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Abstract: Models describing how fillers affect the barrier properties of polymers remain an important
research topic to improve applications such as hydrogen storage or food preservation. The Nielsen
model, one of the earliest models for such predictions, is still one of the most widely used in
the literature. However, it does not provide quantitative information on arrangements of fillers
inside a polymer matrix, which is crucial for the definition of suitable filler distributions in barrier
materials. Therefore, the channel model was developed in this work, which extends the Nielsen
model by determining the relative distances between the fillers in regular filler arrangements in
polymer matrices. This allows us to relate the permeation properties of filled polymer membranes to
the geometric properties of the filler arrangement in simulations and experimental measurements.
Simulations with geometries defined according to the channel model showed good agreement with
the predictions of the Nielsen model. This demonstrated that the channel model can be a valuable
tool for predicting at least mean geometric distances in studied polymer membranes. The validity
range of the channel model was limited to a value range of the filler volume fraction 0.01 ≤ φ f ≤ 0.5
based on theoretical considerations.

Keywords: permeation; polymer; filler models; Nielsen; simulation

1. Introduction

Recently, the importance of polymers as barrier materials has steadily increased,
e.g., hydrogen storage solutions [1–3], in food packaging [4,5], or solar cells [6,7]. For hy-
drogen applications, suitable materials are needed to increase the energy density of the
hydrogen storage solution, to enhance hydrogen technology as an attractive alternative to
battery or combustion systems. Among the many known storage concepts for hydrogen,
high-pressure gas storage remains one of the storage solutions with a good weight-to-
energy ratio. Cost-effective high-pressure hydrogen vessels with low weight and sufficient
barrier properties are only possible by replacing the commonly used metallic liners with
polymeric materials, since the use of polymers leads to simplified manufacturing [8].

Fillers are commonly used in polymeric materials to improve several material char-
acteristics, e.g., mechanical, thermal, conductive, or barrier properties [3]. To investigate
the barrier properties of filled polymer systems, several analytical models have been devel-
oped in recent decades to evaluate the influence of fillers on permeation properties based
on only a few filler parameters, such as shape, volume fraction, or arrangement [9–12].
These models are only valid with certain constraints and assumptions about the fillers
in the polymer matrix. In Table 1, the main properties and disadvantages of selected
analytical models are listed. In this context, many models describe permeation through
filled polymer matrices in 2D filler arrangements either by assuming that one dimension
of the fillers is infinitely long (e.g., [13–16]) or by restricting the filler arrangements to
two dimensions (e.g., [17,18]), while only a few analytical models describe permeation in
3D filler arrangements (e.g., [19,20]). Wolf et al. [10] even showed that analytical models
agree with experimental data only moderately because of such limitations. Nevertheless,
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it is interesting that even simple analytical filler models, such as the Nielsen model with
only two model parameters [13] or the Nielsen model modified by Bharadwaj et al. [15]
with only three model parameters, showed good agreement with permeation experiments
compared to other models (e.g., [21–24]). The reason for the good correspondence of such
models without obvious complexity is not clear. Further research in analytical models is
necessary to improve the understanding of permeation behavior in filled polymers and
moreover to optimize the models.

Table 1. Exemplary overview of common analytical permeation models. This overview of the models
is a summary based on the information in [11,12,25–27] .

Model Properties Disadvantages

Maxwell [17] tortuosity model based on filler volume
fraction φ f

2D, only spherical fillers (no aspect ratio),
no consideration of distances in filler ar-
rangements, no filler overlapping

Bruggeman [18] valid for higher filler volume fraction than
Maxwell model

2D, only spherical fillers (no aspect ratio),
no consideration of distances in filler ar-
rangements, no filler overlapping

Nielsen [13] tortuosity model based on filler volume
fraction φ f and aspect ratio α

2D, no consideration of distances in
filler arrangements, only regular filler ar-
rangements, orientations of fillers only
perpendicular to diffusion direction, no
filler overlapping

