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Minimally invasive surgery (MIS) minimizes the surgical incisions that need to be made and hence reduces the physical trauma
involved during the surgical process.�e ultimate goal is to reduce postoperative pain and blood loss as well as to limit the scarring
area and hence accelerate recovery. It is therefore of great interest to both the surgeon and the patient. However, a major problem
with MIS is that the field of vision of the surgeon is very narrow. We had previously developed and tested an MIS panoramic
endoscope (MISPE) that provides the surgeon with a broader field of view. However, one issue with the MISPE was its low rate of
video stitching. �erefore, in this paper, we propose using the region of interest in combination with the downsizing technique to
improve the image-stitching performance of the MISPE. Experimental results confirm that, by using the proposed method, the
image size can be increased by more than 160%, with the image resolution also improving. For instance, we could achieve
performance improvements of 10× (CPU) and 23× (GPU) as compared to that of the original method.

1. Introduction

Inminimally invasive surgery (MIS), the surgeon uses a variety
of techniques to operate while ensuring that the patient is
subjected to as few incisions as possible. In general, MIS is safer
than open surgery and allows the patient to recover faster while
experiencing less pain and scarring. MIS is a highly successful
modern surgical method and involves inserting the surgical
instruments and an endoscopic camera into the patient’s body
through a small incision or a natural orifice. However, the
limited field of view is the most challenging aspect of this
surgical procedure.�e narrow view of the endoscopic camera
prevents the surgeon from being able to image the entire
surgical field with clarity.�is canmake the procedure difficult
and increase the uncertainty involved. Hence, MIS is especially
difficult for less-experienced surgeons.

In the field of image processing, the process of com-
bining multiple overlapping images into a larger image is

known as mosaicing or image stitching. Image-mosaicing
methods can be classified into two categories: the direct
method and the features-based method [1]. In the case of the
direct method, all the available image data are used instead of
a set of sparse features extracted from the images. Hence, the
method can provide very accurate registrations. However,
the initial estimation parameters must lie close to the true
solution, and there must be a high degree of overlap between
the images for convergence. �e features-based method, on
the other hand, does not require an initialization process,
and algorithms that can match distinctive image features,
such as the scale invariant feature transform (SIFT) [2],
speeded-up robust features (SURF) [3], and oriented FAST
and rotated BRIEF (ORB) [4], are used for estimating the
alignment parameters. Furthermore, the use of sparse fea-
tures accelerates the estimation process and improves real-
time performance. A comprehensive review of the literature
on this method has been published by Szeliski [1].
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Features-based image-stitching methods have been
implemented for medical applications. For instance, Zanet
et al. [5] proposed a method for the automatic mosaicing of
the images from a retinal slit lamp using SURF. �ere have
also been other studies on the mosaicing of retinal slit lamp
images [6–8]. For example, Ji et al. [9] demonstrated the
fusion of images of local prostate lesions using SURF.

In minimally invasive surgery, there have been some
studies done as early as around 2009. Behrens et al. [10]
demonstrated the mosaicing of endoscopic bladder im-
ages from a sequence video using SIFT. After that, they
developed a multithreaded image-mosaicing algorithm
using SURF to perform the mosaicing of bladder images in
real time [11]. Iakovidis et al. [12] proposed a novel
method for automatic image stitching for efficient visu-
alization using conventional wireless capsule endoscopy
videos based on SURF. Recently, Yang et al. [13] proposed
a scene-adaptive features-based approach for the
mosaicing of placental vasculature images obtained
during computer-assisted fetoscopic procedures using
SURF.

In the development of technologies of the image-guided
surgeries, the issue of image registration is most concerned,
especially in gastroscopic surgeries. Pioneers have tried to
make the images of the target organs fixed on the display
screen and expand the field of vision (FOV) of the en-
doscope. Liu et al. [14] has built up a panoramic view for
gastroscopy. �ey utilized a tracking device according to
the image from a single-camera gastroscope with a dual-
cubic projection method to create both local and pano-
ramic views at the same time. In 2016, Hu et al. [15]
proposed a robust technique for image registration which
was named as homographic patch feature transform for
sequential gastroscopic images. Both techniques would
make the gastroscopy easier to handle and safer in gas-
troscopic surgeries.

