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Objective. To use habitat analysis (also termed habitat imaging) for classifying untreated breast cancer-enhanced magnetic
resonance imaging (MRI) in women. Moreover, we intended to obtain clustering parameters to predict the BReast CAncer
gene 1 (BRCA1) gene mutation and to determine the use of MRI as a noninvasive examination tool. Methods. We obtained
enhanced MRI data of patients with breast cancer before treatment and selected some sequences as the source of habitat
imaging. We used the k-means clustering to classify these images. According to the formed subregions, we calculated several
parameters to evaluate the clustering. We used immunohistochemistry to detect BRCA1 mutations. Moreover, we separately
determined the ability of these parameters through independent modeling or multiple parameter joint modeling to predict
these mutations. Results. Of all extracted values, separation (SP) demonstrated the best prediction performance for a single
parameter (area under the receiver operating characteristic curve (AUC), 0.647; 95% confidence interval (CI), 0.557-0.731).
Simultaneously, models based on the Calinski-Harabasz Index and sum of square error performed better in the training (AUC,
0.903; 95% CI, 0.831-0.96) and verification (AUC, 0.845; 95% CI, 0.723-0.942) sets for multiparameter joint modeling.
Conclusion. Based on the enhanced MRI of breast tumors and the subregions generated according to the habitat imaging
theory, the parameters extracted to describe the clustering effect could reflect the BRCAL1 status. Differences between clusters,
including the general differences of cluster centers and clusters and the similarity of samples within clusters, were the
embodiment of this mutation. We propose an algorithm to predict the BRCA1 mutation of a patient according to the
enhanced MRI of the breast tumor.

1. Introduction

In 2020, the number of new breast cancer cases worldwide
was 2.26 million, and breast cancer has replaced lung cancer
as the most common cancer type. Moreover, breast cancer is
the most common cancer leading to death in women, both
in developing and developed countries [1]. Like all cancers,
it is considered a heterogeneous type, and the biological
behavior, treatment response, and clinical outcomes are
closely related to the molecular typing of breast cancer deter-
mined by the estrogen receptor (ER), progesterone receptor
(PR), human epidermal growth factor receptor 2 (HER2),
and KI-67. Breast cancer is categorized by the following
molecular classification: Luminal A, Luminal B, HER2 over-

expression, and triple negative. The risk factors of breast
cancer with different molecular classifications demonstrate
considerable differences. For example, triple-negative breast
cancer often displays a younger age of onset, compared with
the most common Luminal A breast cancer. Of several risk
factors, genetic susceptibility is the most important factor
and is often associated with race [2]. It can become explicit
with the environmental background and heredity. Accord-
ing to statistics, 20% to 40% of hereditary breast cancers
can be attributed to harmful mutations in BReast CAncer
gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) [3].
In addition, 90% of BRCA1-associated breast cancers reveal
negative ER expression [4]. Meanwhile, PR expression in
BRCA1l-associated tumors is lower than that in sporadic
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tumors [5], thus making breast tumors in patients with
BRCA1 mutations more likely to be classified as triple-
negative breast cancer, characterized by the loss of ER and
PR expression and HER2 overexpression. Patients with this
molecular subtype are considered to have poor prognosis.
Triple-negative breast cancer has a shorter survival than
other subtypes, with a 40% mortality within 5 years of diag-
nosis. Furthermore, it is highly invasive biologically, with
distant metastasis occurring in approximately 46% of
patients with triple-negative breast cancer. Following metas-
tasis, the median survival time is only 13.3 months, and the
postoperative recurrence rate is 25% even after surgery. In
addition to the above-mentioned clinical manifestations [6,
7], BRCAI mutations are pathologically associated with
basal-like phenotypes in triple-negative breast cancer [8, 9].

The BRCA gene is involved in double-stranded DNA
damage repair through homologous recombination; there-
fore, women with this mutation lack the tumor suppressor
protein to repair damaged DNA [10]. BRCA proteins are
essential for chromosomal stability, and their primary func-
tion is to protect the genome from damage. A recent study
further suggests that BRCA transcription regulates numer-
ous genes involved in DNA repair, cell cycle, and apoptosis.
These functions are mediated by several cellular proteins
that interact with BRCA, besides an association with phos-
phorylation events. Women with BRCA mutations have a
higher risk of breast cancer at a younger age than those with-
out [11]. Furthermore, this mutation is associated with an
increased risk of ovarian cancer [12].

