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Automated processing of thermal 
imaging to detect COVID‑19
Rafael Y. Brzezinski1,2, Neta Rabin3, Nir Lewis1,2, Racheli Peled1,2, Ariel Kerpel4,5, 
Avishai M. Tsur5,6,7, Omer Gendelman5,6, Nili Naftali‑Shani1,2, Irina Gringauz5,8, 
Howard Amital5,6, Avshalom Leibowitz5,6, Haim Mayan5,6, Ilan Ben‑Zvi5,6, Eyal Heller5,6, 
Liran Shechtman5,6, Ori Rogowski5,9, Shani Shenhar‑Tsarfaty5,9, Eli Konen4,5, 
Edith M. Marom4,5, Avinoah Ironi5,10, Galia Rahav5,11, Yair Zimmer12, Ehud Grossman5,13, 
Zehava Ovadia‑Blechman12, Jonathan Leor1,2* & Oshrit Hoffer14

Rapid and sensitive screening tools for SARS‑CoV‑2 infection are essential to limit the spread of 
COVID‑19 and to properly allocate national resources. Here, we developed a new point‑of‑care, non‑
contact thermal imaging tool to detect COVID‑19, based on advanced image processing algorithms. 
We captured thermal images of the backs of individuals with and without COVID‑19 using a portable 
thermal camera that connects directly to smartphones. Our novel image processing algorithms 
automatically extracted multiple texture and shape features of the thermal images and achieved an 
area under the curve (AUC) of 0.85 in COVID‑19 detection with up to 92% sensitivity. Thermal imaging 
scores were inversely correlated with clinical variables associated with COVID‑19 disease progression. 
In summary, we show, for the first time, that a hand‑held thermal imaging device can be used to 
detect COVID‑19. Non‑invasive thermal imaging could be used to screen for COVID‑19 in out‑of‑
hospital settings, especially in low‑income regions with limited imaging resources.

The coronavirus disease 2019 (COVID-19) pandemic has imposed an immense burden on out-of-hospital health 
care services and community-based testing sites  worldwide1,2. Immediate and sensitive screening tools for severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are essential in order to limit the spread of 
the disease and to properly allocate national resources. The common and standard diagnosis of SARS-CoV-2 
infection is based on a virus-specific quantitative real-time PCR (qRT-PCR). The fastest test, however, can take 
up to several hours to complete, depending on available resources and disease burden in the  region3. Further-
more, a significant amount of skilled labor is required at the different stages of qRT-PCR testing (sampling, 
preparation, and analysis)3.

Infrared thermography scanners have been widely used as a screening tool during past infectious disease 
epidemics, including COVID-194,5. This technique is based on the assessment of absolute body temperature in 
order to screen individuals with fever, and lacks specificity for COVID-195.

Non-invasive thermal imaging of organ-specific diseases has been presented as a new tool to detect inflam-
mation and vascular  dysfunction6–8. The use of thermal imaging has been demonstrated in the monitoring of 
various diseases such as breast cancer, diabetic neuropathy, kidney transplant defects, dermatological disorders, 
chronic wound treatment and  more9–11. We propose that advanced processing of thermal images, combined 
with machine learning analysis, could serve as an innovative diagnostic tool for detection of COVID-19 and its 
associated microvascular injury.

Here, we developed automated image processing algorithms for analysis of thermal images of the back, cap-
tured by a portable thermal camera that connects directly to smartphones. We aimed to determine the ability of 
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this novel technique to detect COVID-19-associated lung injury. Our automated thermal imaging tool is relatively 
cheap, easy to use, and delivers immediate test results. It is therefore especially applicable for out-of-hospital 
screening by first responders (paramedics, nurses, medical technicians, etc.), home care facilities, military bases, 
and regions with limited diagnostic resources.

Results
Study cohort. The final study cohort included 101 individuals who were prospectively enrolled from two 
medical centers in Israel (Table 1). The mean age was 56 ± 17 years, and 80 participants (79%) were men. A total 
of 62 (61%) individuals were COVID-19 positive, of whom 40 (85%) had some form of lung injury, defined as 
any clinical or radiological evidence of pneumonia or acute respiratory distress, including hypoxemia, dyspnea, 
respiratory rate > 20, shortness of breath, severe cough, and/or the presence of ground-glass appearance, consoli-
dation, or linear opacities on chest X-ray (CXR)12.

