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Abstract: The effective reuse of waste glass fiber-reinforced plastic (GFRP) is desired. We previously
produced porous ceramics by firing mixtures of crushed GFRP and clay in a reducing atmosphere
and demonstrated their applicability as adsorbents for the removal of basic dyes from dyeing
wastewater. However, the primary influencing factors and the dye adsorption mechanism have not
been fully elucidated, and the adsorption of acidic and direct dyes has not been clarified. In this
study, adsorption tests were conducted, and the effects of the firing atmosphere, specific surface area,
type of dye, and individual components were comprehensively investigated. The results showed that
reductively fired ceramics containing plastic carbide residue adsorbed basic dye very well but did not
adsorb acidic dye well. The clay structure was the primary factor for the dye adsorption rather than
the GFRP carbide. The mechanism for the basic dye adsorption appears to have been an increase in
specific surface area due to the plastic carbide residue in the ceramic structure, which increased the
ion exchange between the clay minerals and the dye. By adjusting the pH of the aqueous solution,
the GFRP/clay ceramic also adsorbed considerable amounts of direct dye, so the mechanism was
determined to be ion exchange with the calcium component of the glass fibers.

Keywords: waste GFRP; reuse; adsorbent; ceramics; dyeing wastewater; reduction firing

1. Introduction

Glass fiber-reinforced plastic (GFRP) is used in various products that require low
weight and high strength, such as automobile parts, small ships, and wind turbine rotor
blades. However, most waste GFRP is sent to landfills without being reused because it is
difficult to recycle with existing technologies [1–6]. In previous work, we proposed mixing
crushed waste GFRP with clay and then firing the resulting mixture to produce porous ce-
ramics (i.e., GFRP/clay ceramics) [7–9] with novel material properties for environmentally
friendly products [10–12]. Products made from waste are generally more expensive than
products made from virgin materials because of the additional costs from waste collection
and reforming; thus, ensuring their usefulness is critical to their commercial viability [13].

Firing a mixture of GFRP and clay powders in an oxidizing atmosphere produces
a ceramic with high porosity in which the clay matrix is reinforced by glass fibers. This
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leads to high water permeability, so the ceramic can be applied as a filtering material for
turbid water treatment [14] and water-permeable paving blocks [15]. In contrast, firing the
mixture of GFRP and clay in a reducing atmosphere increases the specific surface area of
the produced ceramic. This may be because plastic carbides remain in the ceramic structure,
which includes a large number of nano-sized pores [16]. To exploit the high specific area
of these ceramics and a high ion exchange function of clay [17–21], we investigated their
potential application as an adsorbent material to remove pigment from dyeing wastew-
ater [16]. Adsorption tests with methylene blue (MB) dye verified that reductively fired
GFRP/clay ceramics possessed remarkably high adsorption.

However, it is not yet clear why the specific surface area of the ceramic increases
when it contains the carbide residue of GFRP. The primary influencing factors and the
mechanism of MB adsorption have not been fully elucidated, and the adsorption abilities
of the ceramics for acidic and direct dyes [22–24] are unknown. To address these issues,
we performed adsorption tests to clarify the mechanism for dye adsorption of GFRP/clay
ceramics. The effects of the firing atmosphere, specific surface area, type of dye, and
individual components of the GFRP/clay ceramics were comprehensively investigated.

2. Materials and Methods

We produced two types of GFRP/clay ceramics fired in oxidizing and reducing
atmospheres to clarify the differences in the specific surface area and pore size distribution
depending on the firing atmosphere. The effect of the GFRP carbide on the specific surface
area of reductively fired GFRP/clay ceramics was investigated by firing GFRP pellets in
a reducing atmosphere and observing the microstructure. Then, adsorption tests were
performed with basic, acidic, and direct (azo) dyes to evaluate the dye adsorption abilities
of the two types of GFRP/clay ceramics. Tests were also conducted with the glass fibers
contained in the GFRP and GFRP carbide to identify the primary influencing factors for
dye adsorption. In addition, the basic dye adsorption test on a ceramic containing plastic
carbides but not glass fibers was conducted.

2.1. GFRP/Clay Ceramic Samples Used for Dye Adsorption Tests

Figure 1 shows the process used to prepare the GFRP/clay ceramic samples for the dye
adsorption tests [16]. Polyamide (PA) thermoplastic pellets (Renny, Mitsubishi Engineering-
Plastics Co., Tokyo, Japan) containing ~40% glass fiber by mass were used as a surrogate
for waste GFRP. The clay (Sougoo Co., Miyakonojo, Japan) was produced in Miyazaki,
Japan [25], and it is typically used in brick or tile manufacturing.

Table 1 presents the inorganic chemical compositions of the GFRP and clay after
firing at 1073 K, which we measured using an energy-dispersive X-ray analyzer (EDX-720,
Shimadzu Corporation, Kyoto, Japan) with the fundamental parameter method [16]. The
GFRP contained E-type glass fibers, although the CaO content was high. The glass fibers
had a diameter of ~10 µm and a length of ~1.0 mm. The major minerals of the clay are
derived from the chlorite group.