Aris [19,25]
3D, tortuosity model based on filler vol-
ume fraction φ f , aspect ratio α, slit distance
s and filler distance d

assumes small s, which can lead to
overestimation of barrier properties at low φ f

Cussler [14]

tortuosity model based on filler volume
fraction φ f and aspect ratio α, consid-
ers regular and random arrangements
for fillers

2D, no consideration of distances in filler
arrangements, no filler overlapping

Bharadwaj [15]
extents Nielsen model by specific and
random filler orientations relative to
diffusion direction

2D, no consideration of distances in filler
arrangements, only regular filler arrange-
ments, no filler overlapping

Numerical simulation is an excellent tool for the prediction and computer-assisted
modeling of physical processes and thus can be helpful in the development of improved
permeation models. Zid et al. [11] gave a review of numerical models for permeation in
filled polymers in 2D and 3D. Few publications discuss direct comparisons between simu-
lation and analytical models, although some publications showed comparisons between
numerical simulations and the Cussler and Aris models (e.g., [11,28,29]). Comparisons
between numerical simulations and the Nielsen model or Nielsen-based models could
not be found in the literature at all. We reasoned that too few model parameters are used
in the Nielsen model, so that the geometry of filler arrangements in simulations cannot
be constructed unambiguously. Nevertheless, such simulations could be a good basis for
studies and improvements of analytical permeation models for filled polymers. It seemed
necessary to develop an auxiliary model for the Nielsen model to provide the necessary
geometrical constraints for suitable simulation setups.

Therefore, the main contributions of this work are as follows.

1. The derivation of a model as a supplement to the Nielsen model, which is called
the “channel model”. The name was chosen because it is based on the assumption
that channels with no inhibition of permeation due to fillers will form in a regular
filler arrangement under certain conditions. This auxiliary model provides additional
constraints for 2D FEM simulations with regular filler arrangements. No reference to
a similar concept could be found in the literature.
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2. The comparison of exemplary numerical simulations over wide ranges of filler volume
fractions and aspect ratios with the predictions shown by the Nielsen model.

3. The discussion of additional constraints on the geometrical parameters of the setup to
ensure the validity of the channel model.

2. Theoretical Background
2.1. Permeation Theory for Dense Polymer Membranes

Mass permeation of gas molecules through dense polymer membranes is generally
described as a three-step process (see Figure 1) [30,31]:

1. Sorption on the upstream surface (high partial gas pressure of permeate);
2. Mass diffusion through the polymer membrane;
3. Desorption from the downstream surface (low partial gas pressure of permeate).

Membrane

Diffusion

C

Sorption
C1

Desorption
C2

F

L

U
p
st

re
am

D
ow

n
st

re
am

Figure 1. Sketch of the three-step process of mass permeation flow F through a dense polymer
membrane with thickness L: sorption at the upstream side of the membrane with C1 as boundary
condition for Equation (4), diffusion through the membrane with the concentration distribution
C inside the membrane, and desorption at the downstream side of the membrane with C2 as the
boundary condition.

Thereby, it is assumed that the sorption and desorption processes are significantly
faster than the mass diffusion, leading to fast thermodynamic equilibria on the surfaces,
which is described with the solubility coefficient S to calculate the local permeate concen-
tration C with

C = S(p, T) · p (1)

where p is the local partial gas pressure of the permeate and T is the ambient temper-
ature. When the gas molecules are small and the application temperature is above the
glass transition temperature of the polymer matrix, which is often the case for elastomers
and semi-crystalline thermoplastics commonly used for liners and sealings in hydrogen
storage solutions [8], the Henry model, where the solubility coefficient S is constant, can be
applied [31].

