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Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and N6-methyladenosine (m6A) is a
predominant internal modification of RNA in various cancers. We obtained the expression profiles of m6A-related genes for
HCC patients from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Most of the m6A
RNA methylation regulators were confirmed to be differentially expressed among groups stratified by clinical characteristics and
tissues. The clinical factors (including stage, grade, and gender) were correlated with the two subgroups (cluster 1/2). We
identified an m6A RNA methylation regulator-based signature (including METTL3, YTHDC2, and YTHDF2) that could
effectively stratify a high-risk subset of these patients by univariate and LASSO Cox regression, and receiver operating
characteristic (ROC) analysis indicated that the signature had a powerful predictive ability. Immune cell analysis revealed that
the genes in the signature were correlated with B cell, CD4 T cell, CD8 T cell, dendritic cell, macrophage, and neutrophil.
Functional enrichment analysis suggested that these three genes may be involved in genetic and epigenetic events with known
links to HCC. Moreover, the nomogram was established based on the signature integrated with clinicopathological features. The
calibration curve and the area under ROC also demonstrated the good performance of the nomogram in predicting 3- and 5-
year OS in the ICGC and TCGA cohorts. In summary, we demonstrated the vital role of m6A RNA methylation regulators in
the initial presentation and progression of HCC and constructed a nomogram which would predict the clinical outcome and
provide a basis for individualized therapy.

1. Introduction

Hepatocellular carcinoma (HCC), one of the most common
malignancies, ranks second among the leading causes of
cancer-related death globally [1]. The prognosis of HCC
patients is relatively poor, mainly accompanied by liver cir-
rhosis or diagnosed at a late stage. Although the therapies
of HCC have undergone rapid progress during the past
decades, ranging from surgical and local treatment to
molecular-targeted therapy and immunotherapy, the prog-
nosis is undesirable [2, 3]. Therefore, it is imperative to clar-
ify the molecular mechanisms of HCC to discover novel
therapeutic targets and improve the treatment options.

N6-Methyladenosine (m6A), a predominant internal
modification of RNA in mammalian cells, has been recog-
nized as having a vital role in mRNA stability, export, trans-
lation, splicing, and decay [4]. The modification of m6A is
conducted by three kinds of proteins: methyltransferases
(called “writers”), m6A-binding proteins (called “readers”),
and demethylases (called “erasers”) [5]. Moreover, m6A-
dependent mRNA regulation is fundamental in different
key biological processes, including embryonic development,
stem cell differentiation [6], neurogenesis [5, 7], and stress
responses [8].

Up to now, the implication of m6A has been studied in
various cancers, such as glioblastoma [7], acute myeloid
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leukemia [9], breast cancer [10], and hepatocellular carci-
noma [11]. However, little is known about its roles in initial
presentation, development, and pathogenesis for HCC.
Recently, bioinformatics research revealed that m6A-related
genes including METTL3 and YTHDF1 were biological
markers and independent prognosis factors in HCC [12].
Methyltransferase-like 14 (METTL14) was shown to be a
prognosis factor for HCC and inhibited by microRNA
126 in HCC metastasis [13]. Methyltransferase-like 3
(METTL3) correlates with the poor prognosis of HCC
and promotes the progression of HCC [11]. Wilms tumor
1-associated protein (WTAP) was investigated to be a poor
prognosis factor and contributed to the progression of HCC
via the HuR-ETS1-p21/p27 axis [14]. However, the biolog-
ical functions’ clinical value of other m6A-related genes in
HCC remains unclear.

In this section, we comprehensively analyzed the expres-
sion levels of fourteen m6A RNA methylation regulators and
clinical factors in patients with HCC from the ICGC (Inter-
national Cancer Genome Consortium, https://icgc.org/),
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih
.gov/geo/), and TCGA (The Cancer Genome Atlas, http://
cancergenome.nih.gov/) databases. We uncovered the
invaluable role of m6A RNA methylation regulators in the
development of HCC and constructed a signature and a
nomogram for predicting the survival of HCC.

