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ABSTRACT
Adenosine triphosphate-sensitive K+ (KATP) channels play an essential role in glucose-
induced insulin secretion from pancreatic b-cells. It was recently reported that the KATP
channel is also found in the enteroendocrine K-cells and L-cells that secrete glucose-
dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1),
respectively. In the present study, we investigated the involvement of the KATP channel in
fructose-induced GIP, GLP-1 and insulin secretion in mice. Fructose stimulated GIP
secretion, but pretreatment with diazoxide, a KATP channel activator, did not affect
fructose-induced GIP secretion under streptozotocin-induced hyperglycemic conditions.
Fructose significantly stimulated insulin secretion in Kir6.2+/+ mice, but not in mice lacking
KATP channels (Kir6.2

-/-), and fructose stimulated GLP-1 secretion in both Kir6.2+/+ mice
and Kir6.2-/- mice under the normoglycemic condition. In addition, diazoxide completely
blocked fructose-induced insulin secretion in Kir6.2+/+ mice and in MIN6-K8 b-cells. These
results show that fructose-induced GIP and GLP-1 secretion is KATP channel-independent
and that fructose-induced insulin secretion is KATP channel-dependent.

INTRODUCTION
Glucose-dependent insulinotropic polypeptide (GIP) and gluca-
gon-like peptide-1 (GLP-1) are incretin hormones secreted
from enteroendocrine K-cells and L-cells by nutrients such as
carbohydrate1,2.
Adenosine triphosphate-sensitive K+ (KATP) channels play an

important role in glucose-induced insulin secretion from pan-
creatic b-cells3. It has been reported that K-cells and L-cells
express glucokinase and KATP channels identical to those
expressed in pancreatic b-cells4,5. In addition, facilitative glucose
transporter 5 (GLUT5), which absorbs fructose from intestinal
lumen to cytosol6, is abundantly expressed in K-cells, L-cells
and b-cells. However, the role of fructose and the involvement

of the KATP channel in the secretion of GIP, GLP-1 and insulin
in vivo are poorly understood.
In the present study, we investigated the contributions of

fructose and the KATP channel in the secretion of these
hormones utilizing KATP channel-deficient mice.

MATERIALS AND METHODS
Mice
C57BL/6J mice (Kir6.2+/+ mice) and mice lacking the KATP

channel (Kir6.2-/- mice)3 were used. We carried out all animal
experiments according to the protocol approved by the Nagoya
University Institutional Animal Care and Use Committee.

Plasma Biochemical Analyses
Blood glucose levels were measured with ANTSENSE II (Bayer
Medical, Leverkusen, Germany). Plasma total GIP and GLP-1
levels were measured using the GIP (TOTAL) ELISA kit (MerckReceived 5 November 2014; revised 24 February 2015; accepted 16 March 2015
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Millipore, Billerica, MA, USA) and an electrochemiluminescent
sandwich immunoassay (Meso Scale Discovery, Gaithersburg,
MD, USA) as previously described7,8. Plasma insulin levels were
determined by an ELISA kit (Morinaga, Tokyo, Japan).

Induction of Diabetes
As described previously7, streptozotocin (STZ; 150 mg/kg body-
weight) was given intraperitoneally to Kir6.2+/+ mice after a
16-h fast.

Diazoxide and Fructose Administration
After 16 h of food deprivation, 240 mg/kg bodyweight of diaz-
oxide (Wako, Osaka, Japan) was given orally7. 90 min after
diazoxide administration, 6 g/kg bodyweight of fructose was
given orally.

MIN6 Experiment
MIN6-K8 b-cells were cultured and stimulated for 30 min by
various materials after pre-incubation for 30 min in HEPES-
Krebs buffer with 2.8 mmol/L glucose, and released insulin was
evaluated by insulin assay kit as previously reported9.

Statistical Analysis
Statistical analysis was carried out by unpaired, two-tailed Stu-
dent’s t-test or two-way ANOVA.