Figure 2 shows examples of microscope (SZX10, Olympus Corporation, Tokyo, Japan)
images of the samples [16]. The reductively fired samples were black because some of the
undecomposed resin components remained in the clay structure as carbides.
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Table 1. Compositions of inorganic substances in the clay and GFRP.

Component
Raw Materials

Clay (Mass%) 40% GF/GFRP (Mass%)

SiO2 65.8 54.9
Al2O3 21.9 16.3
Fe2O3 4.79 0.77
K2O 3.37 0.15
MgO 1.67 -
CaO 1.31 26.7
TiO2 0.87 0.56

others 0.29 0.62
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Table 2 presents the sample manufacturing conditions [16]. The sample manufacturing
procedure was as follows [16]:

1. Clay was crushed with a rotary mill (New Power Mill ABS-W, Osaka Chemical Co.,
Ltd., Osaka, Japan) and then was sifted with a 0.3-mm mesh screen.

2. GFRP was also crushed with the rotary mill and then was sifted with a 0.5-mm mesh
screen.

3. The crushed GFRP was mixed with the clay at the mass rates listed in Table 2.
4. The GFRP/clay mixture was solidified by being pressed into a mold at 10 MPa. The

molded samples had a diameter of 74 mm and a thickness of 50–60 mm.
5. The molded samples were heated in an oxidizing or reducing atmosphere to 1073 K

in an electric furnace (KY-4N, Kyoei Electric Kilns Co., Ltd., Tajimi, Japan). The
samples were then held at the firing temperature for 1 h and allowed to cool to room
temperature in the furnace. For oxidative firing, the samples were heated at 100 K h−1

to the firing temperature. For reductive firing, the samples were heated at 400 K h−1.
The reducing atmosphere was obtained by closing the intake port attached to the
bottom of the electric furnace.

6. The produced GFRP/clay samples were then crushed with a hammer, and particle
sizes of 0.5–1.0 mm were selected.

Table 2. Manufacturing conditions for GFRP/clay ceramic samples.

Samples Mixing Ratios of GFRP
(Mass %) Firing Conditions

Oxidatively fired
ceramics

Clay 0
Samples were heated at 100 K h−1 to 1073 K
in an oxidizing atmosphere and then held at

the firing temperature for 1 h

20% GFRP/clay 20
40% GFRP/clay 40
60% GFRP/clay 60

Reductively fired
ceramics

20% GFRP/clay 20 Samples were heated at 400 K h−1 to 1073 K
in a reducing atmosphere and then held at

the firing temperature for 1 h
40% GFRP/clay 40
60% GFRP/clay 60

To clarify the primary influencing factors for dye adsorption of GFRP/clay ceramics,
the glass fibers and GFRP carbides were prepared separately. The glass fibers were prepared
by heating GFRP pellets at a rate of 100 K h−1 to 1073 K in an oxidizing atmosphere and
then holding them at the firing temperature for 1 h to decompose the plastic component.
GFRP carbides were prepared by heating GFRP pellets at a rate of 400 K h−1 to 1073 K
in a reducing atmosphere. The samples were adjusted to a particle size of 0.5–1.0 mm by
sieving after crushing.

In addition, we produced polyoxymethylene (POM)/clay ceramics containing plastic
carbides but not glass fibers by firing a mixture of crushed POM resin (Iupital, Mitsubishi
Engineering-Plastics Co., Tokyo, Japan) and clay in a reducing atmosphere. We then
investigated the relationship between the quantity of plastic carbides (i.e., carbon content)
and the specific surface area and MB adsorption ability of the ceramic. The POM resin was
used as a substitute for PA plastic without glass fibers because the latter is not available
from manufacturers. The mixing ratios of the POM resin to the total mass were 6%, 12%,
and 18%. Mixing 40% GF/GFRP with clay at a ratio of 10% corresponded to a resin mixing
ratio of 6%. The carbon content of the POM resin pellets used as the raw material was 41%.

Table 3 presents the inorganic chemical compositions of the samples [16]. The
GFRP/clay ceramic samples had a greater CaO content than the clay ceramic, and the ratio
of the CaO content to the total mass of the ceramic increased with the GFRP mixing ratio
because of the increasing glass fiber content.
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Table 3. Inorganic chemical compositions of the ceramic samples.