Patients with BRCA-associated breast cancer have a
higher risk of ipsilateral and contralateral breast cancer
recurrence with worse prognosis, compared with sporadic
breast cancer. Despite numerous distinct clinical particular-
ities of BRCA-associated breast cancer, current treatment
recommendations are substantially similar to those for spo-
radic breast cancer, including surgery, radiation, and chemo-
therapy. However, BRCA1/2-associated breast cancer is
accompanied by a defect of homologous recombination
repair function, which may be more sensitive to DNA-
damaging drugs, such as platinum drugs or poly-ADP ribose
polymerase inhibitors. With increased tumor specificity,
chemotherapy regimens may be used more for patients with
BRCA mutations [13].

Immunohistochemistry (IHC) is an inexpensive and
effective technique easily available to the majority of pathol-
ogists. It has been considerably used in several tumors.
Researchers have made substantial progress in detecting
BRCA1 mutations in digestive system cancer to predict its
prognosis in response to chemotherapy [14]. Some studies
have also suggested the possibility of using THC in breast
tumors [15].

Enhanced magnetic resonance imaging (MRI) is a sensi-
tive breast imaging detection method [16]. Compared with
mammary gland molybdenum target image and ultrasound,
enhanced MRI has higher resolution and can observe the tis-
sue perfusion status. Clinicians can use different functional
MRI sequences to measure spatial differences in the cell den-
sity, tissue structure, perfusion, and metabolism. For people
aged 25 years to 29 years with BRCA mutations, the NCCN
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guidelines recommend annual breast MRI screening or
annual mammography [17]. Currently, there are some
MRI studies on BRCA mutations in patients with breast can-
cer. The primary research method is based on first-order fea-
tures and features extracted from gray-level cooccurrence
matrix, gray-level run-length matrix, and gray-level size
zone matrix. Those studies combined the features with the
clinical information of patients to establish model [18, 19].
However, these methods predominantly explore the BRCA
mutation imaging on the entire tumor but do not consider
the tumor heterogeneity reflected by imaging.

Habitat analysis, also termed habitat imaging, is an
imaging technology aimed at capturing subtle differences
among tumors. It uses several algorithms to segment the
tumor and its surrounding environment, aiming to obtain
subregions which reflect the heterogeneity of the tumor
[20]. In other words, this image-processing technique
focuses on similar subregions within the tumor formed by
the pressure of survival. In this study, we used the cluster
parameters extracted from the habitat imaging of patients
with enhanced MRI to predict BRCAL.

2. Materials and Methods

2.1. Study Participants. The radiology database of the Second
Affiliated Hospital of Dalian Medical University was
reviewed. We identified 187 patients who underwent MRI
from March 2018 to June 2021. Fifty-one and 11 patients
were excluded owing to an incomplete image sequence and
the absence of distinct BRCAL1 results. Therefore, a total of
125 patients were included in this study. The inclusion cri-
teria were as follows: (i) no breast diseases before imaging
examination and (ii) did not receive treatment for breast
cancer or may artificially change breast imaging. The
patients underwent MRI examinations before the surgery
and were diagnosed as grades 3, 4, and 5 according to the
Breast Imaging Reporting and Data System. Surgery or
biopsy was performed within 1 week to confirm primary
breast cancer diagnosis and BRCA1 mutation. We excluded
specific breast malignancies, such as inflammatory breast
cancer, Paget’s disease, and breast cancer because of metas-
tasis. Moreover, men and pregnant women were excluded.
There was no specific information about patients in the
study, so the study did not involve ethical issues.