Mass diffusion is a kinetic process where small molecules are transferred due to
their random movements, resulting in a net flow from locations with high molecular
concentrations to those with low concentrations [31,32]. This process is described with the
comparatively simple Fick’s First Law:

F = −D∇C (2)
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where the flow density F is related to the diffusion coefficient D and the spatial gradient of
the concentration ∇C. In this work, only the Henry model is considered for Equation (1),
which allows the modification of Equation (2) to

F = − D S︸︷︷︸
Pe

∇p. (3)

Equation (3) is one way to introduce the permeation coefficient Pe as the product of
the solubility coefficient S and the diffusion coefficient D.

Fick’s Second Law,
∂C
∂t

= D ∆C (4)

which describes the transient development of the concentration within the membrane
during the permeation process, is derived from Equation (2). In this case, the diffusion
coefficient D is considered constant, so only the partial derivatives of concentration C
appear in the equation. Detailed discussions of analytical solutions of Equation (4) in 1D
can be found in [32,33]. When steady state is reached (∂C/∂t = 0), Equation (4) reduces to
the well-known Laplace equation

∆C = 0. (5)

Its solution, applied in Equation (3), allows the calculation of the permeation flow F
in steady state.

2.2. Derivation of the Nielsen Model for Filled Polymers

In the Nielsen model, the fillers are regularly and periodically arranged in a 2D
polymer matrix. The fillers are defined as ribbons with infinite length and are represented
in the 2D model as rectangular, with the long edge (filler width w) perpendicular to the
main diffusion direction (see Figure 2). Due to the 2D representation of the polymer matrix
and the small thickness of membranes compared to their lateral dimensions, diffusion is
considered as a 1D problem. This approximation is, for example, sufficiently accurate for
disk-shaped membranes with radii at least five times larger than the thickness [32]. For 1D
problems and assuming steady state, Equation (3) changes to

F = − D S︸︷︷︸
Pe

p1 − p2

L
(6)

with the partial pressures p1 and p2 of the permeating gas at the upstream and downstream
side, respectively, and the membrane thickness L.

w
b s

F
d

Figure 2. Schematic diagram for fillers in a regular arrangement and important filler parameters
(filler width w, filler thickness (breadth) b, filler row distance d, slit distance s, and permeation flow F
(main direction of diffusion)).
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In the Nielsen model, it is defined that the fillers are impenetrable to a diffusing gas
molecule [13]. This assumption leads, in a first approximation, to two considerations.

First, the effective diffusion path through the polymer membrane Le f f is expressed
according to

Le f f = τ L (7)

where the tortuosity factor τ is a proportionality factor based on the assumptions that the
gas molecules cannot penetrate the filler particles, which leads to a longer tortuous path
for the permeating molecules. The effective diffusion path is estimated as follows [13,27]:
each filler particle contributes to the elongation of the diffusion path by w/2 on average.
The expected value 〈N〉 for the number of filler particles that the permeating gas molecules
encounters is estimated with

〈N〉 = L
b

φ f (8)

where φ f is the volume fraction of the fillers and b is the thickness of the filler particles (see
Figure 2). Therefore, the effective diffusion path Le f f can also be expressed as

Le f f = L
(

1 +
w
2 b

φ f

)
(9)

and comparison of Equation (9) with Equation (7) gives

τ = 1 +
α

2
φ f (10)

with α = w/b as the aspect ratio of the rectangular filler particles.
It is convenient not to change “external” measurable parameters, such as membrane thick-

ness L or the pressures at the membrane sides pi. With comparison of Equations (6) and (9),
an effective diffusion coefficient De f f is calculated with

De f f =
D0

1 + α
2 φ f

(11)

instead of an effective diffusion path Le f f , where D0 is the diffusion coefficient of a continu-
ous homogeneous polymer matrix without fillers.