�us, image mosaicing is gradually being applied in
medical applications, and the feasibility and assistive nature
of the technique with respect to clinical applications have
been explored widely. However, image mosaicing is limited
to the compositing of images with small fields of view, such
as those of blood vessels and urethras. Moreover, in all the
studies described above, the image sequences mosaiced were
obtained from a single moving endoscopic camera. �is can
yield only panoramic static images that do not reflect the
changes that may occur in the shape of the organs or blood
vessels being imaged outside the field of vision (FOV).
�erefore, it is difficult to apply the technique during lap-
aroscopic surgery, wherein the position and shape of the
internal organs change frequently.

To solve this problem, we had proposed an MIS pan-
oramic endoscope (MISPE) [16, 17] that is based on the use
of two endoscopic cameras.�eMISPE provides the surgeon
with panoramic images that show the surgical area in its
entirety and reflect the changes in the FOV owing to the use
of two cameras. In this MISPE system, we found the image
quality and speed of stitching needed to be improved for
practical applications. To improve the quality of the
mosaiced images, in this study, we use the graph-cut

technique [18] in order to prevent moving objects from
appearing in the overlap area. Moreover, we also use the
multiband blending method [19] to smoothen the stitching
results. Finally, to improve the image-stitching perfor-
mance of the MISPE, we propose using the region of in-
terest (ROI) in combination with the downsizing
technique.

�e features-based image-mosaicing process consists of
two stages: image registration and image compositing. We
had previously [20] introduced two techniques (choosing a
smaller area from the original images and using zoomed-in
images) to speed up the image registration process. However,
the selection of a smaller area can only be done using the
naked eye. When the two endoscopic cameras move close to
or away from the surgical area, the two small areas must be
selected again. �is is difficult to do during actual surgery. To
solve this problem, in this study, we propose using the ROI to
identify the two small areas automatically when the two
cameras move. We then combine this approach with the
downscaling technique to speed up the image registration
process. Furthermore, this also accelerates the seam mask
estimation step of the image-compositing stage.

�e rest of the paper is organized as follows: Section 2
introduces the proposed features-based image-stitching al-
gorithm, while Section 3 describes the technique for im-
proving the panoramic video performance. �e
experimental results are described and discussed in Section
4, while Section 5 lists the conclusions along with the di-
rections for future research.

2. Proposed Features-Based
Image-Stitching Algorithm

To increase the viewing angle of the endoscope, we designed
an MIS panoramic endoscope (MISPE) with two lenses at
the tip of our device for primary investigation (Figure 1). In
our MISPE, it consists of two lenses, which are connected to
a PC via USB ports. In the video process, we developed a
video-stitching module based on the features-based image-
stitching algorithm to create a panoramic image, which is
displayed on an image screen.

�e features-based image-stitching algorithm comprises
two stages: image registration and image compositing as
illustrated in Figure 2.

�e image registration stage has the following three
steps: find the features, match these features, and then find
the homography matrix. �e purpose of these steps is to
identify the coordinate relationship between the two source
images. �is stage is the most important one of the image-
stitching process because it directly affects the correctness of
the image-stitching results.

Step 1. Find features within images.
�is step comprises two tasks: the first is to detect the

feature points and the second is to construct descriptors of
these points. Feature points are the characteristic points
based on which an object can be recognized within an
image. Because feature points only provide the positions of
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distinctive elements, matching them across different im-
ages requires characterizing them based on the extracted
feature descriptors (feature vectors). A feature descriptor
represents a subset of the total pixels in the neighborhood
of the feature points. �ere are many algorithms available
for searching for feature points and extracting their de-
scriptors, such as SIFT [2], SURF [3], and ORB [4]. �e
feature point search algorithm used in this study is SURF
[3], which allows for image scaling and rotation-invariant
feature descriptions. �erefore, changing the viewing
angle and size scale of the image within certain limits will
not affect the correctness of the match results. □

Step 2. Match features in different images.
�e next step is to match the feature points in two

different images (feature matching). Matching features is the
process of defining the similarity between two features in

two separate images based on the Euclidean distance (SSD)
between the feature descriptors:
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descriptors of the feature points in the two input images,
respectively.

In this study, we used the nearest-neighbor-distance
ratio [19], which is the ratio of the distances between the
nearest and second-nearest neighbors. If the ratio is small,
the nearest neighbor is a goodmatch.We chose a ratio of 0.8,
which eliminates 90% of the false matches while discarding
less than 5% of the correct matches. �is result was in
consistence as reported in [2]. □

Lens 1

Lens 2

PC Display screen

Video
stitching 

Figure 1: MISPE system.