2. Materials and Methods

2.1. Data Collection. The profiles were downloaded for 232
patients with HCC from ICGC-LIRI-JP, 209 patients with
HCC from GEO-GSE14520, and 370 patients with HCC from
TCGA-LIHC (Table 1) in August 2019. And the accession ID
from TCGA and ICGC database is shown in Supplement
Table 1. Patients who have insufficient clinicopathological
data or “0” gene expression values were not included. Since
the data come from TCGA and ICGC, it is not necessary to
get the study approval by the ethics committee. The patients
from the ICGC dataset were defined as a training cohort,
and the patients from TCGA dataset were defined as a
validation cohort. All statistical analyses were performed
using R statistical software (version 3.6).

2.2. m6A RNA Methylation Regulator Selection. The m6A
RNA methylation regulators were collected from published
articles. Then, we selected the m6A RNA methylation regula-
tors which were conformity to the genes from ICGC and
TCGA. Next, these m6A RNA methylation regulators were
further analyzed with clinical factors with HCC.

2.3. The Functional Enrichment Analysis. Gene Ontology
(GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway categories were used for func-
tional enrichment analysis. GO term and KEGG pathways
with a P value under 0.1 were considered indicative of a sta-
tistically significant difference.

2.4. Consensus Clustering. Consensus clustering was per-
formed using the ConsensusClusterPlus package in R to
determine subgroups of HCC based on the m6A RNA meth-

ylation regulators [15, 16]. The cumulative distribution func-
tion (CDF) plots show consensus clustering for each k to find
the appropriate k which reaches maximum stability.

Table 1: Characteristics of patients with HCC in TCGA and ICGC
cohorts.

Clinical characteristics Total %

TCGA 370

Survival status
Survival 244 65.95

Death 126 34.05

Age
≤65 years 232 62.70

>65 years 138 37.30

Gender
Male 249 67.30

Female 121 32.70

Histological grade

G1 55 14.86

G2 177 47.84

G3 121 32.70

G4 12 3.24

Stage

I 171 46.22

II 85 22.97

III 85 22.97

IV 5 1.35

T classification

T1 181 48.92

T2 93 25.14

T3 80 21.62

T4 13 3.51

TX 1 0.27

M classification

M0 266 71.89

M1 4 1.08

MX 100 27.03

N classification

N0 252 68.11

N1 4 1.08

NX 113 30.54

ICGC 232

Survival status
Survival 189 81.47

Death 43 18.53

Age
≤65 years 90 38.79

>65 years 142 61.21

Gender
Male 171 73.71

Female 61 26.29

Stage

I 36 15.52

II 106 45.69

III 71 30.60

IV 19 8.19

Prior malignancy
No 202 87.07

Yes 30 12.93

GSE14520 209

Survival status
Survival 130 62.20

Death 79 37.80

Abbreviations: TCGA: The Cancer Genome Atlas; ICGC: International
Cancer Genome Consortium.
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2.5. Establishment of the Prognostic Signature. At first, we
conducted a univariate Cox regression analysis to select prog-
nostic genes. Next, LASSO (least absolute shrinkage and selec-
tion operator) Cox regression analysis was performed to
choose independent high-risk genes for OS. Then, we built a
prognostic signature derived from themultivariate Cox regres-
sion analysis including significant variables. The signature
with the smallest Akaike information criterions (AICs) was

selected and assessed by using Harrell’s concordance index
(C-index). Patients were divided into a high-risk group and a
low-risk group based on the median score as the cut-off value.
The receiver operating characteristic (ROC) curve and the area
under ROC (AUC) were used to evaluate the calibration and
discrimination of the signature for OS by the R package “sur-
vivalROC.” The Kaplan-Meier curve and log-rank test were
drawn to analyze survival data by the R package “survival.”
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Figure 1: The expression levels of m6A RNA methylation regulators were associated with clinical factors. (a, b) The heatmaps for the
expression levels of m6A RNA methylation regulators in HCC tumor and normal tissues in TCGA (a) and ICCA (b) cohorts. (c, d) The
quantitative analyses for the expression levels of m6A RNA methylation regulators in HCC tumor and normal tissues in TCGA (c) and
ICCA (d) cohorts. (e, f) The heatmaps for the expression levels of m6A RNA methylation regulators in stages 1 and 2 and stages 3 and 4
in TCGA (e) and ICCA (f) cohorts. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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Figure 2: Identification of HCC subtypes using consensus clustering. (a, b) Spearman correlation analysis of the fourteen m6A modification
regulators in the ICGC (a) and TCGA (b) cohorts. (c) The m6A modification-related interactions among the fourteen m6A RNAmethylation
regulators. (d) Consensus clustering CDF for k = 2 to k = 9. (e) Consensus clustering matrix of XXX TCGA samples for k = 2. (f) Principal
component analysis of the total RNA expression profile in TCGA dataset. (g) Kaplan-Meier survival curves of clusters 1 and 2 in the
ICGC cohort with P value. (h) Kaplan-Meier survival curves of clusters 1 and 2 in TCGA cohort with the P value. (i) In TCGA, the fustat
represents the status of the patients.
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2.6. Immune-Related Analysis. We used the tumor immune
estimation resource (TIMER) database (http://cistrome.org/
TIMER/) to analyze and visualize the abundances of tumor-
infiltrating immune cells, such as B cells, CD4 T cells, CD8
T cells, macrophages, neutrophils, and dendritic cells.