2.2. Enhanced MRI. We used the American GE1.5T Signa
HDxt MRI scanner, and the receiving coil was a special
one for the surface of the breast. In the prone position, the
bilateral breast naturally hung in the concave hole of the coil.
The scan sequence and parameters were as follows:
diffusion-weighted imaging, b — value=2800s/mm, repeti-
tion time (TR) = 5,600 ms, echo time (TE) = 74.4 ms, matrix
130 x 128, field of view (FOV) =33 cm x 33 cm, and layer
thickness 5mm. All patients underwent dynamic contrast-
enhanced MRI following DWI sequence scanning. Gadolin-
ium diamine was used as the contrast agent. The injection
volume was 0.2 mmol/kg, and the flow rate was 2ml/s to
3 ml/s. Following injection, 20 ml normal saline was used
to flush the tube. We performed continuous nonstop
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scanning. T1-weighted image plain scanning was initially
performed. Following gadolinium injection, we continuously
scanned nine phases, each phase of 47 s. A total of 10 phases
were scanned. The scanning time was 7min 6s, and the
turning angle was 15°. Other scanning parameters were as
follows: TR=5.1ms, TE=2.5ms to 12ms, matrix 320 x
384, FOV =30.2cm x 30.2cm, and layer thickness 5mm.
Two radiologists with >10 years of experience in breast
imaging diagnosis independently interpreted the MRI
results. After discussing the images, they reached a diagnos-
tic consensus. All data have been transferred to the GE
workstation (Advantage Windows 4.5, General Electric,
Madison, WI, USA).

2.3. Habitat Generation. The Pydicom Library of Python was
used to read the spatial location of the image. First, we used
the nearest neighbor interpolation to process the images into
pictures with equal pixel spacing, followed by image registra-
tion according to the spatial location. The region of interest
(ROI) was manually obtained on a high-signal DWI, and
there was no necrosis or cystic component under ideal cir-
cumstances. In the case of no satisfactory image (usually
because of low resolution), the ROIs were drawn by referen-
cing T1 images. According to the 3-D MRI images, we devel-
oped a segmentation algorithm with wide adaptability. First,
we applied the Markov random field segmentation method
to voxel data combined with the interaction between voxels,
considering 27 individual elements around each voxel
(3 x 3 x 3). Images of the DWI sequence, T1 sequence, Out-
Phase T2 sequence, InPhase T2 sequence, WATER T2
sequence, and FAT T2 sequence were standardized accord-
ing to the gray value in ROIs to form new images to be
clustered [21]. For each voxel in the ROI, the gray value in
each image was used as a six-dimensional coordinate and
the proportion of each weight was similar. The K clustering
k-means algorithm was used for image segmentation
(Figure 1) [22] in the following steps: (1) we selected K
points as the initial cluster center; (2) for each sample in
the dataset, we calculated its Euclidean distance to the K
cluster centers and divided it into the class corresponding
to the center with the smallest distance; (3) for each cate-
gory, we recalculated the cluster center (i.e., the centroid of
all samples belonging to the category); and (4) we repeated
steps 2 and 3 until reaching a termination condition, such
as iteration times and minimum error change. The final
clustering results were evaluated using the maximum expec-
tation. For the processed 3-D tumor ROI, we divided each
tumor region into three spatially limited subregions with
different characteristics using the aforementioned algo-
rithm [23].

2.4. Immunohistochemistry. Pathological specimens were
obtained from the enrolled patients. No data were excluded
owing to missing values or ambiguity. All specimens were
fixed with 4% neutral formaldehyde, embedded in paraffin,
and continuously sectioned at a distance of 4 um. Following
IHC staining, the specimens were observed and photo-
graphed under a microscope. We used the immunohisto-
chemical SP method to detect the expression of susceptible

genes. Specific steps were performed according to the stan-
dard instructions, and professional pathologists interpreted
the films. We determined the comprehensive staining inten-
sity and the percentage of positive cells. The final results
were divided into the following categories: <5% visible stain-
ing: -; 5% to 25% visible staining: +; 26% to 50% visible
staining: ++; and >50% visible staining: +++, where - was
defined negative and +, ++, and +++ were defined positive.

2.5. Clustering Features. The clustering index was extracted
from the clustering method to the following five items:

(1) Inertia, within cluster sum of square error

For each cluster, we calculated the distance between the
samples in the cluster and the cluster center and added the
values to describe the similarity between each cluster.

(2) Calinski-Harabasz Index

The Calinski-Harabasz Index is defined as the ratio of
discrete between groups to that within groups. The larger
the value of the index, the smaller the distance within the
cluster. The greater the distance between clusters, the better
the clustering effect. The distance within the cluster is repre-
sented by that between the sample point within the cluster
and the center point of the cluster.