Patients with COVID-19 were older and had a higher prevalence of lung injury than patients without COVID-
19 (Table 1, 65% vs. 18%, p < 0.01). Absolute body temperature, as well as the prevalence of hypertension, dys-
lipidemia, and diabetes, were not different between the groups (Table 1). Overall, the majority of COVID-19 
patients included in our study were ultimately discharged with a favorable prognosis. Only three patients required 
mechanical ventilation during follow-up; two eventually died (one with and one without COVID-19).

Thermal image processing detected COVID‑19 and lung injury status. We captured thermal 
images of the participants’ exposed upper backs (over the lungs) using a portable thermal camera that connects 
directly to smartphones. All images of the final study cohort (n = 101) were analyzed by investigators who were 
blinded to the patients’ clinical data. Our novel thermal image processing algorithms extracted advanced texture 
and shape features of temperature distribution across the skin. Two key parameters were chosen for downstream 
analysis: the fractal dimension of the gradient (termed FD) and a new parameter we called the “sum of extrema” 
in the image (termed SX; see further details in the Methods section) (Fig. 1). Both FD and SX scores were sig-
nificantly lower in COVID-19 positive individuals compared to the rest of the cohort (Fig. 2).

Next, we evaluated the ability of our thermal scores to detect COVID-19 disease status and/or the presence 
of lung injury. Sensitivity, specificity, and area under the curve (AUC) were calculated for both FD and SX 
scores. The receiver operating characteristic (ROC) curves (Fig. 3) indicated that both FD and SX scores were 
significantly associated with the diagnosis of COVID-19, with an AUC of 0.85 (95% CI: 0.78, 0.93; p < 0.01) and 
0.82 (95% CI: 0.73, 0.91; p < 0.01) respectively. A combined cutoff of a low FD score (≤ 1.82) and/or low SX score 
(≤ 13.5) demonstrated 92% sensitivity and 62% specificity in detection of COVID-19 status (regardless of lung 
injury) (Fig. 3). Thus, the two thermal scores FD and SX were able to identify COVID-19 in suspected individuals.

FD and SX scores were also significantly associated with lung injury, with an AUC of 0.78 (95% CI: 0.69, 0.88; 
p < 0.01) and 0.73 (95% CI: 0.63, 0.83; p < 0.01) (Fig. 3).

The combined cutoff of a low FD score and/or low SX score demonstrated a high sensitivity of 89% but a 
specificity of only 44% in detection of lung injury (regardless of COVID-19 status) (Fig. 3). FD outperformed 
SX in detection of the composite diagnosis of COVID-19 and/or lung injury, with an AUC of 0.83 (95% CI: 0.75, 
0.91; p < 0.01) vs. 0.79 (95% CI: 0.70, 0.88; p < 0.01).

To determine the effect of the anatomical location of the selected region of interest (ROI) on diagnostic yields, 
we ran our algorithms on a different ROI: the lower back region, below the lungs (Supp Fig. 1). Both FD and SX 
scores demonstrated similar diagnostic yields for detection of COVID-19 status compared with the upper back 

Table 1.  Patient characteristics. Values are presented as mean ± SD, or median [interquartile range] for 
irregularly distributed parameters. Blood test results were taken from the day of imaging (n = 78).  CRP 
C-reactive protein, WBC white blood count, SPO2 saturation of peripheral oxygen. P values by two-tailed 
unpaired t-test, non-parametric Mann-Whitney test, and Chi-square test.

Characteristic

COVID-19 negative COVID-19 positive

pn = 39 n = 62

Age, years 48.8 ± 20 60.6 ± 13 0.01

Sex (male), n (%) 31 (80%) 49 (79%) 0.9

Lung injury, n (%) 7 (18%) 40 (65%) 0.01

Body temperature, °C 37.1 ± 0.5 36.9 ± 0.6 0.3

SPO2 room air, % 95.7 ± 2.9 94.4 ± 4.2 0.3

Hypertension, n (%) 10 (26%) 24 (39%) 0.2

Dyslipidemia, n (%) 10 (26%) 28 (45%) 0.05

Diabetes, n (%) 6 (15%) 15 (24%) 0.3

CRP, mg/L 14.1 [2.0, 96.5] 47.9 [11.8, 120.4] 0.5

D-dimer, mg/mL 401 [187, 792] 503 [174.1, 745] 0.4

WBC,  109/L 8.7 [7.1, 10.9] 6.3 [5, 7.9] 0.06

Cardiac troponin-I, ng/L 3.3 [2.7, 13.3] 6.2 [4, 12.1] 0.7

Hemoglobin, g/dL 12.2 ± 2.5 13.6 ± 2.3 0.03
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ROI selection model: AUC = 0.85 (95% CI: 0.76, 0.93; p < 0.01) for FD and 0.79 (95% CI: 0.7, 0.88; p < 0.01) for 
SX. Thus, it seems that the differences in temperature distribution associated with COVID-19 are not restricted 
to the skin covering the lungs. We speculate that these changes may reflect a systemic pattern present across the 
entire torso.