Component

Oxidatively Fired Reductively Fired

20%
GFRP/Clay

40%
GFRP/Clay

60%
GFRP/Clay

20%
GFRP/Clay

40%
GFRP/Clay

60%
GFRP/Clay

SiO2 62.6 59.1 50.0 62.2 61.2 56.2
Al2O3 22.1 20.7 17.7 18.5 9.13 4.79
Fe2O3 4.87 4.16 4.09 6.13 7.56 7.34
K2O 3.26 2.91 2.00 3.73 3.77 3.11
MgO 1.66 1.75 1.51 2.24 2.43 2.14
CaO 4.02 9.93 23.2 5.34 12.9 22.7
TiO2 0.86 0.80 1.03 1.21 1.56 1.49

Others 0.58 0.71 0.45 0.65 1.46 2.22

Table 4 presents the carbon content of each sample, which was measured using an
elemental analyzer (CHNS/O Analyzer 2400, PerkinElmer Inc., Waltham, MA, USA) [16].
The carbon contents of the oxidatively fired ceramic samples were ~0.25%, and those of
the reductively fired samples were 0.85–1.12%. The reductively fired ceramic samples
contained more plastic carbides than the oxidatively fired ceramic samples. The 40%
GF/GFRP pellets used as the raw material for the samples had a carbon content of 30%.

Table 4. Carbon contents of samples.

Samples Carbon Content (%)

Oxidatively fired ceramics

Clay 0.06
20% GFRP/clay 0.24
40% GFRP/clay 0.25
60% GFRP/clay 0.26

Reductively fired ceramics
20% GFRP/clay 0.85
40% GFRP/clay 0.99
60% GFRP/clay 1.12

Table 5 presents the apparent porosity and specific surface area of each sample [16].
The apparent porosity of each ceramic was measured using a mercury porosimeter (Auto
Pore IV 9500, Micromeritics Instrument Corporation, Norcross, GA, USA). The specific
surface areas of the samples were measured using a high-precision gas/vapor adsorption
measurement instrument (BELSORP-max, MicrotracBEL Corp., Osaka, Japan). The clay
ceramic possessed an apparent porosity of ~32%, whereas the GFRP/clay ceramic samples
possessed porosities of ~66% at most. The GFRP/clay ceramic samples possessed about
twice the porosity of the clay ceramic because a large number of pores in the clay structure
were created by the decomposition of the resin component due to firing. The porosities of
the oxidatively and reductively fired GFRP/clay ceramic samples were almost equivalent.
The oxidatively fired GFRP/clay ceramic samples had smaller specific surface areas than
the clay ceramic, and the specific surface area decreased as the GFRP mixing ratio increased.
In contrast, the reductively fired GFRP/clay ceramic samples had the same or larger specific
surface areas than the clay ceramic.
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Table 5. Apparent porosity, specific surface area, and carbon content of each ceramic sample.

Samples Apparent Porosity
(%)

Specific Surface
Area (m2/g)

Oxidatively fired
ceramics

Clay 31.9 11.0
20% GFRP/clay 38.2 7.05
40% GFRP/clay 52.7 5.74
60% GFRP/clay 62.9 2.83

Reductively fired
ceramics

20% GFRP/clay 43.1 14.9
40% GFRP/clay 53.8 14.2
60% GFRP/clay 66.2 11.3

Figure 3 shows the pore size distributions of the samples, which were measured using
the same high-precision gas/vapor adsorption measurement instrument that was used to
measure the specific surface area [16]. For the oxidatively fired GFRP/clay ceramic samples,
nano-sized pores in the structure decreased as the GFRP mixing ratio was increased.
Consequently, the specific surface areas of the samples were assumed to decrease with
an increasing GFRP mixing ratio. The nano-sized pores were also assumed to disappear
because of the sintering of the clay and glass fibers with an increasing GFRP mixing ratio.
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Figure 3. Pore size distributions of clay and GFRP/clay ceramic samples.

The reductively fired GFRP/clay ceramic samples had more nano-sized pores rela-
tively than the oxidatively fired GFRP/clay ceramic samples. Therefore, the reason why
the reductively fired GFRP/clay ceramic samples possessed higher specific surface areas
seems to be that the structure contained many nano-sized pores. It is believed that the
GFRP carbide residue in the clay structure contributed to the increase in the specific surface
area. To verify this, we measured the pore size distribution and the specific surface area of
GFRP carbide.

Figure 4 shows the pore size distribution and specific surface area of the GFRP carbides,
along with a photograph of the GFRP carbides. Although the GFRP carbides had no pores
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smaller than 10 nm, they had a large specific surface area. Therefore, the main reason
for the reductively fired GFRP/clay ceramics with a greater specific surface area than the
oxidatively fired GFRP/clay ceramics was concluded to be because the former contained
GFRP carbides. In addition, the clay matrix may have contained more fine pores because
of the inclusion of plastic carbides.
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Figure 5 shows examples of scanning electron microscope (SEM, S5500, Hitachi High-
Technologies Corporation, Tokyo, Japan) images of the surface structures of the clay and
20% GFRP/clay ceramic samples. Compared with the oxidatively fired ceramics, the
reductively fired ceramics tended to have smaller clay-sintered particles, although the
difference is not clear. In addition, a large number of ultrafine particles were attached to the
clay-sintered particles. However, it is unclear whether these ultrafine particles are plastic
carbides.