(3) Silhouette coefficient

The silhouette coeflicient was used to describe the cohe-
sion and separation of clusters and defined the average dis-
tance between the point and other points within the
cluster. The final silhouette coeficient is the average of sil-
houette coefficient of each sample. Its value ranges from -1
to 1, and the value is approximately 1 for a considerably
greater separation degree between clusters than the cohe-
sion. The closer the value to 1, the better the clustering effect.

(4) Separation

The separation value was obtained by calculating the arith-
metic average of the sum of distances between each two cluster
center points. In contrast to compactness, the indicator only
considered the distance between different clusters. The larger
the number, the better the clustering effect.

(5) Davies-Bouldin Index

The greater the distance between clusters and the smaller
the distance within the cluster, the smaller the value is. The
smaller the value of the Davies-Bouldin Index, the better
the clustering performance.

3. Results

3.1. Clinical Features. The patient’s clinical information is as
follows (Table 1).

3.2. Features and Prediction Model. SP demonstrated excel-
lent predictive power for the clustering features (area under
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FIGURE 1: An example of habitat imaging. (a) A pseudocolor map of a 45-year-old patient with breast cancer using diffusion-weighted
imaging. Following image diagnosis, the breast tumor (considered malignancy) has been confirmed by postoperative pathology. (b) The
picture only depicts the segment containing the tumor. (c) The graph depicts three different subregions (three colors) following habitat
analysis. (d) The picture only depicts the segment containing the tumor.

the receiver operating characteristic curve (AUC), 0.647;
95% confidence interval (CI), 0.557-0.731) (Figure 2).

Then, we take the AdaBoost algorithm for modeling, the
weak classifier is Gaussian process, and we select two
characteristics as the modeling parameters, respectively,
Calinski-Harabasz Index and Inertia. The prediction model
also displayed good diagnostic efficiency (training group:
AUC, 0.903; 95% CI, 0.831-0.96; accuracy, 0.897; specificity,
0.72; and sensitivity, 0.968; test group: AUC, 0.845; 95% CI,
0.723-0.942; accuracy, 0.789; specificity, 0.636; and sensitivity,
0.852) (Figure 3).

We plotted the calibration curve for the prediction
model (Figure 4). Our prediction model displayed stability
and considerable prediction ability.

4. Discussion

In this study, we classified the breast cancer image into three
subregions by using the gray distribution of multiple
sequences of images of patients. After this, we use various
parameters to identify BRCA1 mutations, which can assist
pathological diagnosis. For example, despite a large staining



BioMed Research International

TasLE 1: Clinical characteristics of patients with breast cancer.

Characteristics ~ Training group (n=100) Test group (n =25)
Age (years) 55.2 56.1
ER

Positive 80 19

Negative 20 6
PR

Positive 67 18

Negative 23 7
HER2

Positive 31 5

Negative 69 20
Stage I 69 20
Stage II 23 4
Stage III
Stage IV 3 0
Lymphonodus

Positive 30 8

Negative 70 17
BRCAL1

Positive 69 20

Negative 31 5

ER: estrogen receptor; PR: progesterone receptor; HERK2: human
epidermal growth factor receptor 2; BRCAL: BReast CAncer gene 1.

area that can be recognized by naked eyes, the degree of
staining is shallow and difficult to count by equipment. In
this case, it is difficult for pathologists to diagnose BRCAI
by only pathological slices, and this method can provide an
auxiliary diagnostic basis.

BRCA1 mutations affect the incidence, progression,
diagnosis, treatment, and prognosis of breast cancer
throughout the course of the disease [24]. Simultaneously,
BRCA mutation-associated breast cancers are more likely
to develop lymph node metastases. In addition to macro-
scopic changes in clinical manifestations, such as morbidity
and prognosis in terms of tumor heterogeneity, tumors with
BRCA1 mutation usually display invasive ductal carcinoma
pathologically and have a higher incidence of myeloid carci-
noma and atypical myeloid carcinoma [25]. Despite their
role in the auxiliary diagnosis of breast cancer, it is relatively
difficult to make a preliminary judgment only by imaging. In
ultrasound examination, BRCA1l and BRCA2-mutated
breast cancer demonstrates an irregular shape and blurred
boundary hypoechoic masses. However, unlike BRCA2,
29.5% of BRCA1 mutations display posterior echo enhance-
ment, usually in benign breast lesions, such as fibroadeno-
mas or cysts. The aforementioned feature may lead to
breast cancer with BRCA1 mutation being misdiagnosed as
a benign tumor to some extent [26]. Invasive breast cancers
with BRCA1 mutations do not reveal more calcification on
breast cancer-specific mammography. In terms of the medi-
cal information obtained, MRI is a significantly better imag-
ing method than ultrasound and molybdenum target.
However, it partially addresses the problem of BRCA1 dis-