The correlation between thermal imaging scores and clinical variables. Next, we evaluated the 
correlation between our thermal scores and selected clinical variables that were shown to predict poor prognosis 

Figure 1.  Thermal image processing. The raw thermal images are displayed in HC-Rainbow scale. Displayed 
are representative images of the different stages of our image processing algorithms for the fractal dimension 
(FD) of the gradient (left) and the “sum of extrema” (SX) in the image (right). For this display the gradient 
range [-8, 8] was normalized to [0, 255]. All gradient values outside of this range were shifted to its edges before 
normalization. Full details on image processing algorithms are provided in the Methods section. ROI region of 
interest.

Figure 2.  Thermal imaging scores according to COVID-19 disease status. Box plots with individual values of 
fractal dimension (FD) (left side) and sum of extrema (SX) (right side) scores. Patients who were COVID-19 
positive had lower thermal scores compared to COVID-19 negative individuals. P value by unpaired t-test.
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in COVID-19  patients13,14. Patients with saturation of peripheral oxygen  (SPO2) ≤ 93% on the day of imaging 
had lower FD and SX scores than patients with normal  SPO2: mean FD = 1.63 ± 0.07 vs. 1.79 ± 0.11, p < 0.01; 
mean SX = 10.29 ± 2.68 vs. 14.28 ± 4.22, p < 0.01 (Fig. 4A). Moreover, even patients who had normal  SPO2 values 
on the day of imaging but developed hypoxemia (≤ 93%) during follow-up had lower FD and SX scores: mean 
FD = 1.66 ± 0.11 vs. 1.79 ± 0.11, p = 0.02; mean SX = 10.6 ± 3.19 vs. 14.28 ± 4.22, p = 0.01 (Fig. 4A). The latter find-
ing suggests that thermal imaging may provide an early indication for clinical deterioration. In line with these 
observations, patients who required non-invasive oxygen support such as nasal cannula or face masks had lower 
FD scores than patients who did not need oxygen therapy: 1.67 ± 0.07 vs. 1.74 ± 0.13, p < 0.01. Overall, low blood 
oxygen saturation was associated with low FD and SX thermal scores.

C-reactive protein (CRP) and D-dimer levels are associated with COVID-19 severity and  prognosis13,14. 
Significantly, the thermal FD and SX scores were inversely correlated with CRP and D-dimer levels measured 
on the day of imaging (Fig. 4B,C). We did not find a correlation between FD and SX with cardiac troponin-I 
concentrations: r = 0.04, p = 0.78, and r = -0.22, p = 0.11. Taken together, the thermal FD and SX scores were 
inversely correlated with clinical variables that reflect COVID-19 disease progression.

Thermal imaging scores did not correlate with the findings on chest X‑ray. Finally, to com-
pare our thermal imaging technique to conventional CXR, we used the radiographic assessment of lung edema 
(RALE)  score15. We compared thermal imaging scores with RALE scores for all patients who had a CXR within 
6 h of thermal imaging (n = 30). The CXRs were manually reviewed by a certified radiologist who was blinded to 
the patients’ clinical statuses and thermal imaging scores.

First, in line with a previous  report15, RALE scores were similar in patients with and without COVID-19, 
and did not provide diagnostic yields (Fig. 5A). As expected, patients with lung injury had higher RALE scores 
than control patients (Fig. 5A). However, patients with a pathological CXR (RALE score > 0) and patients with a 
normal CXR (RALE score = 0) had similar FD and SX scores (Fig. 5B). Both thermal FD and SX scores were not 
correlated with RALE scores across the entire cohort (Fig. 5C). Thus, thermal imaging scores did not correlate 
with the findings on CXR.

Discussion
Our results show, for the first time, that a hand-held thermal imaging device that connects directly to smart-
phones can detect individuals infected with SARS-CoV-2 (Fig. 6). Automated thermal image processing of the 
back yielded two risk scores that demonstrated up to 92% sensitivity in detection of COVID-19.