Input images
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Find features

Match features

Find homography
matrix 
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Warp images

Find seam masks

Blend images

Output image

Figure 2: Flowchart of image-stitching process.
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Step 3. Find homography matrix (H).
�is step involves using the RANdom SAmple Con-

sensus (RANSAC) algorithm [21] to remove the mis-
matched corresponding-point pairs and subsequently
estimate the homography matrix based on the remaining
set of corresponding pairs. �e homography matrix is a 3
× 3 matrix with 8 degrees of freedom (DoF) as shown
below:

H �

h00 h01 h02
h10 h11 h12
h20 h21 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where hij represents the elements of the homographymatrix.
After the image registration step is complete, the image-

compositing stage yields wide-angle images. �e image-
compositing process also has three steps: warping the im-
ages, finding the seam masks for the warped images, and
blending them. □

Step 4. Warp images in same plane.
After the homography matrix has been determined

during the image registration process, as described above, we
use a perspective transformation to transform the two source
images into two warped images in the same coordinate
system such that they can be aligned to obtain a final
composite image.

(x, y)warp �
h00x + h01y + h02
h20x + h21y + 1

,
h10x + h11y + h12
h20x + h21y + 1

􏼠 􏼡, (3)

where (x, y) are the coordinates of a pixel in the source
image, (x, y)warp are the coordinates of a pixel in the warped
image, and hij represents the elements of the homography
matrix in equation (2). □

Step 5. Find seam mask for warped images.
If the cameras are not aligned, they will have different

views of the same scene, which will lead to the appearance of
artifacts, such as those related to “misalignment” or
“ghosting,” in the stitching results. �is step is performed to
find a seam that prevents the possibility of “ghosting” from
the stitching results. In this study, we found the optimal
seam for the images to be stitched using the graph-cut
technique [18]. □

Step 6. Blend warped images.
After the images have been warped, a seam remains in

output images owing to a difference in brightness between
the two images. To solve this problem, we use a multiband
blending method [19] to effectively smoothen out the
stitching results. □

3. Speed Improvement for Panoramic Video

As mentioned above, in this study, we propose a method for
improving the video-stitching performance during MIS
using two endoscopic cameras. Video stitching is the

stitching of images in a frame-by-frame manner. In this
paper, Frame 1 and Frame 2 are the labels used for the two
images captured from Video 1 and Video 2, respectively.

�e conventional video-stitching algorithm is as fol-
lows: the two frames are the two input images. During the
image registration step, the algorithm searches for
matching image features to determine the homography
matrix. Next, the two input frames are transformed into
two warped frames. �e last step is to find a seam for the
two warped frames and blend them. Figure 3 illustrates
these processes with the related image results.

An important parameter with respect to video stitching
is the execution time of the algorithm. For practical ap-
plications, the video-stitching process needs to be a real-
time one. Because the computational time for image
processing is proportional to the size of the image being
processed, large or high-resolution images would take a lot
of time. �erefore, the proposed method aims to improve
the video-mosaicing performance by improving both im-
age registration and image compositing as demonstrated in
Figure 4. �e detail processes are described in subsections
below.

3.1. Accelerating Image Registration. �e purpose of image
registration is to find corresponding point pairs between
the two images and to subsequently determine the
homography matrix and transform the two images on the
same surface plane and align them. Because good matching
pairs appear in the overlap region of the two images, using
two small regions containing the overlap region for
matching increases the accuracy and also speeds up the
search for the corresponding point pairs of the original two
images.

During laparoscopic surgery, the movement of the two
endoscopic cameras is not too fast. Hence, the position and
size of the overlap area of the two current frames and the
two previous one are not very different. Furthermore, the
previous frame’s overlap is determined after the image-
stitching process. �us, the proposed technique uses the
overlap region’s size and the position of the two previous
frames to determine the two small regions of the current
frames for matching. �is region is called the ROI. Figure 5
depicts how we define the ROI at frame t and the small
region at frame t + 1 during image stitching.

3.2. Define Region of Interest (ROI). After finding the
homography matrix, we use a perspective transformation to
transform Frame 2 into Frame 2∗ on the Frame 1 plane
(Figure 6). �en, we define a rectangle such that Frame 2∗’s
edges are parallel to Frame 1. �e ROI of Frame 1 is the in-
tersection of Frame 1 within this rectangle (the green rectangle
ABCD). In the samemanner, the ROI of Frame 2 is determined
by transforming Frame 1 onto the same Frame 2 plane.