playing benign tumor characteristics in ultrasound. This is
because a radiologist can obtain additional information in
MR, including internal enhancement and hemodynamics.
However, in this study, we identified some invasive breast
cancers with smooth margins and other manifestations sim-
ilar to benign masses. Nonetheless, BRCA1 breast cancers
have obvious edge enhancement, which enables excluding
fibroadenoma diagnosis. This marginal enhancement results
from peripheral vascular proliferation and central necrosis.
In summary, it is difficult to make qualitative diagnosis by
only relying on the experience of the imaging physicians
and basic influencing parameters. This warrants the devel-
opment of a noninvasive, qualitative imaging diagnostic
model. Radiology research at present is more inclined to
generate a ROI first and then extract texture information
from it, which considers the tumor as a whole. Finally, the
researchers explore the relationship between texture and
patients’ clinical information by machine learning and other
methods. Some previous experiments were based on the the-
ory of habitat imaging, but only on animal models [18].
Some study based on the theory of habitat imaging, but after
researchers segmented images, they chose to extract the tex-
ture information of each subregion, and then established a
neural network model by those texture information. This
method emphasizes more the differences between subre-
gions than the connections. Undoubtedly, characterizing
the entire tumor as an indivisible whole is not the most sen-
sitive method for assessing the intratumor heterogeneity.
Habitat analysis lends its name to the definition of an eco-
logical habitat surrounding a population of species. This
emerging approach explicitly divides tumors containing
similar characteristics into subregions. Such differences are
not only from macroscopic features, such as necrosis caused
by uninhibited growth, but also from significant genetic het-
erogeneity between and within tumors [27]. This is usually
attributed to random mutations that drive cloning and evo-
lution [28]. Nonetheless, tumor cells can promote indepen-
dent growth owing to local angiogenesis, which will lead to
chaos in the distribution of blood vessels in the tumor and
cause tumor blood flow within random and cyclical changes.
Eventually, it will cause the uneven distribution of oxygen,
glucose, hydrogen ions, and serum growth factors. Differen-
tially acting tumor cells lead to the specific evolution of
tumor population to adapt to this environment [29, 30].
Based on this theory, the imaging results of tumors can
predict the associated genetic factors as well as the character-
istics of tumor populations generated under specific circum-
stances [31]. This in turn allows habitat imaging to strongly
explain the different outcomes in patients with similar
molecular subtype, following an identical therapeutic strat-
egy [17]. Moreover, habitat imaging plays an important role
in explaining the causes of drug resistance during chemo-
therapy in a particular patient. For example, changes in the
composition of tumor subareas often attribute to the failure
of patients in achieving pathological complete response dur-
ing neoadjuvant chemotherapy. Meanwhile, the develop-
ment of drug resistance in a specific subregion leads to
poor therapeutic response in therapy. This phenomenon
has expanded the use of habitat imaging from screening
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validation set.

people at a high risk of cancer to assessing the treatment and
patient outcomes throughout the disease. Currently, habitat
imaging has made good progress in neural tumors [32].
Different from traditional imaging omics studies, we
classified the tumors into subregions and analyzed their rela-
tionship to explain spatial heterogeneity. We consider both

ROC of logistic model in testing samples
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T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - specificty

— AUC=10.845
(b)