2.7. Nomogram Establishment. The nomogram was built for
prediction of 3- and 5-year survival based on the prognostic
signature and clinical factors by the R package “rms.” The
predictive value of the nomogram was evaluated using the
calibration plot and ROC curve by the R packages “rms”
and “timeROC.”

3. Results

3.1. The Relationship between m6A RNA Methylation
Regulators and Clinical Factors. The fourteen m6A RNA
methylation regulators collected from published literature
evaluated the relationship between normal and tumor tissues
in TCGA and ICGC cohorts (Figures 1(a) and 1(b)). The
results showed that the expression levels of most m6A RNA
methylation regulators were significantly associated with
normal and tumor tissues. The results of quantitative analy-
ses confirmed that the expression levels of the fourteen
m6A RNA methylation regulators in tumor tissues were sig-
nificantly higher than the expression levels in normal tissues
except ZC3H13 and METTL14 in TCGA cohort
(Figure 1(c)), and the results in the ICGC cohort were consis-
tent with TCGA cohort except METTL14 (Figure 1(d)). The
relationship between stages and the expression levels of the

fourteen m6A RNA methylation regulators were also ana-
lyzed, and the results showed that the expression levels in
patients with stages 3 and 4 were higher than those in
patients with stages 1 and 2 in TCGA and ICGC cohorts
(Figures 1(e) and 1(f)).

3.2. Consensus Clustering Identified Two Subgroups in HCC.
To analyze the relationship among fourteen m6A RNAmeth-
ylation regulators, the Spearman correlation analyses were
used among fourteen m6A RNA methylation regulators in
TCGA (Figure 2(a)) and ICGC cohorts (Figure 2(b)). The
interaction of these proteins was retrieved from the STRING
database (https://string-db.org/) (Figure 2(c)). To divide the
patients with HCC based on consensus clustering of m6A
RNAmethylation regulators, we used a novel consensus clus-
tering method to determine the prognostic capabilities in
TCGA cohort. For each cluster number k, consensus cluster-
ing cumulative distribution function (CDF) of each final con-
sensus matrix (FCM) was calculated (Figure 2(d)). As shown
in Figures 2(e) and 2(f), we choose k = 2 to distinguish the
patients with HCC more clearly. The survival analysis
showed that cluster 1 patients had significantly poorer overall
survival than cluster 2 patients in TCGA (P < 0:001) and
ICGC (P < 0:05) cohorts. The clinical factors which included
T stage, stage, grade, gender, age, and status were correlated
with TCGA cohort (Figure 2(i)).

3.3. The Functional Enrichment Analysis. GO enrichment
analysis of these regulators revealed that many of them were
related to the GO terms “RNA modification,” “mRNA

Table 2: Functional enrichment analysis for the prognostic signature.

Category Term Description Count FDR

GOTERM_BP GO:0009451 RNA modification 8 5:42E − 12

GOTERM_BP GO:0080009 mRNA methylation 5 1:45E − 10

GOTERM_BP GO:1903311 Regulation of mRNA metabolic process 8 1:45E − 10

GOTERM_BP GO:0006397 mRNA processing 9 1:71E − 10

GOTERM_BP GO:0001510 RNA methylation 6 4:02E − 10

GOTERM_BP GO:0016070 RNA metabolic process 11 8:34E − 06

GOTERM_BP GO:0006396 RNA processing 10 4:02E − 10

GOTERM_MF GO:1990247 N6-methyladenosine-containing RNA binding 5 3:23E − 12

GOTERM_MF GO:0003723 RNA binding 8 5:30E − 07

GOTERM_MF GO:0140098 Catalytic activity, acting on RNA 5 5:14E − 05

GOTERM_MF GO:0016422 mRNA (2′-O-methyladenosine-N6-)-methyltransferase activity 2 7:72E − 05

