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Use of food additives, such as colorants and preservatives, is highly regulated because

of their potential health risks to humans. Therefore, it is important to detect these

compounds effectively to ensure conformance with industrial standards and to mitigate

risk. In this paper, we describe the preparation and performance of an ultrasensitive

electrochemiluminescence (ECL) sensor for detecting a key food additive, sunset yellow.

The sensor uses graphene quantum dots (GQDs) as the luminescent agent and

potassium persulfate as the co-reactant. Strong and sensitive ECL signals are generated

in response to trace amounts of added sunset yellow. A detection limit (signal-to-noise

ratio = 3) of 7.6 nM and a wide linear range from 2.5 nM to 25µM are demonstrated.

A further advantage of the method is that the luminescent reagents can be recycled,

indicating that the method is sustainable, in addition to being simple and highly sensitive.

Keywords: graphene quantum dots (GQDs), electrochemiluminescence (ECL), sunset yellow, food safety, sensor

INTRODUCTION

In recent years, there have been growing concerns about food safety and the effects of certain
food additives on human health in particular (Gan et al., 2013). Multiple studies have shown
that excessive food additives, particularly synthetic colorants, often leads to cancer and other fatal
effects, after a series of chemical reactions (Rovina et al., 2017). One common food additive, better
known as FD&C Yellow No. 6 or sunset yellow, is a synthetic food colorant that is used widely
(Vladislavić, 2018). Its strong and bright color, chemical stability, and low price have favored its use
in the food industry (Zhang et al., 2010). However, the chemical functionalities of sunset yellow,
i.e., its aromaticity and presence of an azo (N=N) moiety, can adversely affect human health if not
controlled properly (Qiu et al., 2016; Sun et al., 2019). Food products with excessive added sunset
yellow can cause allergies, anxiety, migraine, asthma, diarrhea, eczema, and other symptoms and
can even lead to cancer (Yadav et al., 2012; Senthilkumar et al., 2013; Ding et al., 2019). Therefore,
there is a clear need for a reliable technique that can accurately detect the amount of sunset yellow
in food.

While there are already various methods for detecting sunset yellow, including high-
performance liquid chromatography (HPLC) (Minioti et al., 2007; Alves et al., 2008; Sha et al.,
2014), fluorescence spectroscopy (Yuan et al., 2016), UV-vis spectroscopy (Zou et al., 2013),
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and electrochemistry (Tran et al., 2019), these techniques
are equipment-based and require properly trained operators
and specialized equipment. Moreover, the detection limits
are largely dependent on the operating conditions, and the
overall costs are relatively high because organic solvents are
required (Niu et al., 2013). A viable alternative to these
existing approaches is electrochemiluminescence (ECL)-based
detection, which has attracted much attention owing to
simple instrumentation, operational convenience, low energy
consumption, low environmental impact, and simple operation
(Li S. et al., 2019).

ECL-based analysis uses electrochemically generated light to
detect the presence of target analytes, similar to detection based
on chemiluminescence and fluorescence (Liang et al., 2018).
It has already been successfully employed for the detection of
nitroaromatic, phenolic, and polycyclic aromatic compounds,
among others (Zhang et al., 2014; Li S. et al., 2019). ECL reagents
typically include luminol, ruthenium compounds, and quantum
dots (Hao et al., 2017). In this study, we used graphene quantum
dots (GQDs) as an ECL reagent to detect sunset yellow. GQDs are
a class of quasi-zero-dimensional nanomaterials with diameters
of <100 nm (Zhang et al., 2016). Owing to their small size, they
have novel physical and chemical properties (Li et al., 2013).
Compared with luminescent materials and other quantum dots,
GQDs have higher specific surface area, water solubility, stability,
and biocompatibility, along with other beneficial properties such
as low physiological toxicity and ease of modification (Gan et al.,
2013; Zhang et al., 2015; Liu et al., 2016). These advantages
have led to the widespread application of GQDs in bio-imaging
(Zhu et al., 2012), photoelectron devices (Gupta et al., 2011),
photocatalysis (Gupta et al., 2015), and chemical sensors (Chen
et al., 2018).

By applying GQDs to ECL, we can detect sunset yellow with
high sensitivity. The ECL-based technique is more efficient and
faster than other detection methods. Further, the reagent can

FIGURE 1 | Spectrophotometric characterization of GQDs. (A) UV spectrum of an aqueous suspension of GQDs. Inset: aqueous suspension of GQDs under natural

light (left) and blue fluorescence upon excitation by a 365 nm UV lamp (right). (B) Fluorescence spectra of GQDs at different excitation wavelengths.

be recycled and stored, and the luminescence image is stable.
Moreover, it can also be used as a highly accessible and effective
technique for the detection of other small molecular analytes in
food sources (Ding et al., 2019).