: (a) the performance of training set; (b) the performance of the

the differences between each cluster and the cluster shape.
In this study, we extracted five parameters of a term used
to describe the heterogeneity of cancer. These parameters
were used for the simultaneous differentiation between each
tumor subregion, thus considering the similarity between
each cluster sample. In other words, our parameters can
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describe each cluster more effectively. Moreover, it described
the degree of heterogeneity within the tumor from various
angles in detail, thus providing a description of the tumor.
We focused not only on the absolute characteristics of the
tumor but also on the relative relationship between the sub-
regions in case of individual differences. Some habitat imag-
ing studies use images of tumors as samples separately or
simply select the largest cross-section of the image as a sam-
ple. The aforementioned method can achieve certain advan-
tages in sample representativeness. Nonetheless, tumors do
not have a fixed shape and growth direction like some tissues
or organs. In other words, tumors do not have a homoge-
neous and stable physiological and anatomical structure.
Partial cardiac tumor necrosis and uneven texture distribu-
tion (i.e., tumor heterogeneity) are the major pathological
changes. Moreover, necrosis can predict the effect of tumor
therapy [33]. Thus, cross-sectional images do not represent
the structural characteristics of the entire tumor. The selec-
tion of the largest cross-section will result in imbalance of
the segmentation. However, it will introduce an error for
the experimental method that principally considers the rela-
tive relationship of the subregion. In fact, all five of the
parameters we showed can be affected by this. Therefore,
the 3-D image of the whole tumor needs to be used as the
segmentation object. In summary, the proportion of each
subregion of the entire tumor, cluster shape, and cluster cen-
ter affected the modeling, thereby indicating the need for
considering the tumor as a whole.

Despite considering several aspects, there were several
shortcomings in this study. First, the use of a specific imag-
ing protocol for enhanced MRI, not common in clinical
practice, was a major limitation. Despite attempting to stan-
dardize the imaging and selecting fewer additional multicen-
ter data and the validation set, technical factors, such as the
field strength, repetition time, echo time, and flip angle, may
have affected the results. This warrants greater and larger

multicenter studies to confirm and validate our findings.
Another limitation was in terms of image registration. One
benefit of the imaging protocol was that the image sequence
could be easily registered, for each sequence of patient
images was generated at the same time. There is still a lot
of work to be done to roll out the technology. Manual recal-
ibration following the rough registration of the algorithm is
a feasible method to ensure the consistency of the voxel rep-
resented by similar coordinates. In addition, we excluded a
significant number of patients, which resulted in the inclu-
sion of fewer patients, particularly owing to the absence of
prospective cases. In the image processing, we only adopted
a filter to remove the image noise, which was justified from
the results. By contrast, the oversegmented technology [34]
has been used by researchers to initially divide the tumor
into smaller blocks and subsequent clusters, which may be
more helpful in describing the real growth of the tumor.
However, despite not adopting the oversegmented technol-
ogy, we considered the distribution of local tissue abnormal-
ities during image processing. Thus, we used the mean value
of peripheral voxels within the range of 3 % 3 % 3 to replace
each voxel, which may help us offset the impact of noise. A
reasonable theory is that clusters formed by our approach
were more representative, provided greater space continuity.
The oversegmented technology can be more detailed and
generate an accurate depiction of the tumor tissue heteroge-
neity distribution. However, the application of the overseg-
mented technology may result in two situations. Fewer
number of clusters will deteriorate the continuity of the seg-
mented subregions. By contrast, increasing the number of
clusters will lead to the poor representation of some subre-
gions, thus posing challenges to the complexity of subse-
quent modeling. Because of the above-mentioned technical
difficulties, obtaining satisfactory training results necessi-
tates the use of more powerful modeling methods, such as
neural network. By contrast, the model should be trained



with a larger amount of data to avoid overfitting problems.
The selection of the neural network and the inclusion of
excessive data should be avoided in this experiment. In addi-
tion, the weights of all sequences in the clustering were equal
and fixed during the final use of image clustering. We did
not consider the redundancy of clinical information dis-
played by different sequences. The 3-D image segmentation
method resulted in limited amount of data. Therefore, we
adopted the efficient clustering method, which eventually
led to overfitting. Hence, we used the image data to the max-
imum possible to provide various parameters for clustering.
This may have led to a high proportion of information
describing some aspect of the clustering effect, i.e., the rela-
tionship between subregions, thereby affecting the accuracy
of clustering. In the final modeling stage, the adoption of
greater parameters could not improve the final effect of the
model. It also shows that the redundant information inter-
fered with the model.

5. Conclusions

In summary, a model is established based on clustering
parameters extracted from subregions formed by habitat
imaging. The model can predict BRCA1 mutations detected
by immunohistochemistry satisfactorily. And it provided a
reference for screening the high-risk population, surgery,
drug therapy, and prognosis.
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