Portable thermal imaging has several key advantages over currently available diagnostic alternatives for 
COVID-19 patients. Primarily, this method is well suited for out-of-hospital settings and low-income regions that 
have limited access to more advanced imaging modalities such as ultrasound, CT, and MRI. Our thermal imaging 
technique does not require prolonged training or expertise and is compatible with low-cost thermal cameras, 
such as the one used in this study (FLIR ONE). Portable thermal imaging could be used to screen suspected 
individuals for COVID-19 and/or associated pneumonia in out-of-hospital and quarantine settings, as well as 
in nursing homes, in the field and in home-hospitalization cases. Non-contact thermal imaging does not expose 

Figure 3.  The diagnostic yields of thermal imaging scores in detection of COVID-19 and lung injury. Receiver 
operating characteristic (ROC) curves are shown (top panel) for the three different clinical classifications. 
Sensitivity and specificity values were calculated for select cutoffs (bottom panel).
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patients to ionizing radiation, does not require disposable reagents, and could become a first-line diagnostic tool 
for COVID-19, thus aiding in early triage and resource allocation in low-income regions.

Current efforts to use infrared thermography in the fight against the COVID-19 pandemic have focused pri-
marily on measuring absolute body temperature and screening for individuals with fever in crowded  settings4,5. 
However, these attempts have demonstrated limited effectiveness and were not shown to have a substantive 
impact on blocking the spread of COVID-194,5. Our innovative approach to extract advanced texture and shape 
features from the thermal image could help improve these screening tools and aid in the diagnosis of other 

A SPO2

B CRP

C D-dimer

Figure 4.  Thermal imaging scores and clinical measurements. (A) Box plots with individual measurements of 
the fractal dimension (FD) (left) and sum of extrema (SX) (right). P value by one-way ANOVA with Tukey’s 
test for multiple comparisons. (B), (C) The correlation between the thermal FD and SX scores and C-reactive 
protein (CRP) (B) and D-Dimer (C) measured on the day of imaging. P value by Spearman’s correlation test.
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B
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Figure 5.  The correlation between thermal imaging and chest X-ray. (A) Box plots of RALE score according 
to COVID-19 and lung injury status. P value by Mann–Whitney test. (B) Box plots of the fractal dimension 
(FD) (left) and sum of extrema (SX) (right) thermal scores according to categorized RALE score. P value by 
Mann–Whitney test. (C) RALE scores were not correlated with thermal imaging scores. P value by Spearman’s 
correlation test. CXR chest X-ray, RALE radiographic assessment of lung edema.

Figure 6.  Graphical abstract. A schematic illustration of the research design and potential impact.
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end-organ damage associated with COVID-19, such as cardiac dysfunction and acute kidney  injury16,17. The fact 
that absolute body temperature did not differ between COVID-19 positive and negative patients in our cohort 
supports our rationale to focus on temperature distribution across organs of interest, as opposed to standard 
temperature assessment.

The physiological basis of our findings is not entirely clear. We suggest that the differences in skin temperature 
distribution across the back, as measured by our advanced texture features FD and SX, may reflect microvascular 
dysfunction caused by COVID-1918,19. The fact that both thermal features were inversely correlated with CRP and 
D-dimer concentrations supports the concept that these thermal scores reflect elevated systemic inflammation in 
infected individuals, and especially so in patients with lung injury. Microvascular dysfunction has been associ-
ated with abnormal temperature distribution across the  skin20,21. Microvascular and endothelial dysfunction are 
also characteristic of COVID-1918,19. Thus, thermal imaging might detect micro-angiopathies and endothelial 
dysfunction in COVID-19 patients and could possibly improve risk stratification of infected individuals.

Our study has several limitations. First, we used relatively small sample sizes. Thus, our results are preliminary 
and need to be validated in larger study populations. Second, the cutoffs used for our thermal scores to detect 
COVID-19 and lung injury were optimized for this specific study cohort, and need to be adjusted in future multi-
center trials with larger cohorts that are more gender- and ethnically diverse. Future large scale efforts might also 
improve the relatively low specificity levels of our thermal scores for detection of COVID-19 and lung injury. 
Furthermore, the combination of this technique with additional new machine learning-based diagnostic tools 
that were recently developed for COVID-19 detection may present an even higher diagnostic  yield1,22,23. Finally, 
data on smoking history and BMI were missing for the majority of the cohort. Smoking status and chronic lung 
injury might affect thermal imaging findings; this aspect will need to be addressed in future studies. Additional 
confounding factors that should be examined in future studies include menopausal status, pregnancy, thyroid 
hormonal status, and the effect of various anti-inflammatory medications. Thermal imaging could be a useful 
tool to monitor various treatments in COVID-19 patients. It is therefore important for future efforts to determine 
the effects of these treatments on the thermal profile of different body parts over time.