Second, since the fillers are assumed to be impenetrable, the gas molecules can only
be dissolved in the polymer matrix. Therefore, the effective solubility coefficient Se f f is
calculated with

Se f f = S0 (1− φ f ) (12)

where S0 is the solubility coefficient of a continuous homogeneous polymer matrix. The
Nielsen model can then be expressed as the relation of an effective flow Fe f f through a
filled polymer to a flow F0 through the continuous homogeneous polymer matrix while
considering Equations (6), (11) and (12) with

Fe f f

F0
=

De f f Se f f

D0 S0
=

Pee f f

Pe0
=

1− φ f

1 + α
2 φ f

(13)

where Pe f f and P0 are the permeation coefficients of the filled and homogeneous polymers, respectively.

3. Derivation of the Channel Model

As can be seen in Equation (13), only two parameters, the aspect ratio α and the filler
volume fraction φ f , are used in the Nielsen model. For numerical simulations, additional
parameters are necessary to sufficiently describe the geometric structure of the permeation
problem. For the Nielsen model, the fillers are arranged in a regular pattern: rows of
rectangular fillers with the longer edge perpendicular to the direction of diffusion, each row
offset from the previous one so that the fillers are in the middle of the gaps of the previous
row. Therefore, only two more parameters are needed to fully describe the geometric
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structure: the slit distance s, which defines the width of the gap in a row, and the filler
distance d, which defines the distance between the symmetry axes of two adjacent rows
(see Figure 2).

Nielsen predicted cases where channels formed in the filler arrangement that would
pass through the whole membrane [13]. Therefore, we assumed that permeation through
filled polymers is a superposition of two flows: one flow Fch, which is unhindered by
fillers because it takes place in “channels” that naturally form in regular patterns where
the slit distance s is larger than the filler width w, and another flow Ft, which follows a
tortuous path around the fillers (see Figure 3). This assumption, together with geometrical
considerations about unit cells in the filled polymer matrix, allows the calculation of the
two missing parameters, filler distance d and slit distance s.

wch

d

w
2

s
2

b
2

(a)

Fch Ft

d

w
2

b
2

(b)

Figure 3. Model sketches. (a) Sketch of unit cells (enclosed with dashed lines) with a channel (blue)
through the filler rows in which diffusion takes place unhindered. (b) Sketch of two superimposed
flows in a unit cell: the unhindered flow through the channel Fch, and the tortuous flow around
fillers Ft.
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For the quantitative description of the filler distance d, it is necessary to subdivide the
filled polymer, similar to the approach of Minelli et al. [29], into defined rectangular unit
cells whose two opposite corners are located, respectively, in the centers of the diagonally
adjacent filler particles of two neighboring filler rows (see Figure 3). Since the filled polymer
matrix is described with a 2D model, all spatial definitions are reduced by one dimension.
In a first step, the area of a unit cell is expressed as

Au =
w + s

2
d (14)

and a unit cell contains the filler area

A f =
w b
2

. (15)

The filler volume fraction φ f is expressed as the ratio of the two areas with

φ f =
A f

Au
=

w b
d (w + s)

, (16)

which is converted to the following form to calculate the filler distance d:

d =
w b

φ f (w + s)
. (17)

According to Equation (17), the filler distance is also dependent on the slit distance s,
which is calculated by calculating the ratio between the superposition of the two flows Fch
and Ft and a flow that represents unhindered permeation in an unfilled polymer matrix,
inside two consecutive unit cells (see Figure 3). Since the channels pass through the
polymer matrix without interruption, provided that the fillers are arranged regularly and
periodically, the flow Fch is unhindered for the whole thickness of the membrane. Therefore,
the fraction of unhindered flow in the membrane is only dependent on the width of the
channels wch, which is calculated with

wch =
s− w

2
, (18)

relative to the width of the unit cells, which leads to the fraction of unhindered permeation

fch =
Fch
F0

=
s− w
w + s

. (19)

The fraction of the tortuous flow Ft can be determined similarly but with two additional
conditions: first, only the upper border of the unit cell without a filler particle of width
w/2 is considered for the path of Ft. On the one hand, the filler particle closes off any flow
besides the filler channel and, on the other hand, this prevents multiple considerations of
Ft between other constellations of consecutive unit cells. Second, since the flow is tortuous,
its effective path length on the average inside a single unit cell is calculated with