2.2. Methodology of Dye Adsorption Tests

Figure 6 shows a schematic diagram of the dye adsorption test [16]. MB (C16H18N3SCl)
(Fujifilm Wako Pure Chemical Corporation, Osaka, Japan), Orange II (HOC10H6N:
NC6H4SO3Na), and Congo-red (C32H22N6Na2O6S2) were used as representative basic,
acidic, and direct (azo) dyes, respectively. The test procedure was as follows [16]:

1. Samples were washed with distilled water and were dried in an electric furnace at
373 K for over 24 h before the dye adsorption tests.

2. MB, Orange II, and Congo-red powders were dissolved in distilled water to make
aqueous solutions each with a concentration of 1 × 10−4 mol/L.

3. Then, 1 g of the granular samples was placed in a beaker containing 50 mL of the
aqueous solution, and the aqueous solution was stirred with a stirring device (EYLA
ZZ-1010, Rikakikai Co., Ltd., Tokyo, Japan) at a speed of 150 rpm.

4. The dye concentration and pH value of the aqueous solutions were measured after 1,
10, 30, 60, and 120 min.

5. The dye concentration in the aqueous solution was measured using a drainage an-
alyzer (NDR-2000, Nippon Denshoku Industries Co., Ltd., Tokyo, Japan). The ab-
sorbance of the aqueous solution was determined. Then, the dye concentration was
calculated from a calibration curve that expressed the relationship between the ab-
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sorbance and dye concentration of the aqueous solution. The pH of the aqueous
solution was measured using a pH meter (HM-25R, DKK-TOA Corporation, Tokyo,
Japan).
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3. Results
3.1. Dye Adsorption of GFRP/Clay Ceramics

Figure 7 shows the dye concentration reduction rates of the oxidatively and reductively
fired ceramic samples. For MB, all samples demonstrated considerable dye adsorption.
However, the oxidatively fired GFRP/clay ceramic samples had a lower reduction rate
than the clay ceramic sample, and the rate decreased as the GFRP mixing ratio increased. In
contrast, the reductively fired GFRP/clay ceramic samples had a higher reduction rate than
the clay ceramic sample, and the rate increased with the GFRP mixing ratio. For Orange II,
the clay and oxidatively fired GFRP/clay ceramic samples did not adsorb the dye at all.
In contrast, the reductively fired GFRP/clay ceramic samples adsorbed it to some degree.
For Congo-red, all samples adsorbed the dye to a certain degree, and the oxidatively fired
GFRP/clay ceramic samples had reduction rates comparable or slightly higher to those of
the reductively fired samples. The results confirmed that the reductively fired GFRP/clay
ceramics had a high adsorption capacity for MB, which is a basic dye.
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Figure 8 shows the temporal change in pH of each dye solution during the dye
adsorption test. The MB solution containing the clay ceramic sample was weakly acidic and
eventually became almost neutral. In contrast, the MB solution containing the oxidatively
fired GFRP/clay ceramic sample was alkaline, and the pH value increased with the GFRP
mixing ratio because of the glass fibers, which mainly comprised calcium. The MB solution
containing the reductively fired GFRP/clay ceramic sample was also alkaline. However,
the pH value was slightly lower than that of the solution containing the oxidatively fired
sample because it contained plastic carbides. The changes in pH of the solution also
differed with the samples. The pH value of the solution containing the oxidatively fired
GFRP/clay ceramic sample was almost constant over time, while that of the solution
containing the reductively fired sample decreased gradually over time. This indicates that
the concentration of hydroxide ions in the solution decreased gradually because of ion
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exchange. This neutralized the cations of MB in the solution, which caused the color of the
solution to turn from blue to colorless.
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The Orange II solution containing the clay ceramic sample was almost neutral, and
the pH value was constant over time. The change in pH value was similar to that observed
for the MB solution. In particular, the pH value of the solution containing the reductively
fired GFRP/clay ceramic sample decreased over time. The Congo-red solution with the
clay ceramic sample was weakly alkaline, and it approached neutrality over time. The
change in pH value was similar to that observed for the MB and Orange II solutions. For
all dye solutions containing the reductively fired GFRP/clay ceramic sample, the difference
in pH value according to the GFRP mixing ratio was very small.

3.2. Primary Influencing Factors for Dye Adsorption on the GFRP/Clay Ceramics

To clarify the influencing factors for the dye adsorption of the GFRP/clay ceramics
and the absorption mechanism, we conducted dye adsorption tests on the glass fibers
in GFRP and on GFRP carbides. Figure 9 shows the dye concentration reduction rates.
Figure 10 shows the temporal changes in pH of the dye solutions. The primary influencing
factors and adsorption mechanism of each dye are discussed below individually.