EXPERIMENTAL

Reagents and Chemicals
GQDs were purchased from Nanjing XFNANO Material
Technology Company. Sunset yellow was purchased from
Shanghai Yuanye Biotechnology Co., Ltd. All other chemicals
were purchased from Sigma-Aldrich. All the chemicals were used
as received without further purification.

FIGURE 2 | Raman spectrum of GQDs in an aqueous suspension.
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A 0.08M KCl solution and phosphate-buffered saline (PBS)
(0.01M, pH 7) was used as the electrolyte, and 0.05M K2S2O8

was used as the co-reactant.

Apparatus
UV absorption spectra were measured on an Evolution 220 UV-
vis spectrophotometer (Thermo Scientific). Fluorescence

FIGURE 3 | Morphological characterization of GQDs using TEM and AFM. (A) TEM image with the inset showing the GQDs at 2× magnification. (B) AFM image with

the height profile of GQDs shown in the inset.

FIGURE 4 | ECL mechanism of the GQD sensor. GQDs*: excited-state GQDs; h+: positive holes; GCE, glassy carbon electrode.

FIGURE 5 | (A,B) Effect of pH on the ECL performance. (C) ECL intensity as a function of pH.
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properties were evaluated on an F-7000 fluorescence
spectrophotometer (Hitachi). Raman spectroscopy was
performed at room temperature on a high-resolution laser
confocal micro-Raman spectrometer (LabRAM HR Evolution,
HORIBA). The morphology of the GQDs was characterized
by transmission electron microscopy (TEM) and atomic force
microscopy (AFM) using a Talos F200 X microscope (FEI)
and an Evolution microscope (HORIBA JOBIN YVON S.A.S.),
respectively. ECL measurements were conducted using an
MPI-EII workstation (Xi’an Remax Electronic Science &
Technology Co., Ltd., China).

ECL Measurement Prcedure
ECL voltage curves were obtained using the MPI-EII
workstation. Cyclic voltammetry (CV) was conducted using
a conventional three-electrode system consisting of a glassy
carbon electrode (GCE) (working electrode), Ag/AgCl in
saturated KCl solution (reference electrode), and a platinum wire
(counter electrode).

The electrode surface was pretreated before use. The surface of
the GCE was polished with 0.3 and 0.05µm Al2O3 on buckskin
cloth and then rinsed with deionized water. All three electrodes
were then sonicated for 5min in ethanol and deionized water and
dried at room temperature.

CV measurements were performed in 0.01M PBS (pH 7)
mixed with 0.08M KCl as the supporting electrolyte and 0.05M
K2S2O8 as the co-reactant. For the ECL measurements, GQDs
(0.1 mgmL−1, 200 µL) were mixed with a solution of 0.05M
K2S2O8 and 0.08M KCl in PBS (1,800 µL) at a ratio of 1:9.
The sunset yellow solutions of concentrations in the range of
2.5 × 10−9 to 2.5 × 10−5 M in PBS were prepared from a
stock solution. PBS solutions from pH 3 to 11 were prepared
to detect the influence of pH on luminous intensity. The effect
of different values of pH on light intensity was detected with
a sunset yellow concentration of 0.25µM under the optimized
conditions (GQDs, 0.1 mgmL−1; co-reactant, 0.05M K2S2O8;
supporting electrolyte, 0.08MKCl; scan rate, 0.1 Vs−1). All of the

experiments were performed within the potential range of −2.2
to−0.6 V.

RESULTS AND DISCUSSION

Characterization of GQDs
The GQDs were characterized by UV-vis spectrophotometry
(Figure 1A); a weak absorption peak was observed at 375 nm.
The GQDs also exhibited photoluminescence (PL), as evidenced
by the blue fluorescence emitted under UV illumination at
365 nm (Figure 1A, inset). The fluorescence spectra of the GQDs
were obtained for different excitation wavelengths (Figure 1B).
The emission wavelength of the GQDs was dependent on
the excitation wavelength, which is consistent with the known
characteristics of GQDs (Zhou et al., 2019). For example, when
the excitation wavelength was increased from 320 to 440 nm, the
PL peak is red-shifted (Zhou et al., 2009), with the strongest peak
appearing at 450 nm upon excitation at 380 nm.