GOTERM_MF GO:0003729 mRNA binding 4 9:27E − 05

GOTERM_MF GO:0035515 Oxidative RNA demethylase activity 2 9:27E − 05

GOTERM_CC GO:0036396 RNA N6-methyladenosine methyltransferase complex 6 3:62E − 15

GOTERM_CC GO:0016607 Nuclear speck 8 3:67E − 10

GOTERM_CC GO:0005654 Nucleoplasm 10 3:39E − 05

GOTERM_CC GO:1902494 Catalytic complex 7 4:16E − 05
Pathway HSA-72203 Processing of capped intron-containing pre-mRNA 4 0.00017

Pathway HSA-73943 Reversal of alkylation damage by DNA dioxygenases 2 0.00017

Abbreviations: GOTERM: Gene Ontology term; BP: biological process; MF: molecular function; CC: cellular component.

5Disease Markers

http://cistrome.org/TIMER/
http://cistrome.org/TIMER/
https://string-db.org/


methylation,” “regulation of mRNA metabolic process,” and
so on. KEGG analysis showed enrichment in several RNA-
related pathways, including processing of capped intron-
containing pre-mRNA and reversal of alkylation damage by
DNA dioxygenases (Table 2).

3.4. The Prognostic Signature Based on the m6A RNA
Methylation Regulators. To develop a prognostic signature,
univariate Cox regression analysis and LASSO penalized
Cox regression analysis were used to identify independent
prognostic genes for OS in HCC (Figure 3(a)). The univariate

and LASSO Cox regression analyses showed that ALKBH5,
HNRNPC, KIAA1429, METTL3, YTHDC2, YTHDF1, and
YTHDF2 were independent prognostic genes for OS in the
ICGC cohort. Then, the multivariate Cox regression analysis
identified three independent prognostic genes: METTL3,
YTHDC2, and YTHDF2, and the risk score = ð1:04 × the
expression level of METTL3Þ + ð−0:84 × the expression level
of YTHDC2Þ + ð1:04 × the expression level of YTHDF2Þ.
The C-index of the signature was up to 0.71, and the AIC was
409.65. The results represented that the signature had a rea-
sonable ability to discriminate patients of poor prognosis
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Figure 3: Construction of prognostic signature. (a) The procedure of the construction of the prognostic signature. (b, c) Correlation between
the prognostic signature and the overall survival of patients in the ICGC cohort (b) and TCGA (c) cohorts. The distribution of risk scores
(upper), survival time (middle), and gene expression levels (below). The black dotted lines represent the median risk score cut-off dividing
patients into low- and high-risk groups. The red dots and lines represent the patients in high-risk groups. The green dots and lines
represent the patients in low-risk groups.
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from patients of favor prognosis. Each patient in the signa-
ture was calculated as a risk score. Using the median risk
score value as the cut-off point, patients in each data portal
were classified into low-risk and high-risk groups. We also
figured the correlation between the prognostic signature
and the overall survival of patients in the ICGC cohort
(Figure 3(b)), TCGA (Figure 3(c)), and GSE14520

(Figure S1A) cohorts. The distribution of risk scores
(upper), survival time (middle), and gene expression levels
(below) are shown in Figures 3(b) and 3(c) and Supplement
Figure 1A.

