration analysis of TCGA data [68], which promote our
research on cancer through public databases. However, more and
more studies show that complex diseases or phenotypes are diffi-
cult to explain with a single gene, so it is particularly important to
use gene-set characterizing a specific biological process to reveal
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the deeper biological mechanism. And there are few tools to inte-
grate the analysis of GSVA score into RNA-seq downstream
analysis.

Based on our previous research, we provided a more flexible
used tool with GUI and have developed ARMT. In this study, we
proposed a relatively standardized analysis process based on tran-
scriptome and genomic data and developed them into an auto-
mated tool used without programming requirement, which can
analyze any public or local relevant data on GUI according to the
researcher’s interest. From the case in this paper, ARMT can carry
out grouping analysis based on the integrated data according to
interest of researchers, providing a wide variety of grouping meth-
ods. ARMT not only integrates most known RNA-seq downstream
analysis steps, but also provides the analysis function for GSVA
score. Besides, it can carry out joint analysis with the mutation
information of genome, which greatly reduces the time cost of pro-
gramming and provides a relatively standard comprehensive anal-
ysis platform for researchers. We believe that this tool can promote
the discovery of life science and medical mechanism.

ARMT provides a way in the integrated and comprehensive
downstream functional analysis of RNA-seq, which is convenient
and efficient, accelerates the scientific research, saving a lot of time
and labor cost especially for users without programming skills.
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