RESULTS
Fructose Induces GIP Secretion in the Diabetic State
We first examined whether fructose stimulates GIP secretion.
In Kir6.2+/+ mice, fructose tended to, but not significantly, stim-
ulate GIP secretion in a normal state, but significantly
enhanced the GIP secretion in the STZ-induced diabetic state
(Figure 1a). To investigate the involvement of the KATP channel
in fructose-induced GIP secretion in the diabetic state, we
examined the effect of the KATP channel activator, diazoxide,
on fructose-induced GIP secretion. Pretreatment of diazoxide
did not affect fructose-induced GIP secretion in the diabetic
state (Figure 1b). Fructose-induced GLP-1 levels at 15 min
were not different under the normoglycemic condition and
hyperglycemic condition (Figure 1c).

KATP Channels Are Not Involved in Fructose-Induced GLP-1
Secretion In Vivo
We next investigated whether the KATP channel participates in
fructose-induced GLP-1 secretion in vivo, by utilizing Kir6.2-/-

mice. Both in Kir6.2+/+ and Kir6.2-/- mice, fructose significantly
stimulated GLP-1 secretion more than twofold at 15 min of
fructose administration (Figure 2b). In contrast, fructose did
not stimulate GIP secretion in Kir6.2-/- mice at all (Figure 2a).

KATP Channels Are Involved in Fructose-Induced Insulin
Secretion In Vivo and In Vitro
To assess whether fructose-induced insulin secretion requires
the KATP channel pathway, we investigated blood glucose levels

and serum insulin levels during oral fructose tolerance test in
both Kir6.2+/+ and Kir6.2-/- mice. The blood glucose levels
were significantly higher in Kir6.2-/- mice than in Kir6.2+/+

mice (Figure 2c). Fructose significantly stimulated insulin secre-
tion in Kir6.2+/+ mice at 15 min, but not in Kir6.2-/- mice at
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Figure 1 | Fructose-induced glucose-dependent insulinotropic
polypeptide (GIP) secretion. (a) Plasma GIP levels on the oral
administration of 6 g/kg fructose in the control mice (white bar;
n = 17) or the diabetic mice (gray bar; n = 15). (b) Plasma GIP levels
on the oral administration of 6 g/kg fructose in the streptozotocin-
induced diabetic mice pretreated with vehicle (gray bar; n = 6) or
pretreated with diazoxide (gray checked bar; n = 7). (c) Plasma
glucagon-like peptide-1 (GLP-1) levels on the oral administration of
6 g/kg fructose in the control mice (white bar; n = 6) or the diabetic
mice (gray bar; n = 6; *P < 0.05, ****P < 0.0001). Data are expressed as
means – standard error of the mean.
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all (Figure 2d). Basal levels of insulin were not decreased by
pretreatment of diazoxide in Kir6.2-/- mice, but were decreased
in Kir6.2+/+ mice (Figure 3a,b). Fructose significantly stimulated
insulin secretion in Kir6.2+/+ mice pretreated with vehicle at
15 min, but did not stimulate insulin secretion in Kir6.2+/+

mice pretreated with diazoxide or in Kir6.2-/- mice pretreated
with vehicle and diazoxide at 15 min (Figure 3a,b). To assess
whether fructose directly stimulates insulin secretion, we inves-
tigated insulin secretion using MIN6-K8 b-cells9. Diazoxide

tended to decrease insulin secretion at 8.3 mmol/L glucose
(P = 0.05). The addition of 20 mmol/L fructose significantly
potentiated insulin secretion at 8.3 mmol/L glucose, and diaz-
oxide completely blocked the insulin response (Figure 3c).
Pretreatment of diazoxide did not affect fructose-induced

GLP-1 secretion at 15 min in either Kir6.2+/+ mice or Kir6.2-/-

mice (Figure 3d).

DISCUSSION
The mechanism by which fructose stimulates gut hormone
secretion is not well known. In the present study, we investi-
gated the role of the KATP channels in fructose-induced GIP,
GLP-1 and insulin secretion in vivo.
We previously reported that the KATP channels in K-cells are