3.5. The Relationship between the Prognostic Signature and
Clinical Factors. The Kaplan-Meier curve, ROC, and AUC
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Figure 4: The differences between high- and low-risk groups in the ICGC and TCGA cohorts. (a, b) The Kaplan-Meier survival curves
between high- and low-risk groups in the ICGC (a) and TCGA (b) cohorts. (c, d) ROC curves and AUC values in the ICGC (c) and
TCGA (d) cohorts. (e, f) The relationship between the clinical factors and the risk groups based on the prognostic signature in the ICGC
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were used to assess the prognostic capacity of the prognostic
signature. Patients in the high-risk group showed signifi-
cantly poorer OS than patients in the low-risk group in the
ICGC, TCGA, and GSE14520 cohorts (all P < 0:01;
Figures 4(a) and 4(b) and Figure S1B). The AUCs for 0.5-,
1-, 2-, 3-, and 5-year OS were 0.761, 0.751, 0.750, 0.755,
and 0.704; 0.710, 0.717, 0.670, 0.669, and 0.674; and 0.728,
0.631, 0.605, 0.622, and 0.631 for the ICGC, TCGA, and
GSE14520 cohorts, respectively (Figures 4(c) and 4(d) and
Figure S1C). The relationship between the risk score groups
and clinical factors was further analyzed in the ICGC and
TCGA cohorts (Figures 4(e) and 4(f)). It was confirmed
that the differences between the high- and low-risk groups
with regard to stage (P < 0:01) and status (P < 0:01) were
significant in the ICGC cohort. The differences between the
high- and low-risk groups with regard to stage (P < 0:05)
and grade (P < 0:01) were significant in TCGA cohort.
Moreover, we examined the relationship between the risk
score groups, and immune cells were further analyzed in
the ICGC and TCGA cohorts (Figures 4(g) and 4(h)). The
results suggested that the differences between the high- and
low-risk groups with regard to regulatory T cells (P < 0:001
), naive B cells (P < 0:01), follicular helper T cells (P < 0:05
), memory B cells (P < 0:01), and M0 macrophages
(P < 0:01) were significant in the ICGC cohort. The results
also suggested that the differences between the high- and
low-risk groups with regard to CD8 T cells (P < 0:01), M0

macrophages (P < 0:001), and CD4 memory resting T cells
(P < 0:01) were significant in TCGA cohort.

3.6. The Univariate andMultivariate Cox Regression Analyses
of the Prognostic Signature. The univariate Cox regression
analysis showed that stage and the risk score based on the sig-
nature were significant predictors of OS in the ICGC (stage:
P < 0:001; risk score: P < 0:001; Figure 5(a)) and TCGA
cohorts (stage: P < 0:001; risk score: P = 0:002; Figure 5(c)).
The T and M stages were also related to OS (T stage: P <
0:001; M stage: P = 0:023; Figure 5(c)) in TCGA cohort.
Moreover, multivariate Cox regression analysis confirmed
that stage (hazard ratio ðHRÞ = 2:303, 95% confidence inter-
val (95% CI) 1.579–3.359; P < 0:001; Figure 5(b)) and the risk
score based on the signature (HR = 1:081; 95% CI 1.028–
1.136; P = 0:002; Figure 5(b)) were significant independent
prognostic factors in the ICGC cohort. Multivariate Cox
regression analysis further showed that the risk score based
on the signature (HR = 1:542; 95% CI 1.232–1.930; P <
0:001; Figure 5(d)) was a significant independent prognostic
factor in TCGA cohort. These data indicated that the risk
score based on the signature was an independent predictor
of HCC.

3.7. Nomogram Construction. Based on the prognostic signa-
ture and clinical factors, such as gender, age, and stage, a
nomogram was constructed (Figure 6(a)). The calibration
curve was used to describe the prediction value of the
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Figure 5: The univariate and multivariate Cox regression analyses of the prognostic signature. The univariate (a) and multivariate (b) Cox
regression analyses of the prognostic signature in the ICGC cohort. The univariate (c) and multivariate (d) Cox regression analyses of the
prognostic signature in TCGA cohort.
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nomogram, and the 45-degree line indicated the actual sur-
vival outcomes. The results for predicting 3- and 5-year OS
indicated that the nomogram-predicted survival closely cor-
responded with the best prediction performance
(Figure 6(b)). The 3-year AUC was 0.755 for nomogram,
0.431 for gender, 0.523 for age, 0.670 for stage, and 0.568
for prior malignancy. Moreover, the 5-year AUC was 0.704
for nomogram, 0.451 for gender, 0.400 for age, 0.588 for
stage, and 0.496 for prior malignancy. These findings showed
that compared with a single clinical factor, the nomogram
combined with the signature and clinical factors had great
predictive accuracy.