We assume that the four corners of Frame 2 after the
transformation are P1(x1, y1), P2(x2, y2), P3(x3, y3), and
P4(x4, y4). Hence, the ROI of Frame 1 is the region at
position A(x0, y0) with a width AB and height AD in Frame
1. �eir parameters are defined as follows:
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x0 � max(min x1, x2, x3, x4{ }, 0),

y0 � max(min y1, y2, y3, y4􏼈 􏼉, 0),
(4)

AB � min(max x1, x2, x3, x4{ },width of Frame1)− x0,

AD � min(max y1, y2, y3, y4􏼈 􏼉, height of Frame1)−y0.

(5)

�e matching of the two ROIs can reduce the compu-
tational time if the two ROIs are reduced to a lower resolution

(resized ROI region). For the downsizing of the images, the
bilinear interpolation algorithm is used. �e resized-scale
value can be input manually to accelerate the image regis-
tration process. Because the homography matrix consists of
nine elements (including the final element, which is equal to
1), one needs at least four correspondence points to determine
the matrix. Hence, the scale value is selected so as to ensure
that the number of goodmatches is not less than 4. Inmany of
the experimental cases, we chose the scale value such that the
original images could be resized to a resolution of 320 × 240.

Input frames

Image registration

Warp frames Find seam mask and blend frames

Stitching result

Figure 3: Conventional video-stitching algorithm.

Input 
frames

The proposed 
technique for image 

registration
Warp frames

The proposed 
technique for image 

compositing
Find seam mask and

blend frames

Stitching 
result

Figure 4: Proposed video-stitching algorithm.

Frame t Frame t + 1

Figure 5: Overlap region during image stitching at frame t and frame t + 1 (red), ROI during image stitching at frame t (left, yellow), and
small region during image stitching at frame t + 1 (right, yellow).
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On using the two resized ROI regions for the matching
operation, the feature point’s coordinates in the image
change. �erefore, the homography matrix for the two
original images must be changed as well. �e algorithm for
determining the homography matrix is as follows:

Step 1. Determine the two small regions from the current
frames. �e region is set to the whole frame for the first two
frames. For the subsequent frames, the regions are determined
based on the size and position of the ROI of the previous two
frames. □

Step 2. Resize the two small regions at a lower resolution
(resized small region). □

Step 3. Use the SURF algorithm to determine the homog-
raphy matrix for the two resized small regions (H matrix), as
described in the image registration step in Figure 2. □

Step 4. Calculate the homographymatrix for the two current
frames.

Hhomography �

k 0 0

0 k 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 x1

0 1 y1

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦H

1 0 −x2

0 1 −y2

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/k 0 0

0 1/k 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(6)

Here, the homography matrix, H, is used to transform
resized ROI 2 on the same plane as that of resized ROI 1.
Further, (x1, y1) and (x2, y2) are the coordinates of the
top-left corners of ROI 1 and ROI 2, respectively, in the
coordinate system, while k is the resized-scale value. □

3.3. Accelerating Image Composition. After the image reg-
istration process has been completed, we use the homog-
raphy matrix to transform the two frames on the same plane
(warped frames). �e next step is to find the seam masks for
these two warped frames. �e aim is to determine the op-
timal boundary between the overlapping pixels of the two
images in order to reduce the visual artifacts. In this study,

we use the graph-cut algorithm [18] to determine the op-
timal seam between the two warped frames.

However, the graph-cut algorithm takes a lot of time.�e
computational time for the graph-cut algorithm from the
OpenCV library for two images with average resolutions of
640 × 480 is more than 2 s for the CPU version and more
than 1.5 s for the GPU version. Further, the computational
time is proportional to the image size. In order to speed up
the process, we propose using the ROI to determine the seam
mask. �en, we resize the two ROIs to a lower resolution in
order to reduce the computational time for estimating the
seam mask. �e details are presented below (Figure 4):

Step 1. Decide ROI 1 in warped-Frame 1 and ROI 2 in
warped-Frame 2 using equations (4) and (5). □

Step 2. Resize ROI 1 and ROI 2 to lower resolutions to find
the seam mask (ROI-seam-masks). □

Step 3. Resize these ROI-seam-masks to the original
resolution. □

Step 4. �en, copy these ROI-seam-masks to position
(x0, y0) using equation (4) in order to obtain the two seam
masks for the two warped frames. □

4. Results and Discussion

�eOpenCV and OpenCL programming languages are both
used in the proposed technique. �e program was executed
using an Intel i3 CPU and a GTX750Ti Nvidia GPU with
8GB RAM. �e GPU plays a major role in the optimization
of processing in PCs. �e stitching performance can be
accelerated by performing CPU and GPU operations si-
multaneously. �e two endoscopic cameras used were of the
same type (2.0 MP USB digital Microscope).