Polymers 2021, 13, 3172 11 of 17Polymers 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. MB (a), Orange II (b), Congo-red (c) dye concentration reduction rates of the GFRP carbides and glass fibers. 

 
Figure 10. Temporal changes in pH of MB (a), Orange II (b) and Congo-red (c) dye solutions. 

(a) MB 
Figure 9a shows that the glass fibers did not adsorb MB at all. The MB concentration 

reduction rate was lower with the GFRP carbides than with the clay ceramic sample. This 
indicates that the plastic carbides do not have a significant MB adsorption capacity on 
their own. Therefore, the primary factor for MB adsorption of reductively fired GFRP/clay 
ceramics must be the clay structure. This is also consistent with the fact that the MB con-
centration reduction rate for the oxidatively fired GFRP/clay ceramic samples decreased 
with an increasing GFRP mixing ratio. In particular, the reduction rate decreased as the 
quantity of clay was decreased. 
(b) Orange II 

Figure 9b shows that the clay ceramic sample did not adsorb Orange II at all, and the 
glass fibers and GFRP carbide adsorbed a small amount. Therefore, the primary factor for 
dye adsorption of the GFRP/clay ceramics is the glass fibers, and the plastic carbide offers 
no adsorption of acidic dyes. 
(c) Congo-red 

Figure 9c shows that the GFRP carbides did not adsorb Congo-red at all, while the 
glass fibers showed considerable adsorption. Therefore, the primary factor for dye ad-
sorption of the GFRP/clay ceramics is the glass fibers. The plastic carbide did not adsorb 
the dye at all and was actually a hindrance. This explains why the dye concentration re-
duction rate was slightly higher for the oxidatively fired GFRP/clay ceramic without plas-
tic carbides than for the reductively fired ceramic, as shown in Figure 7. 

Figure 9. MB (a), Orange II (b), Congo-red (c) dye concentration reduction rates of the GFRP carbides and glass fibers.

Polymers 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. MB (a), Orange II (b), Congo-red (c) dye concentration reduction rates of the GFRP carbides and glass fibers. 

 
Figure 10. Temporal changes in pH of MB (a), Orange II (b) and Congo-red (c) dye solutions. 

(a) MB 
Figure 9a shows that the glass fibers did not adsorb MB at all. The MB concentration 

reduction rate was lower with the GFRP carbides than with the clay ceramic sample. This 
indicates that the plastic carbides do not have a significant MB adsorption capacity on 
their own. Therefore, the primary factor for MB adsorption of reductively fired GFRP/clay 
ceramics must be the clay structure. This is also consistent with the fact that the MB con-
centration reduction rate for the oxidatively fired GFRP/clay ceramic samples decreased 
with an increasing GFRP mixing ratio. In particular, the reduction rate decreased as the 
quantity of clay was decreased. 
(b) Orange II 

Figure 9b shows that the clay ceramic sample did not adsorb Orange II at all, and the 
glass fibers and GFRP carbide adsorbed a small amount. Therefore, the primary factor for 
dye adsorption of the GFRP/clay ceramics is the glass fibers, and the plastic carbide offers 
no adsorption of acidic dyes. 
(c) Congo-red 

Figure 9c shows that the GFRP carbides did not adsorb Congo-red at all, while the 
glass fibers showed considerable adsorption. Therefore, the primary factor for dye ad-
sorption of the GFRP/clay ceramics is the glass fibers. The plastic carbide did not adsorb 
the dye at all and was actually a hindrance. This explains why the dye concentration re-
duction rate was slightly higher for the oxidatively fired GFRP/clay ceramic without plas-
tic carbides than for the reductively fired ceramic, as shown in Figure 7. 

Figure 10. Temporal changes in pH of MB (a), Orange II (b) and Congo-red (c) dye solutions.

(a) MB

Figure 9a shows that the glass fibers did not adsorb MB at all. The MB concentration
reduction rate was lower with the GFRP carbides than with the clay ceramic sample. This
indicates that the plastic carbides do not have a significant MB adsorption capacity on
their own. Therefore, the primary factor for MB adsorption of reductively fired GFRP/clay
ceramics must be the clay structure. This is also consistent with the fact that the MB
concentration reduction rate for the oxidatively fired GFRP/clay ceramic samples decreased
with an increasing GFRP mixing ratio. In particular, the reduction rate decreased as the
quantity of clay was decreased.

(b) Orange II

Figure 9b shows that the clay ceramic sample did not adsorb Orange II at all, and the
glass fibers and GFRP carbide adsorbed a small amount. Therefore, the primary factor for
dye adsorption of the GFRP/clay ceramics is the glass fibers, and the plastic carbide offers
no adsorption of acidic dyes.