Lu = d +

∫ w
2

0 z dz
w
2

= d +
w
4

(20)

where the integral in the equation calculates the average of the additional path length z
caused by the respective filler particle. Using Equation (20) in combination with Equation (7)
results in

τt = 1 +
w
4 d

(21)

for the tortuousity of the effective path length. Since two unit cells are required for the flow
to return to its initial state (see Figure 3), the fraction for the tortuous path has to be divided
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by 2 to ensure that each contribution to this flow is counted only once. Taking into account
all these assumptions, as well as the width of the unit cells, leads to

ft =
Ft

F0
=

1
2 τt

w
w + s

(22)

for the fraction of tortuous permeation. With Equations (17) and (21), Equation (22)
finally becomes

ft =
2 w b

φ f (w + s)2 + 4 b (w + s)
. (23)

The sum of the fraction of the unhindered permeation fch and of the tortuous perme-
ation ft, respectively, also results in the relative permeation through the filled polymer and
can be equalled to Equation (13), resulting in

Fe f f

F0
=

1− φ f

1 + α
2 φ f

= fch + ft. (24)

When Equations (19) and (23) are substituted into Equation (24), the result is a
quadratic equation for the slit distance s. Since s is a physical distance, only the posi-
tive root of the equation is a reasonable solution. An extensive simplification then leads to

s = w ·
[
−

2 α φ f + 4
φ f α (α + 2)

(25)

+

√
α4 φ2

f + 6 α3 φ f + 4 α2 φ + 12 α2 + 24 α + 16

φ f α (α + 2)

.

With Equations (17) and (25), the missing parameters from the Nielsen model, filler
distance d, and slit distance s are fully determined, provided that at least one of following
conditions is satisfied, which ensure that no collisions between filler particles occur:

s > w (26)

or

d > b.

4. Numerical Test Setup for the Channel Model

To verify that the channel model gives reasonable results according to the assumptions
of the Nielsen model, 2D geometries of filled polymer matrices were generated in which
the fillers were regularly and periodically arranged. The 2D geometries were created
and meshed with the free software SALOME [34], using Python macros to generate the
filler arrangements. The area size of the geometry depended on the filler width w, the slit
distance s, and the filler distance d, since each filler array contained exactly 100 filler
rows with one filler each. The fillers were arranged periodically in each row, so that
the slit distance spacings between fillers and the fillers cut off at one boundary parallel
to the diffusion direction were continued at the opposite boundary. The definition of
periodic boundaries also allowed a very small number of fillers per row and thus significant
savings in computational power without compromising the accuracy of the simulations
(see Figure 4, for example).
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Figure 4. Example of a mesh for the numerical test setups. Dirichlet boundary conditions are defined
at top and bottom edges of the mesh, while a periodic boundary condition is defined for left and
right edges. The fillers are indicated by rectangular ’holes’ in the mesh, with only one filler per filler
row. To improve visibility, the example contains only seven filler rows compared to the 100 filler rows
in the numerical test setups.

The thickness of the fillers b was chosen to be similar to the graphene flakes studied
by Scherillo et al. [35] with 3 nm, while the aspect ratios that defined the corresponding
filler width w of the fillers were chosen according to the recent literature (e.g., [23,35–40])
with 50, 150, 300, 600, and 900. The goal was to perform simulations that were as close as
possible to real experiments. Slit distance s and filler distance d for each of the regular filler
arrangements were calculated and defined according to Equations (17) and (25).

The geometries were more finely meshed around fillers and boundaries, with the
impenetrable fillers represented as unmeshed holes. The meshes generated with SALOME
were 3D and were converted to 2D with the Python package “meshio” [41]. The meshes thus
prepared were then imported into the free FEM solver FreeFEM++ [42]. Periodic boundary
conditions were defined for the edges of the geometry, which were parallel to the diffusion
direction, while Dirichlet boundary conditions were defined for the other two edges with
1 bar and 0 bar on the upstream and downstream side of the 2D geometry, respectively.