4.1. Video-Stitching Results. To validate the efficacy of the
proposed algorithm, we performed image mosaicing on two
videos using both a phantom model and in vivo animal
experiments.

Frame 1 Frame 2

A B

D

P4(x4, y4)
P3(x3, y3)

P2(x2, y2)

Perspective
transform

C

P1(x1, y1)

(x0, y0)

x

y

Frame 2∗

Figure 6: ROI of Frame 1. Four corners of Frame 2 are transformed into four points P1, P2, P3, and P4. Red rectangle is rectangle
surrounding Frame 2∗’s edges and is parallel to Frame 1. �e ROI of Frame 1 is intersection of Frame 1 within red rectangle (green
rectangle).
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Figure 7(a) shows two input images captured using the
two endoscopic cameras during the phantom experiment,
while Figure 7(b) shows the matching features in the two
input images, and Figure 7(c) shows the stitching result.
�us, the images confirm that the proposed method can
expand the FOV of the original one by 160%.

Figure 8(a) shows two input images captured from two
videos during an in vivo animal experiment, Figure 8(b)
shows the matching features in the two input images, and
Figure 8(c) shows the stitching result. �us, it can be seen
that the proposed method can expand the FOV of the
original one by 155%.

4.2. Improvement in Video-Stitching Speed. �e effectiveness
of the proposed method was compared with that of the
conventional one. �e results of the comparison are

described in this section. �e stitching video was produced
using the two endoscopic cameras at medium resolution
(640 × 480). �e program used for the performance com-
parisons was executed on both a CPU and a GPU.

4.2.1. Image Registration Results. Figures 9 and 10 show the
computational times for the frame-by-frame image regis-
tration step performed using a CPU and GPU, respectively.
For the videos with a resolution of 640 × 480, we chose a
resized-scale value of 2 while ensuring that the number of
good matches was sufficiently high. For larger resolution
videos, the resized-scale value selected was higher, allowing
for further improvements in performance.

Table 1 shows that the proposed method allowed for in-
creases in the computation rate of 10.75 times (CPU) and 3.1
times (GPU) as compared to those for the conventionalmethod.

(a)

(b)

(c)

Figure 7: Type 1 detail in image-stitching result (phantommodel).�e result expands the original FOV of the input image by 60%. (a) Input
images. (b) Match feature points. (c) Stitching result.
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4.2.2. SeamMask Estimation Result. Figures 11 and 12 show
the computational times for seammask estimation (frame by
frame) as performed using a CPU and GPU, respectively.
For the videos with a resolution of 640 × 480, we chose a
resized-scale value of 10 while ensuring that the seam es-
timation quality was high. For larger resolution videos, the
resized-scale value will be higher, resulting in additional
improvements in performance.

As can be seen from Table 2, the proposed method
increased the speed for finding the seam mask by 153 times
(CPU) and 140 times (GPU) in comparison to those for the
conventional method.

4.3. Discussion. �e image-stitching process includes image
registration and image compositing. Further, the image-
compositing stage itself has three steps: the warping of
the images, finding the seam masks, and the blending of the

images. From the above-described results, we can calculate
the total time for the image-stitching process.

Table 3 shows the average times for the video-stitching
process without improvements (i.e., for the conventional
method) and with improvements (i.e., for the proposed
method) for 2000 consecutive frames. �us, it can be seen
that the proposed method results in improvements in both
image registration and image compositing.

It can be seen that the conventional method takes 2.97 s
on the CPU and 1.838 s on the GPU, which means that the
frame rate is approximately 0.34 fps on the CPU and 0.54 fps
on the GPU. �us, the conventional method is slow both in
the case of the CPU and the GPU for the image-stitching
operation.

Table 3 shows the results for the proposed method as
well, which has a frame rate of 3.33 fps on the CPU and
12.82 fps on the GPU. �is means that that the proposed
method results in an improvement of 10× on the CPU and

(a)

(b)

(c)

Figure 8: Type 2 detail in image-stitching result (in vivo animal experiment). �e result expands the original FOV of the input image by
55%. (a) Input images. (b) Match feature points. (c) Stitching result.
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Figure 9: Comparison of image registration times for conventional method (blue) and proposed method (green) (CPU version).
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Figure 10: Comparison of image registration times for conventional method (blue) and proposed method (green) (GPU version).