(c) Congo-red

Figure 9c shows that the GFRP carbides did not adsorb Congo-red at all, while the glass
fibers showed considerable adsorption. Therefore, the primary factor for dye adsorption of
the GFRP/clay ceramics is the glass fibers. The plastic carbide did not adsorb the dye at all
and was actually a hindrance. This explains why the dye concentration reduction rate was
slightly higher for the oxidatively fired GFRP/clay ceramic without plastic carbides than
for the reductively fired ceramic, as shown in Figure 7.
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4. Discussion

The results of dye absorption tests showed that while reductively fired GFRP/clay
ceramics adsorbed MB dye very well, they did not adsorb very much Orange II and Congo-
red dyes. We first discuss the reason for this. In this study, the chlorite clay used as a base
material for the GFRP/clay ceramics had a predominant permanent charge and a cation
exchangeable capacity of 5–40 [17]. In addition, when the aqueous solution containing a
ceramic sample is alkaline, as was the pH of the aqueous solution in this study, the surface
of the ceramic sample is negatively charged [17,26,27]. Therefore, ceramics containing
chlorite clay adsorb cations from the aqueous solution by ion exchange. For this reason,
the MB dye, which existed as cations in an aqueous solution, was adsorbed onto the clay
surface [20]. Moreover, the adsorption of basic dyes is caused by van der Waals forces in
addition to cation exchange [17].

On the contrary, the acid anionic Orange II dye contained sulfonic acid in an aqueous
solution. Therefore, when the surface of a ceramic is negatively charged, the dye will not be
electrically adsorbed onto the ceramic surface. Congo-red, a direct dye, is also an anionic
dye that contains sulfonic acid; however, the adsorption of Congo-red onto cotton and silk
surfaces is mainly due to hydrogen bonding rather than ion exchange.

Second, we discuss why the glass fibers adsorbed the Congo-red dye well. Calcium-
rich fly ash and cement adsorb Congo-red dye regardless of whether the aqueous solution
is acidic or alkaline [28,29]. However, when the aqueous solution is alkaline, the adsorption
amount decreases as the pH increases. The main cause of this dye adsorption is thought to
be ion exchange with calcium ions [28]. Therefore, it is believed that the cause of the glass
fibers adsorbing the Congo-red dye well in this study was ion exchange with calcium ions.

In addition, because GFRP/clay ceramics contain glass fibers, they have higher CaO
contents compared to clay-only ceramics. When a Congo-red dye solution is alkaline, the
adsorption amount is low, but when the solution is acidic, a larger amount can be expected
to be adsorbed, which can be achieved by adjusting the pH of the aqueous solution [30,31].

Figure 11 shows the reduction rates of Congo-red dye concentrations and the change
in pH of the dye solution when the initial pH of the dye solution containing the reduc-
tively fired 20% GFRP/clay ceramic sample was adjusted in the range of 3–8 by adding
hydrochloric acid. The GFRP/clay ceramic adsorbed a considerable amount of Congo-red
dye when the pH of the aqueous solution was 4–5.
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Figure 11. (a) Congo-red dye concentration reduction rates and (b) the change in pH of the dye Scheme 20. GFRP/clay
ceramic sample was adjusted in the range of 3–8 by adding hydrochloric acid.
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However, in this study, the dye concentration of the aqueous solution was indirectly
estimated by measuring its absorbance. The color of Congo-red solution changes from
red to dark blue when the pH is approximately three or less [28]. Namely, the color of
the aqueous solution becomes darker. Therefore, when the pH of the aqueous solution is
adjusted to three or less, the relationship between the absorbance and the dye concentration
should be recalibrated, but this is not easy and is under consideration. For this reason, the
dye concentrations reduction rate at pH 3 shown in Figure 11a may contain relatively large
measurement errors. It is necessary to perform Fourier-transform infrared measurements
for more accurate examination. Moreover, the effect of carbides in the reductively fired
GFRP/clay ceramic on the adsorption of Congo-red dye is still unknown. These issues
should be addressed in the future.

Azo dyes are currently the most used dyes in the industry. Therefore, the development
of an effective technique for removing the dye from the dyeing wastewater is strongly
desired. Roberto et al. reported that Azo Dye Reactive Violet 5 (RV5) could be effectively
removed using photocatalysis technology [32], and Zuorro et al. also showed the usefulness
of RV5 dye removal technology using non-living cells of Nannochloropsis oceanica [33].
Further elucidation of the mechanism of azo dye adsorption and the development of its
dye removal technology is desired.

Next, we discuss why the reductively fired GFRP/clay ceramics had greater MB
adsorption than the oxidatively fired GFRP/clay ceramics. We attributed to the former
containing plastic carbides and thus possessing a greater specific surface area. However, it
is believed that the primary factor for MB adsorption of the ceramics is the clay structure
because the plastic carbides did not have significant MB adsorption on their own. Therefore,
we investigated the effect of increasing the specific surface area on the MB adsorption of
the clay ceramic.