In FreeFem++, Equation (5) was solved to obtain the concentration distribution within
the membrane for steady state. The gradient of the solution was averaged over the down-
stream edge of the geometry with

∇C =
1
ld

∫
ld
∇C nld dx (27)

where ld is the length of the edge on the downstream side and nld is the unit vector normal
to the edge. Since the diffusion coefficient D0 and the solubility coefficient S0 were assumed
to be constant for the polymer matrix, they cancel out when the permeation coefficient
of the filled polymer Pee f f is considered only relative to the permeation coefficient of the
unfilled polymer P0. For this reason, arbitrary constants were chosen for D0 and S0. Based
on Equations (1), (3), and (27), the relative permeation for each 2D geometry was then
calculated with

Pee f f

Pe0
=
∇C f illed

∇Cun f illed
. (28)

5. Results and Discussion

Figure 5 shows a comparison between the predictions of the Nielsen model and the
2D filler simulations performed as described in Section 4, calculated with aspect ratios
of significantly different magnitudes over the range of filler volume fractions from 0 to
0.15. The residuals between model prediction and simulation results display a correlated
behavior, indicating that there are still some effects that are not included in the chan-
nel model [43]. Nevertheless, the agreement between model prediction and simulations
appears to be sufficient enough to validate the findings with the channel model for the
2D geometries.
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Figure 5. Comparison of predictions of the Nielsen model and the 2D filler simulations augmented
with the channel model. The markers represent the simulations while the solid lines in the same color
represent the model predictions. The thickness of the fillers b was always 3 nm.

Figure 6 displays the results the channel model for slit distance s and filler distance
d as a function of the filler volume fraction φ f according to the predictions of the Nielsen
model in Figure 5. After a sharp decline below φ f = 0.02, the decrease in the slit distance s
reduces strongly until it falls below the respective filler width w at φ = 0.75, independent
of the aspect ratio α. In contrast, the filler distance d approaches a finite value at φ f = 0.
After substituting Equation (25) into Equation (17), this finite value, which seems to be
caused by the fast approach of Equation (25) to infinity, can be approximated with good
accuracy by

d(φ f = 0) ≈ b α

2
√

3
(29)

where it was assumed that α� 1. Due to the non-realistic result for d at φ f = 0, the channel
model should not be used at filler volume fraction ranges with large slopes of s. It is
difficult to determine the value of filler volume fraction below which the channel model
loses its validity, since no other requirement of the model is violated. Nevertheless, it is
assumed that the channel model will produce valid results in a range of φ f larger than
approximately 0.01. In this filler fraction range, the slit distance s changes only moderately,
while permeation behavior seems to be strongly dependent on filler distance d, which
should correlate to a mean free path length in which permeation is not disturbed by fillers.

Similar to the slit distance s, the filler distance d decreases monotonically with de-
creasing slope and falls below the filler thickness b. From Equations (17) and (25), the filler
volume fraction φ f where d = b can be calculated as follows:

φ f (d = b) =
α2 + α− 2
2 α (α + 3)

≈ 0.5, for α� 1. (30)

Therefore, the channel model is at least valid for the range of the filler volume fraction
of 0.01 . φ f . 0.5. Both conditions in Equation (26) are satisfied and s does not change
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rapidly. In this range, the augmentation of the Nielsen model with the channel model
provides information about the filler geometry in a polymer membrane, which can then be
verified with experimental methods.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
φf

0
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s
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m
)

α = 50 (w = 150 nm)

α = 150 (w = 450 nm)

α = 300 (w = 900 nm)

α = 600 (w = 1800 nm)

α = 900 (w = 2700 nm)

(a)
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d
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m
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b

α = 50 (w = 150 nm)

α = 150 (w = 450 nm)
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α = 600 (w = 1800 nm)

α = 900 (w = 2700 nm)

(b)

Figure 6. Calculations of slit distance s and filler distance. The thickness of the fillers b was always
3 nm (dotted line). (a) Slit distance s, which was calculated with the channel model over the filler
volume fraction φ f . (b) Filler distance d, which was calculated with the channel model over the filler
volume fraction φ f .