The Raman spectrum of the GQDs shows G, D, and G’ peaks
(Figure 2); the strongest peak, referred to as the G peak (the
main characteristic peak of graphene), which is attributed to the
in-plane vibration of the sp2 carbon atoms, appeared at 1,583
cm−1 (Mishra and Bhat, 2019). The D peak observed at 1,353
cm−1 is generally considered the disordered vibration peak of
graphene. There is an appreciable loss of the graphitic layered
structure, as evidenced by the almost 1:1 ratio of the D and
G band intensities. The weak broad band at ∼2,896 cm−1, i.e.,
the G’ peak (2D peak), is a two-fidelity resonance second-order
Raman peak that characterizes a particular form of structure
(interlayer stacking of carbon atoms) in graphene (Sun et al.,
2019).

The morphology of the GQDs was then characterized using
TEM and high-resolution AFM (Figure 3). TEM studies revealed
that the GQDs are relatively uniform in size (average diameter
= 5 nm) and are distributed in a single layer (Li et al., 2012).
The crystal lattice of the GQDs can be clearly seen in Figure 3A

(inset). From the AFM image (Figure 3B), the topographic
heights of the GQDs were measured to be between 0.5 and

FIGURE 6 | (A) Effect of scan rate on the ECL performance and (B) ECL intensity as a function of scan rate.
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2 nm, with the average height being 1.2 nm (Figure 3B, inset),
which suggests the presence of single or bi-layers in GQDs
(Akilimali et al., 2020).

FIGURE 7 | ECL responses from GQDs. Cyclic voltammograms (A) and ECL

responses (B) of the GQDs/GCE electrode (a) without sunset yellow and (b) in

the presence of 0.025µM solution of sunset yellow. (C) ECL response of the

GQDs/GCE electrode: (a) without sunset yellow and (b) in the presence of

0.025µM solution of sunset yellow. Optimized conditions used for the

reactions: GQDs, 0.1 mgmL−1; co-reactant, 0.05M K2S2O8; supporting

electrolyte, 0.08M KCl; PBS (pH 7); scan rate, 0.1 Vs−1.

Mechanism of the GQD Sensor to Detect
Sunset Yellow
The ECL mechanism of the GQD sensor is schematized
in Figure 4. Initially, reduction of K2S2O8 is performed to

FIGURE 8 | Detection of sunset yellow by ECL using GQDs. Cyclic

voltammograms (A) and ECL response (B) of the GQDs/GCE electrode at

different concentrations of sunset yellow: (a) 25µM, (b) 2.5µM, (c) 0.25µM,

(d) 0.025µM, and (e) 0.0025µM. (C) ECL responses of the biosensor to

sunset yellow (25µM) over 10 successive cycles. Optimized conditions used

for the reaction: GQDs, 0.1 mgmL−1; co-reactant, 0.05M K2S2O8; supporting

electrolyte, 0.08M KCl; PBS buffer (pH 7); scan rate, 0.1 Vs−1.

Frontiers in Chemistry | www.frontiersin.org 5 June 2020 | Volume 8 | Article 505

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Niu et al. Electrochemiluminescence of Graphene Quantum Dots

form SO2−
4 and SO−

4 , while the GQDs are simultaneously
reduced to anionic radical GQDs−. The strongly oxidizing SO4−

radicals react with the GQDs− radicals via an electron-transfer
annihilation process to produce the excited state of GQDs
(GQDs∗). Finally, the GQDs∗ emit light and return to the ground
state (Li et al., 2012; Hu et al., 2019; Li M. et al., 2019). As
shown in Figure 7B, there is a very obvious ECL curve, and
the ECL intensity is high enough. As shown in Figures 7A–C,
when 0.025µM sunset yellow is added, the current and the ECL
intensity are clearly increased compared to when sunset yellow is
not added. Sunset yellow was analyzed by the ECL signal of the
GQD/K2S2O8 system, and the possible mechanism was proved
through ECL and CV curves. Without adding sunset yellow, the
electrons of the system come from the electrode. When sunset
yellow is added, sunset yellow loses electrons and generates a
new substance. The lost electrons are provided to the graphene
quantum dot system, so GQD∗ in the system increases (Gan et al.,
2013). This process is described by Equation (1–5):

S2O8
2−

+ e− → SO4
2−

+ SO4
•− (1)

GQDs + e− → GQDs•− (2)

GQDs•− + SO4
•−

→ GQDs∗ + SO4
2− (3)

GQDs∗ → GQDs + hν (4)

(5)

Detection of Sunset Yellow by ECL Using
GQDs
The ECL behavior of GQDs was investigated through CV using
a cathodic co-reactant (K2S2O8). The scan rate in the CV
method and the pH of PBS were optimized at room temperature

to determine the best conditions for detecting sunset yellow.
Figures 5A,B show the influence of pH from 3 to 11 on the ECL
intensity. Figure 5C shows that the ECL intensity increases with
pH in the range of 3 to 7 and then decreases at pH values beyond
7. When the pH was 7, the ECL intensity reached the maximum.
Therefore, the optimal pH of PBS is 7 (Cheng et al., 2012). In
addition, the ECL luminous intensity is different at different scan
rates. Figures 6A,B illustrate that the ECL intensity strengthens
in the range of 0.02–0.1 V•s−1, indicating that the excited-state
substance is insufficiently produced at low scan rates. Therefore,
the optimal experimental condition was a scan rate of 0.1 V•s−1

(Dai et al., 2010). The GQD system emits stably under the

TABLE 1 | Comparison of the system described herein with other reported

methods used to detect sunset yellow.