Table 1: Average times for image registration step after 2000 frames.

Time (s) CPU (s) GPU (s)
Conventional method 0.430 0.062
Proposed method 0.040 0.020
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Figure 12: Comparison of seam mask estimation times for conventional method (blue) and proposed method (green) (GPU version).

Table 2: Average times for image seam mask estimation step after
2000 frames.

Time (s) CPU (s) GPU (s)
Conventional method 2.295 1.689
Proposed method 0.015 0.012

Table 3: Computational times for image stitching with/without
improvements.

Method CPU (s) GPU (s)
Conventional method 2.970 1.838
Proposed method 0.300 0.078
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23× on the GPU as compared to those of the conventional
method.

Figures 13 and 14 show the stitching results for the
conventional and proposed methods. �e images in (a) are
the input images, while those in (b) show the results of
feature matching. �e image in (c) shows the stitching result
while that in (d) shows the ground truth. It can be seen that
the stitching results obtained using the proposed method are
as natural as the ground truth. Furthermore, the stitching
speed by our proposed method is higher while image quality
is not degraded (Figure 14).

However, the proposed method has two limitations. �e
first is that, when the two endoscopic cameras move fast, the
overlap between the two previous frames and the two
current ones will vary widely in terms of location and size.

Hence, the proposed method cannot be applied when using
the ROI coordinates of the previous frames to estimate the
small areas of the current frames. However, this is less likely
to occur during laparoscopic surgery, as fast movements blur
the image captured by the camera. �e allowable camera
velocity depends on the camera sensor and was found to be
approximately 2.5 cm/s in this study. �e second is that the
image registration of the two current frames can fail owing
to poor image quality or because the overlap region is
missing. �is will lead to an inaccurate or missing ROI.
Hence, the image registration of the subsequent frames will
also fail.

To identify the cases where image registration fails, we
determine the number and quality of the matching pairs
between the two frames. If this number is less than 4, the

(a) (b)

(c) (d)

Figure 13: Image-stitching result for conventional method: (a) input images, (b) matching feature points, (c) stitching result, and
(d) ground truth.

(a) (b)

(c) (d)

Figure 14: Image-stitching result for proposed method: (a) input images, (b) matching feature points, (c) stitching result, and (d) ground
truth.
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Figure 15: Transformation of Frame 2 into Frame 2∗: (a) nonquadrilateral and (b) quadrilateral.

Figure 16: Images captured by four cameras.

Figure 17: Result of image stitching of four input images (area expansion ratio is 300%).
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number of equations available will not be enough to de-
termine the homography matrix. On the other hand, even
when the number is greater than 4, there are very few
exactly matched pairs, and most of them are inaccurate; in
this case even the homography matrix can be obtained, and
Frame 2 will be transformed into a nonquadrilateral or an
irregular shape as shown in Figures 15(a) and 15(b).
Hence, the stitching results will be distorted and not
meaningful to the surgeon. When these situations are
encountered, the current frame’s ROI is set to the whole
frame and the following image-compositing stage would
be skipped. �e stitching process will be resumed on next
frames.

In this study, we aimed to perform the real-time stitching
of images from multiple endoscopic cameras. In Figures 16
and 17, the stitching results for four cameras are arranged in
two rows.

�e images indicate that the camera’s viewing angle can
be extended by approximately 300%. However, in the
present study, we only focused on stitching the images
captured by two endoscopic cameras owing to the real-time
operational requirements of MIS.

5. Conclusions

In this study, we proposed an MISPE with a broader field of
view. We have proposed a downsized ROI technique that
can combine with SURF to improve the speed of the
registration. In addition, we also combined the downsized
ROI with graph-cut algorithm to speed up the image
composition. �e experimental results obtained showed
that the MISPE can enhance the image size by up to 160%.
As compared to the conventional method, the proposed
one results in performance improvements of 10× (CPU)
and 23× (GPU). �e proposed technique can also be used
for stitching video from a single camera or multiple ones.
�e technique was confirmed to be effective both with
large-sized images and high-resolution ones. �e frame
rate for the video stitched from two endoscopic cameras at
a resolution of 640 × 480 was determined to be 12.82 fps. In
the future, we plan to further improve the performance of
the real-time stitching operation when using multiple
endoscopic cameras.
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