6. Conclusions and Outlook

Although the Nielsen model is one of the earliest models for permeation in filled
polymers, it is still one of the most widely used in the literature. However, the model
does not provide quantitative information on arrangements of fillers inside a polymer
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matrix. For this reason, the channel model was developed in this work, which extends the
Nielsen model by determining the relative distances, slit distance s, and filler distance d,
between the fillers in polymer matrices. To our knowledge, this allows, for the first time,
for the Nielsen model to relate the permeation properties of filled polymer membranes
to the geometric properties of the filler arrangement in simulations and experimental
measurements. Simulations with geometries defined according to the Nielsen and the
channel models showed good agreement with the predictions of the Nielsen model. This
demonstrated that the channel model can be a valuable tool for predicting at least mean
geometric distances in studied polymer membranes. Such values can either be good starting
values for permeation simulations or used for comparison with experimental results.

The validity range of the channel model was limited to an interval of the filler volume
fraction 0.01 ≤ φ f ≤ 0.5. This validity range was set solely on the basis of theoretical
considerations, since experimental verification is expected to take a long time, if at all
possible. This is due to the complexity involved in producing suitable samples and per-
forming measurements, such as permeation experiments and X-ray diffraction, which
are necessary to evaluate the geometrical predictions of the channel model. In addition,
the channel model as the auxiliary model is limited to the validity range and assumptions
of the Nielsen model, which only gives accurate results for lower filler volume fractions
φ f and regular filler arrangements. Moreover, the relationship between a specific effective
flow Fe f f through a membrane and filler arrangements with, respectively, different slit
distance s and filler distance d can possibly be ambiguous. This uncertainty can only be
resolved by the elaborate experimental work mentioned before, since only one of these
filler arrangements can be found with the channel model.

The channel model was developed explicitly for the Nielsen model, where imperme-
able fillers oriented perpendicularly to the diffusion direction are assumed. Similar to this
work, it will be tested how well the channel model will predict the slit distance s and filler
distance d for the Nielsen model modified by Bharadwaj [15], where different orientations
for fillers in regular arrangements are also considered. It is expected that the results from
such comparisons will allow further evaluation of the channel model.
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Abbreviations
The following abbreviations are used in this manuscript:

C Permeate concentration
D Diffusion coefficient
S Solubility coefficient
F Permeation flow
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Pe Permeation coefficient
t Independent variable for time
x Independent variable for space (1D)
V Volume
pi Boundary condition for pressures at either side of the membrane
L Thickness of membrane
τ Tortuosity
Le f f Effective thickness of membrane
De f f Effective diffusion coefficient
Se f f Effective solubility coefficient
Pee f f Effective permeation coefficient
S0 Solubility coefficient of unfilled polymer
D0 Diffusion coefficient of unfilled polymer
Pe0 Permeation coefficient of unfilled polymer
F0 Permeation flow through unfilled polymer
Fe f f Effective permeation flow through filled polymer
Lu Effective thickness in a unit cell inside a filled polymer
φ f Filler volume fraction in a polymer
w Width of a single filler
b Thickness of a single filler
d Distance between adjacent filler rows in regular filler arrangement
fi Fraction of effective flows over flow in unfilled polymer
s Slit distance between fillers in a single filler row of a regular filler arrangement
α Aspect ratio of fillers w/b
ld Downstream edge of a rectangular 2D diffusion geometry
nld

Normal vector on ld
〈N〉 Expected number of interactions of permeate with fillers in polymer membrane
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