3.8. Immune Cell Analysis. The Pearson correlation analysis
revealed that the risk score based on the signature in TCGA
cohort was correlated with the B cell (P = 0:001), CD4 T cell
(P < 0:001), CD8 T cell (P < 0:001), dendritic cell (P < 0:001),
macrophage (P < 0:001), and neutrophil cells (P < 0:001)
(Figure 7).

4. Discussion

Hepatocellular carcinoma (HCC) is a leading malignancy
worldwide due to its high recurrence rate, high metastatic
potential, and resistance to systematic therapy. However,
the molecular mechanisms of HCC are unclear. The m6A
RNA methylation is one of the most prevalent forms of
RNA modifications. In recent decades, the high-
throughput sequencing has revealed a significant role of
m6A RNA methylation in HCC [17]. In the present study,
we compared the expression levels of m6A RNA methyla-
tion regulators in tumor and normal tissues. The patients
were divided into cluster 1 and cluster 2 according to con-
sensus clustering. Based on the univariate Cox regression
analysis and LASSO penalized Cox regression analysis, a
prognostic signature was constructed with six m6A RNA
methylation regulators and the signature was confirmed to
be a significant independent prognostic. Next, the nomo-
gram was developed with the prognostic signature and
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Figure 6: Nomogram, C-index, and ROC curves for predicting 3- and 5-year overall survival of patients with HCC in the ICGC cohort. (a)
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other clinical factors. Moreover, the nomogram also
showed higher specificity and sensitivity for predicting 3-
and 5-year survival for patients with HCC.

Until now, m6A RNA methylation regulators have
attracted the attention of the medical research community.
The fourteen m6A RNA methylation regulators from litera-
ture were analyzed using univariate and LASSO penalized
Cox regression analysis in HCC. The results showed that
METTL3, YTHDC2, and YTHDF2 were independent high-
risk regulators in the ICGC and TCGA cohorts. The
METTL3 and YTHDC2, also called “writer,” are core compo-
nents of the m6A RNA methylation complex and involved in

various biological processes. METTL3 was suggested to act as
an oncogene in bladder cancer [18], breast cancer [19], ovar-
ian carcinoma [20], and pancreatic cancer [21]. METTL3 has
been also reported to be upregulated in HCC and associated
with poor prognosis of HCC, and our findings confirmed the
previous study that METTL3 plays an oncogenic role in HCC
[11]. YTHDC2, the fifth member of the YTH protein family,
was confirmed to be an oncogene in many cancers, and the
expression level of YTHDC2 is high in several human cancer
cells [22]. YTHDF2, termed “reader,” is a first studied func-
tional m6A-binding protein that mainly regulates the stability
of mRNA [23]. It acts as a tumor suppressor in HCC [24],
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Figure 7: The Pearson correlation coefficient was calculated to determine the correlation among the B cell, CD4 T cell, CD8 T cell, dendritic
cell, macrophage, and neutrophil cells.
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acute myeloid leukemia [25], and pancreatic cancer [26].
These conclusions were consistent with the findings in our
study. Here, we investigated that METTL3 and YTHDC2
were negatively correlated with the prognosis and YTHDF2
was positively associated with the prognosis.

Our study also established the prognostic signature
and nomogram based on m6A RNA methylation regula-
tors for predicting the outcome of patients with HCC.
The genomic signature and nomogram, integrated multiple
biomarkers, are promising methods that would improve
clinical management. Recently, a risk signature, using
seven m6A RNA methylation regulators, was built to pre-
dict the clinical outcomes of gliomas [27]. METTL3 and
YTHDF1 were identified as independent poor prognostic
factors in HCC [12]. Nevertheless, the clinical factors
should be also considered to ameliorate clinical therapy.
In our study, the nomogram was constructed and vali-
dated based on the prognostic signature and clinical fac-
tors. Compared with other factors, the nomogram
showed a more robust ability to predict the 3- and 5-
year OS.

There are still several limitations. At the beginning, the
prognostic value of the signature was not yet confirmed by
the validation experimental studies in HCC in vitro and
in vivo, which was just validated by another online dataset.
Second, the sample size of the training and validation cohorts
is quite small. Further validations are awaited.

In all, we have performed the first signature based on the
m6A RNA methylation regulator, as well as the construction
of the nomogram based on the signature and clinical factors.
Hence, this prognostic signature would be a useful marker for
guiding the selection of individualizing therapy for HCC.
Future studies should focus on the underlying molecular
mechanisms.
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