In summary, we have developed here a non-contact portable thermal imaging tool to detect COVID-19 and 
lung injury (Fig. 6). This technique could facilitate the screening of large numbers of people in order to detect 
infected individuals in real time, limit the spread of COVID-19, and aid in the allocation of resources throughout 
the healthcare system.

Methods
Study cohort. We recruited individuals with and without COVID-19 from two medical centers in Israel: the 
Sheba Medical Center, Ramat Gan, and the Tel Aviv Sourasky Medical Center, Tel Aviv. Healthy individuals were 
also recruited from the Afeka Tel Aviv College of Engineering, Tel Aviv. The study was approved by the Sheba 
Medical Center institutional review board (IRB), the Tel Aviv Sourasky Medical Center IRB, and the Afeka Tel 
Aviv College IRB, and all research was performed in accordance with relevant guidelines/regulations and the 
declaration of Helsinki. All participants and/or their legal guardians provided verbal (by audio recording) or 
written informed consent prior to their participation in the study.

The research design and patient selection process are presented in Supp Fig. 2. Briefly, we recruited individuals 
from three sources: (1) patients admitted to the emergency department (ER) (n = 37); (2) patients hospitalized at 
the department of confirmed COVID-19 cases (n = 55); and (3) healthy individuals from all three participating 
institutions (n = 14). Five patients were excluded (Supp Fig. 2).

We included men and women (aged 18-90 years) with suspected pneumonia and/or suspected COVID-19 
who had undergone a CXR or CT scan up to one week prior to the day of recruitment. To enroll a wide spectrum 
of control patients, we also recruited patients without any respiratory symptoms or suspected SARS-CoV-2 infec-
tion (Table 1). All patients were enrolled within the institution buildings and were not exposed to the sun before 
the thermal image acquisition. We excluded patients with any of the following conditions: lung malignancy, 
rheumatic disease with shoulder or back joint involvement, acute or chronic skin disease of the chest or back, 
critically ill patients with mechanical ventilation, and those unable to provide informed consent. Furthermore, 
individuals that performed physical activity up to 12 h before thermal image acquisition were not included in 
the study.

Clinical data and classification. We collected participants’ medical history and clinical evaluation, along 
with results of blood tests and CXR/CT scans. The MDClone platform was used to automatically extract multiple 
demographic and clinical variables from Electronic Health  Records24.

COVID-19 positive status was defined as presence of a positive SARS-CoV-2 qRT-PCR test during hospitali-
zation or up to 10 days prior to the patient’s visit to the ER.

We classified patients according to the presence of lung injury during the time of thermal image acquisition. 
Lung injury was defined as any clinical or radiological evidence of pneumonia or acute respiratory  distress12,25. 
Specifically, any of the following conditions were defined as lung injury: 1) any pathological findings on CXR 
up to 1 week before recruitment (including ground glass appearance, consolidation, and linear  opacities12); 2) 
hypoxemia (≤ 93%  SPO2 measured in room air on recruitment day); 3) significant respiratory symptoms on 
recruitment day (including dyspnea, respiratory rate > 20, shortness of breath, and/or severe cough). Control 
patients included individuals with no respiratory symptoms or chest abnormalities on imaging (regardless of 
COVID-19 status).

We acquired follow-up data on all hospitalized patients up to 3 months after imaging, including use of non-
invasive oxygen therapy, use of mechanical ventilation, and death.
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To compare thermal imaging scores with CXR, we manually reviewed CXRs that were acquired on the same 
day as thermal image acquisition (n = 30), and assigned RALE  scores15. The CXRs were reviewed by a certified 
radiologist who was blinded to the clinical statuses of the patients and thermal imaging scores.

Thermal imaging. We conducted a pilot study aimed to determine the feasibility of our imaging method. 
This study included 55 individuals, 7 of whom were COVID-19 positive. We used this pilot sample to develop 
and calibrate our thermal imaging acquisition process, and began to develop the processing algorithms that we 
subsequently used in our final blinded study cohort.