Figure 12 compares the MB concentration reduction rates of clay ceramics with dif-
ferent specific surface areas (a) and the pore size distribution of clay sample B, which
was newly prepared for the dye adsorption experiment (b). Clay sample A was the clay
ceramic sample used in the previous dye adsorption experiments, as listed in Table 2. This
sample was produced by being heated at 100 K h−1 to the firing temperature (1073 K) in an
oxidizing atmosphere. It possessed a specific surface area of 11.0 m2/g, as given in Table 5.
In contrast, clay sample B was heated at 400 K h−1 to the firing temperature in a reducing
atmosphere, similar to the reductively fired GFRP/clay ceramic samples. Clay sample B
had fewer nano-sized pores than clay sample A (see Figure 3) and possessed a smaller
specific surface area. The apparent porosity of clay sample B (31.6%) was comparable to
that of clay sample A.

Figure 12a shows that clay sample B had a considerably lower MB concentration
reduction rate. This result indicates that the MB adsorption of the clay ceramic strongly
depends on the specific surface area. These results showed that increasing the specific
surface area of the clay structure has a large effect on the MB adsorption of GFRP/clay
ceramics. However, it is currently unknown why clay sample B had a smaller specific
surface area than clay sample A. Further research is needed on the relationships of the
heating rate and firing atmosphere with the specific surface area of the clay ceramic. This
is also an issue to be addressed in the future.

In addition, we investigated whether the specific surface area of the ceramic increases
when only plastic carbides remained in the clay structure and the MB adsorption ability of
the ceramic containing plastic carbides but not glass fibers.

Table 6 presents the apparent porosities, specific surface areas, and carbon contents
of the POM/clay ceramics containing plastic carbides but not glass fibers. The specific
surface areas of the ceramics increased with the inclusion of the plastic carbides, although
the specific surface area did not increase in proportion with the carbon content.
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Table 6. Apparent porosity, specific surface area, and carbon content of POM/clay ceramic.

Samples Apparent Porosity
(%)

Specific Surface
Area (m2/g)

Carbon Content
(%)

Clay sample-B 31.6 3.49 0.27

6% POM/clay 29.5 7.32 0.46
12% POM/clay 33.2 7.48 0.58
18% POM/clay 46.7 7.19 0.58

Figure 13 shows the MB concentration reduction rates of the ceramics. The MB
adsorption of the ceramics increased with the porosity, as well as the specific surface area.
For a more detailed investigation, measuring the specific surface area of the plastic carbide
itself would be desirable. However, when the plastic (POM resin) without glass fibers was
fired in a reducing atmosphere in the same manner as GFRP, almost no carbide remained.
Therefore, it was impossible to measure the specific surface area of the plastic carbides.

The above results indicate that the MB absorption mechanism is as follows:

1. The plastic carbide residue in the reductively fired GFRP/clay ceramic structure
increases the specific surface area of the ceramic. The high specific surface area of the
ceramic increases the physical and chemical adsorption of MB. In addition, the high
porosity facilitates MB movement into the ceramic body.

2. The reductively fired GFRP/clay ceramic samples exhibited a high adsorption capac-
ity for only basic dyes. This indicates that the adsorption mechanism is dominated by
cation exchange with clay components.



Polymers 2021, 13, 3172 15 of 17

Polymers 2021, 13, x FOR PEER REVIEW 17 of 19 
 

 

fired in a reducing atmosphere in the same manner as GFRP, almost no carbide remained. 
Therefore, it was impossible to measure the specific surface area of the plastic carbides. 

 
Figure 13. MB concentration reduction rates on POM/clay ceramics. 

The above results indicate that the MB absorption mechanism is as follows: 
1. The plastic carbide residue in the reductively fired GFRP/clay ceramic structure 

increases the specific surface area of the ceramic. The high specific surface area of 
the ceramic increases the physical and chemical adsorption of MB. In addition, the 
high porosity facilitates MB movement into the ceramic body. 

2. The reductively fired GFRP/clay ceramic samples exhibited a high adsorption 
capacity for only basic dyes. This indicates that the adsorption mechanism is 
dominated by cation exchange with clay components. 

5. Conclusions 
To realize the effective reuse of waste GFRP, we produced porous ceramics by mixing 

crushed GFRP with clay and then firing the resulting mixture in either an oxidizing or 
reducing atmosphere. We previously showed that these porous ceramics can be used as 
adsorbents to remove basic dye from dyeing wastewater. In this study, we conducted ad-
sorption tests with MB, Orange II, and Congo-red dyes to evaluate the effectiveness of 
these ceramics with different types of dye. We also tested the glass fibers and GFRP car-
bides to clarify the primary influencing factors and mechanism of the dye adsorption. The 
results confirmed that reductively fired GFRP/clay ceramics containing plastic carbide 
residue in the ceramic structure adsorb MB very well. The clay structure was the primary 
factor for the dye adsorption rather than the GFRP carbide. The MB adsorption mecha-
nism was based on the plastic carbide residue in the ceramic structure increasing the spe-
cific surface area, which increased ion exchange between the clay minerals and the dye. 
The GFRP/clay ceramic also adsorbed considerably more Congo-red dye when the pH of 
the aqueous solution was adjusted. The adsorption mechanism was based on ion ex-
change with the calcium component of the glass fibers. 