in a closed state under the normoglycemic condition in vivo,
and are in an open state under the hyperglycemic condition7.
The increase of ATP produced by metabolism of glucose closes
the KATP channels in the K-cells under the hyperglycemic con-
dition and enhances glucose-induced GIP secretion, suggesting
that KATP channels in K-cells contribute to glucose-induced
GIP secretion under the hyperglycemic condition. However, the
present results show that this mechanism is not involved in
fructose-induced GIP secretion in the diabetic state and that
the KATP channels in K-cells do not contribute to fructose-
induced GIP secretion under the hyperglycemic condition. In
previous reports, 3 g/kg fructose did not stimulate GIP secre-
tion in C57BL/6J mice, but did stimulate GIP secretion in obese
type 2 diabetic model ob/ob mice10,11. The mechanism of such
fructose-induced GIP secretion in various diabetic models
remains to be elucidated.
In the present study, fructose was found to significantly

induce GLP-1 secretion in Kir6.2-/- mice, and pretreatment of
diazoxide did not block fructose-induced GLP-1 secretion at
15 min and fructose-induced GLP-1 secretion was not
enhanced under the hyperglycemic condition. These results
show that the KATP channel is not required for fructose-
induced GLP-1 secretion in vivo. However, a previous in vitro
study using GLUTag cells found that fructose-induced GLP-1
secretion was entirely KATP channel-dependent12. This discrep-
ancy could be due to the nature of the GLUTag cell line and/
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Figure 2 | Effects of adenosine triphosphate-sensitive K+ (KATP) channel
on fructose-induced glucose-dependent insulinotropic polypeptide (GIP),
glucagon-like peptide-1 (GLP-1) and insulin secretion. (a) Plasma GIP
levels on the oral administration of 6 g/kg fructose in Kir6.2-/- mice
(black bar; n = 13). (b) Plasma GLP-1 levels on the oral administration of
6 g/kg fructose in Kir6.2+/+ mice (white bar; n = 12) and Kir6.2-/- mice
(black bar; n = 13; ****P < 0.0001 relative to 0 min). (c) Blood glucose
levels during oral fructose tolerance test in Kir6.2+/+ mice (open circle;
n = 5) in Kir6.2-/- mice (solid square; n = 6; *P < 0.05, ***P < 0.001,
****P < 0.0001 compared with Kir6.2+/+ mice at the indicated time-
points). (d) Plasma insulin levels on the oral administration of 6 g/kg
fructose in Kir6.2+/+ mice (white bar; n = 12) and Kir6.2-/- mice (black bar;
n = 13; ****P < 0.0001 relative to 0 min). Data are expressed as
means – standard error of the mean. NS, not significant.

524 J Diabetes Invest Vol. 6 No. 5 September 2015 ª 2015 The Authors. Journal of Diabetes Investigation published by AASD and Wiley Publishing Asia Pty Ltd

S H O R T R E P O R T

Seino et al. http://onlinelibrary.wiley.com/journal/jdi



or the fact that GLP-1 secretion is regulated by various factors,
such as nutrients, intestinal hormones, neuropeptides and
neuronal signal in vivo13–16.

It is reported that activation of sweet taste receptors in pancre-
atic b-cells stimulates insulin secretion through the phospholi-
pase C pathway17,18. Kyriazis et al. also reported that insulin
secretion was not induced by glucose catabolized from fructose,
but by activation of the sweet taste receptor in a glucose-depen-
dent manner through transient receptor potential cation channel,
subfamily M, member 517. In the present study, the fructose-
induced insulin secretion seen in Kir6.2+/+ mice was not observed
at all in Kir6.2-/- mice, and dizaoxide completely blocked fruc-
tose-induced insulin secretion in vivo and in vitro. These results
show that the KATP channel in b-cells plays an essential role in
the fructose-induced insulin secretion. In contrast, we previously
showed that insulin secretion mediated by the vagal nerve in vivo
was KATP channel-independent

19, and it was reported previously
that insulin secretion through activation of the phospholipase C
pathway differed from that induced by carbachol, the activator of
the muscarinic receptor18. These findings suggest that the KATP

channel-dependent phospholipase C–transient receptor potential
cation channel, subfamily M, member 5 pathway is involved in
fructose-induced insulin secretion in vivo.
In conclusion, fructose stimulates GLP-1 secretion under

normolglycemia, but enhances GIP secretion under the hyper-
glycemic condition, both of which modifications are in a KATP

channel-independent manner. KATP channels play an essential
role in the insulin secretion induced by fructose in vivo.
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