We captured thermal images using a FLIR ONE thermal camera device (FLIR Systems, Inc. Wilsonville, OR, 
USA)26. FLIR ONE connects directly to smartphones (both iOS- and Android-operated) and utilizes the follow-
ing functions: a frame rate frequency of 8.7 Hz, an object temperature range of -20 °C to 120 °C, and thermal 
sensitivity of 100 mK. The wavelength sensitivity over which the camera interpolates temperature is 8-14 µm, 
and the emissivity value considered appropriate for accurate human temperature readings was 0.98. The room 
temperature across the hospital is continuously monitored via centralized air conditioning systems and was kept 
stable at 22-24 °C. The measured humidity is also kept at a relatively stable range of 40-60%.

The optimal imaging procedure included images of the entire backs of the patients. The patients were asked to 
remove their top clothing and stand in an upright neutral position (hands down the sides of the body in a stand-
ard anatomical position). The angle of the image was kept constant with the camera set parallel to the patient’s 
back ("posterior view"). Three images of the entire back were captured at a distance of about 80 cm (with the 
back filling the entire frame of the image). The entire imaging procedure lasts up to 3 min (including removal of 
clothing and positioning). Representative acquired thermal images are presented in Fig. 1.

Thermal image processing. Thermal images of the final study cohort (n = 101) were analyzed by research-
ers who were blinded to the patients’ clinical statuses. We extracted shape and texture features from the thermal 
images. We first tested standard features such as mean, median, skewness, kurtosis, and entropy, but these did 
not provide sufficient discriminative results. We also tested features that are based on the co-occurrence matrix, 
for instance: contrast, homogeneity, energy, and  correlation7; these features did not yield a reliable separation 
between the different clinical classifications. Therefore, we investigated more advanced approaches and devel-
oped features that provide a reliable separation. Two main parameters were defined and selected for downstream 
analysis: one was the fractal  dimension27 (FD) of the gradient, and the other was a newly defined feature we 
called the "sum of extrema" (SX) in the image.

The algorithm starts by reading the original thermal image (in numerical format). For the FD, the temperature 
matrix is first normalized to the range [0, 1]. The image ROI is manually selected, and then a directional Sobel 
filter, which differentiates along the vertical axis, is applied to the ROI. The columns of the resultant edge image 
are then attached one after the other, thus forming a one-dimensional vector, which is treated as a signal whose 
FD we wish to compute. This FD is computed using Higuchi’s  algorithm28 with Kmax = 15.

For the SX, the temperature range in the matrix is first linearly transformed to the range [0, 1], followed by 
manual selection of the image ROI. Then, each column of the ROI is averaged and a vector of these average 
values is formed. The second derivative of this vector is computed, and its absolute values from the entire vector 
are summed. The obtained sum provides the value of the SX, which is described as:

where A(i,j) is the ROI, N is the number of rows in the ROI, and M is the number of columns in the ROI.

Statistical analyses. All continuous variables are displayed as mean (± standard deviation) for normally 
distributed variables, or median [interquartile range] for variables with nonnormal distributions. Categorical 
variables are displayed as the number (%) of individuals within each group.

Specific statistical tests are detailed in the figure legends. In brief, differences between values were tested by a 
two-tailed unpaired t-test. If values were not normally distributed, we used the non-parametric Mann–Whitney 
test. To assess associations among categorical variables, we used a Chi-square test. We used a one-way ANOVA 
with Tukey’s test for multiple comparisons to assess the significance of measurements in more than two groups. 
Outliers were identified by the ROUT method (Q = 1%).

We used a ROC curve under the non-parametric assumption to calculate the AUC for the continuous vari-
ables “FD” and “SX” to diagnose three states: 1) COVID-19 disease status; 2) presence of lung injury; and 3) the 
composite of COVID-19 status and/or lung injury. Sensitivity, specificity, and positive and negative predictive 
values were calculated for each classification. Spearman’s correlation test was used to assess the correlation 
between thermal imaging parameters and patients’ biomarkers or RALE scores.

Statistical analyses were performed with SPSS (IBM SPSS Statistics, version 25, IBM Corp., Armonk, NY, 
USA, 2016), GraphPad Prism version 8.00 (GraphPad Software, La Jolla, CA, USA), and MATLAB software 
(Mathworks Inc. Natick, MA, USA).

Data availability
The anonymized datasets generated during this study are available from the corresponding author upon reason-
able request. The raw thermal images of the patients will not be available due to patient privacy regulations.
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