0 30 60 90 120
0

20

40

60

80

100

Time (min)

R
ed

uc
tio

n 
ra

te
 o

f M
B

 c
on

ce
nt

ra
tio

n 
(%

)

6% POM/clay

12% POM/clay

18% POM/clay

Clay sample-B

Figure 13. MB concentration reduction rates on POM/clay ceramics.

5. Conclusions

To realize the effective reuse of waste GFRP, we produced porous ceramics by mixing
crushed GFRP with clay and then firing the resulting mixture in either an oxidizing or
reducing atmosphere. We previously showed that these porous ceramics can be used as
adsorbents to remove basic dye from dyeing wastewater. In this study, we conducted
adsorption tests with MB, Orange II, and Congo-red dyes to evaluate the effectiveness
of these ceramics with different types of dye. We also tested the glass fibers and GFRP
carbides to clarify the primary influencing factors and mechanism of the dye adsorption.
The results confirmed that reductively fired GFRP/clay ceramics containing plastic carbide
residue in the ceramic structure adsorb MB very well. The clay structure was the primary
factor for the dye adsorption rather than the GFRP carbide. The MB adsorption mechanism
was based on the plastic carbide residue in the ceramic structure increasing the specific
surface area, which increased ion exchange between the clay minerals and the dye. The
GFRP/clay ceramic also adsorbed considerably more Congo-red dye when the pH of the
aqueous solution was adjusted. The adsorption mechanism was based on ion exchange
with the calcium component of the glass fibers.

Finally, although chlorite clay was used as the base material for the GFRP/clay
ceramics in this study, the type of clay can be changed according to the type of dye. For
example, the use of anionic clay minerals for acid dyes.

Adsorbents require both large pore volume and high specific surface area [34]; how-
ever, it is not easy to obtain a sintered product with a high specific surface area. The results
of this study showed that plastic carbide residue increases the specific surface area of
ceramics, so it would be of great significance if a method for increasing the specific surface
area of sintered products was established. We also hope that the results of this study will
contribute to the effective reuse of waste GFRP.

6. Patents

Kinoshita H, Kaizu K., Ikeda K., (2013) Manufacturing method of porous ceramics
using waste GFRP, Japanese Patent No. 5167520 (in Japanese).
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28. Acemioğlu, B. Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci. 2004, 274, 371–379.

[CrossRef]
29. Wagner, M.; Eicheler, C.; Helmreich, B.; Hilbig, H.; Heinz, D. Removal of Congo Red from Aqueous Solutions at Hardened

Cement Paste Surfaces. Front. Mater. 2020, 7, 567130. [CrossRef]
30. Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay

materials. Chem. Eng. J. 2009, 148, 354–364. [CrossRef]
31. Dawood, S.; Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder

as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946. [CrossRef]
32. Zuorro, A.; Lavecchia, R.; Monaco, M.M.; Iervolino, G.; Vaiano, V. Photocatalytic Degradation of Azo Dye Reactive Violet 5 on

Fe-Doped Titania Catalysts under Visible Light Irradiation. Catalysts 2019, 9, 645. [CrossRef]
33. Zuorro, A.; Maffei, G.; Lavecchia, R. Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. J.

Environ. Chem. Eng. 2017, 5, 4121–4127. [CrossRef]
34. Giraldo, L.; Moreno-Piraján, J.C. Novel Activated Carbon Monoliths for Methane Adsorption Obtained from Coffee Husks. Mater.

Sci. Appl. 2011, 2, 331–339. [CrossRef]

http://doi.org/10.4188/transjtmsj.56.8_P352
http://doi.org/10.4188/transjtmsj.55.9_P358
http://doi.org/10.4188/transjtmsj.54.11_463
http://doi.org/10.11408/jsidre1965.2003.807
http://doi.org/10.11450/seitaikogaku.26.11
http://doi.org/10.1016/j.jcis.2004.03.019
http://doi.org/10.3389/fmats.2020.567130
http://doi.org/10.1016/j.cej.2008.09.009
http://doi.org/10.1016/j.watres.2012.01.009
http://doi.org/10.3390/catal9080645
http://doi.org/10.1016/j.jece.2017.07.078
http://doi.org/10.4236/msa.2011.25043

	Introduction 
	Materials and Methods 
	GFRP/Clay Ceramic Samples Used for Dye Adsorption Tests 
	Methodology of Dye Adsorption Tests 

	Results 
	Dye Adsorption of GFRP/Clay Ceramics 
	Primary Influencing Factors for Dye Adsorption on the GFRP/Clay Ceramics 

	Discussion 
	Conclusions 
	Patents 
	References