Electrode Method Linear range LOD References

– UV–vis 2–40 µgmL−1 – Sorouraddin

et al., 2011

– HPLC 0.05–300ngmL−1 0.015 ngmL−1 Wu et al., 2013

– Spectrometry 4.42–17.68µM 193.0 nM Dinç, 2002

– Fluorescence 0.3–8.0µM 79.6 nM Yuan et al.,

2016

Fe3O4@rGO/

GCE

Electrochemistry 0.05–50µM 50nM Han et al., 2014

Au/GO Electrochemistry 0.01–3.0µM 2.4 nM Deng et al.,

2016

ERGO/GCE Electrochemistry 0.05–1.0µM 19.2 nM Tran et al., 2019

GO/

MWCNTs/

GCE

Electrochemistry 0.09–8.0µM 25nM Vladislavić,

2018

MGO/β-CD/

IL/AuNPs/

GCE

Electrochemistry 0.005–2µM 2nM Li et al., 2016

GQDs/GCE ECL 0.0025–25 7.6 nM This work

rGO, reduced graphene oxide; GO, graphene oxide; MWCNT, multiwalled carbon

nanotube; β-CD, β-cyclodextrin; AuNP, gold nanoparticle; ERGO, exfoliated reduced

graphene oxide.

FIGURE 9 | Determination of the limit of ECL detection of sunset yellow. (A) ECL intensities over time at different concentrations of sunset yellow. (B) Logarithmic

calibration curve of the sunset yellow biosensor [X = Lg (C/2.5)].
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FIGURE 10 | Demonstration of the selectivity of the ECL sensor. Response of

the sensor when different substances were added: (a) none, (b) sunset yellow,

(c) amaranth, and (d) sodium citrate.

optimized conditions [GQDs, 0.1 mgmL−1; co-reactant, 0.05M
K2S2O8; supporting electrolyte, 0.08M KCl; PBS buffer (pH 7);
scan rate, 0.1 Vs−1]. The black and red curves in Figure 7A

show the correspondences between the current and voltage in
the absence and presence of 0.025µM solution of sunset yellow,
respectively. Upon adding sunset yellow, there was a significant
increase in the ECL signal intensity (Figure 7B). Both the current
and ECL signal intensity increased with increasing sunset yellow
concentration (Figures 8A,B, respectively), indicating that the
ECL system can differentiate the sunset yellow concentration.
The stability of the ECL system is shown in Figure 8C.

Upon the addition of sunset yellow, the lost electrons are
supplied to the system, generating the original system to produce
more intermediate states. Therefore, the ECL signal increases
with increasing concentration of sunset yellow in the range
from 0.0025 to 25µM (Figure 9A). A linear fit was obtained
between the logarithm of the sunset yellow concentration and
ECL intensity (Figure 9B), and the limit of detection (LOD)
was determined to be 7.6 nM (signal-to-noise ratio = 3). A
comparison between the system developed herein and previously
reported sensors shows that this new sensor performs better than
most existing sensors in the detection of sunset yellow (Table 1).

Selective Detection of Sunset Yellow by
ECL Using GQDs
Further, different substances, including sunset yellow, amaranth,
and sodium citrate, were detected using the ECL sensor
(Figure 10). Under the same experimental conditions, different

detection substances of the same concentration (25µM) were
added, and the measured luminous intensity is shown in
Figure 10. When sunset yellow was added, the light intensity
increased significantly. However, when the other two substances
were added, there was a small decrease in the light intensity. This
result demonstrates that this method has preliminary selectivity
in the detection of sunset yellow.

CONCLUSIONS

Herein, we demonstrated a new, simple ECL sensor using GQDs
that can be used to detect the food additive, sunset yellow.
The ECL signal of the GQDs changes with the addition of
sunset yellow. Under optimized conditions, the GQD sensor
shows good linearity in the detection of sunset yellow in the
concentration range of 0.0025–25µM with a detection limit
of 7.6 nM. Therefore, the method described herein is a highly
sensitive one for detecting sunset yellow. This study also provides
a basis for rapid screening for potentially harmful food additives.
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