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Introduction: Alzheimer’s disease is the most common dementia with clinical

and pathological heterogeneity. Cuproptosis is a recently reported form of

cell death, which appears to result in the progression of various diseases.

Therefore, our study aimed to explore cuproptosis-related molecular clusters

in Alzheimer’s disease and construct a prediction model.

Methods: Based on the GSE33000 dataset, we analyzed the expression profiles

of cuproptosis regulators and immune characteristics in Alzheimer’s disease.

Using 310 Alzheimer’s disease samples, we explored the molecular clusters

based on cuproptosis-related genes, along with the related immune cell

infiltration. Cluster-specific di�erentially expressed genes were identified using

the WGCNA algorithm. Subsequently, the optimal machine model was chosen

by comparing the performance of the random forest model, support vector

machine model, generalized linear model, and eXtreme Gradient Boosting.

Nomogram, calibration curve, decision curve analysis, and three external

datasets were applied for validating the predictive e�ciency.

Results: The dysregulated cuproptosis-related genes and activated immune

responses were determined between Alzheimer’s disease and non-Alzheimer’s

disease controls. Two cuproptosis-related molecular clusters were defined

in Alzheimer’s disease. Analysis of immune infiltration suggested the

significant heterogeneity of immunity between distinct clusters. Cluster2

was characterized by elevated immune scores and relatively higher levels

of immune infiltration. Functional analysis showed that cluster-specific

di�erentially expressed genes in Cluster2 were closely related to various

immune responses. The Random forest machine model presented the best

discriminative performancewith relatively lower residual and rootmean square

error, and a higher area under the curve (AUC = 0.9829). A final 5-gene-based

random forest model was constructed, exhibiting satisfactory performance in

two external validation datasets (AUC = 0.8529 and 0.8333). The nomogram,

calibration curve, and decision curve analysis also demonstrated the accuracy

to predict Alzheimer’s disease subtypes. Further analysis revealed that these

five model-related genes were significantly associated with the Aβ-42 levels

and β-secretase activity.
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Conclusion: Our study systematically illustrated the complicated relationship

between cuproptosis and Alzheimer’s disease, and developed a promising

prediction model to evaluate the risk of cuproptosis subtypes and the

pathological outcome of Alzheimer’s disease patients.

KEYWORDS

Alzheimer’s disease, cuproptosis, molecular clusters, immune infiltration, machine

learning, prediction model

Introduction

Alzheimer’s disease (AD) is the most common form

of age-related neurodegenerative disease. It is reported that

approximately more than 42.3 million people worldwide

suffer from progressive cognitive impairment caused by AD

(Ambrogio et al., 2019), and data from epidemiological analyses

suggest that the number of people with AD will be more than

twice the current number in 2060 (Matthews et al., 2019). As

the disease progresses, AD patients may experience varying

degrees of cognitive and memory insult, such as language,

visuospatial, motor, and executive function deficits (McKhann

et al., 2011). The increasing number of AD patients, therefore,

places a huge burden on families and society. Unfortunately,

due to the clinical heterogeneity of AD and the complexity of

pathological types, satisfactory treatment for AD was lacking

and no effective strategy was proven to prevent the occurrence

of AD (Nandigam, 2008; Rahimi and Kovacs, 2014). Recently,

a growing number of biomarkers are associated with AD, yet a

single dataset or relatively small sample sizes may make these

results unconvincing (Zheng et al., 2018; Liu et al., 2022). In

addition, the efficacy of biomarker-based univariate prediction

models has also been challenged (Jack et al., 2014). Therefore,

further accurate identification of molecular subtypes of AD at

the molecular level and establishing a multivariate predictive

model would be of great clinical importance.

As cofactors for enzymes, the maintenance of copper ions

(Cu2+), copper homeostasis, mainly depends on the regulation

of mitochondria (Baker et al., 2017). Copper exists mainly in the

form of cytochrome C oxidase (COX) and superoxide dismutase

(SOD1) in mitochondria, thus acting as a vital regulator in the

tricarboxylic acid cycle (TCA) and eventually playing a critical

role in various biological processes including redox balance,

iron utilization, oxidative phosphorylation, and cell growth

(Soto et al., 2012; Dennerlein and Rehling, 2015). However,

dysregulation of copper homeostasis has been proven to be

associated with neurodegenerative diseases (Gromadzka et al.,

2020). Cuproptosis is a recently discovered novel form of cell

death that differs from other oxidative stress-regulated deaths

such as pyroptosis, ferroptosis, and necroptosis. It is reported

that mitochondrial stress characterized by over-accumulation

of lipoylated mitochondrial enzymes and the depletion of

Fe-S cluster proteins are the primary mechanisms causing

cuproptosis (Oliveri, 2022; Wang et al., 2022b). Cu2+ entering

the cell can be reduced to Cu+ by FDX1, which in turn promotes

lipid acylation of mitochondrial proteins and overproduction

of key enzymes associated with the mitochondrial tricarboxylic

acid (TCA) cycle (DBT, GCSH, DLST, and DLAT). In addition,

the instability of Fe-S cluster proteins is also closely related

to FDX1. Moreover, critical genes implicated in the Cu2+

transport, such as SLC31A1 and ATP7B, may play a vital role

in regulating the occurrence of cuproptosis. Furthermore, it

was found that the inhibition of mitochondrial pyruvate carrier

and electron transport chain activity could alleviate the damage

caused by cuproptosis (Cobine and Brady, 2022; Tang et al.,

2022; Tsvetkov et al., 2022). In addition, an increasing number

of studies demonstrate that mitochondria dysfunction-induced

deficiency of energy metabolism and oxidative stress may be

the critical pathogenesis involved in AD progression (Chen and

Zhong, 2014; Murphy and Hartley, 2018; Tang et al., 2019).

Therefore, it would be reasonable to infer that cuproptosis is

closely associated with the development of AD. However, the

potential regulatory mechanisms of cuproptosis in AD remain

unknown and require further exploration. Therefore, further

illustrating the molecular characteristics of cuproptosis-related

genes (CRGs) may be able to explain the cause of heterogeneity

in AD.

In the present study, we systematically examined the

differentially expressed CRGs and immune characteristics

for the first time between normal and AD individuals.

Based on the 13 CRGs expression landscapes, we classified

310 AD patients into two cuproptosis-related clusters, and

immune cell differences between the two clusters were further

evaluated. Subsequently, cluster-specific DEGs were identified

using the WGCNA algorithm, and the enriched biological

functions and pathways were elucidated based on cluster-

specific DEGs. In addition, a prediction model for disclosing

patients with different molecular clusters was established

by comparing multiple machine learning algorithms. The

nomogram, calibration curve, decision curve analysis (DCA),

and two external datasets were used to validate the performance

of the predictive model. Finally, we further investigated

the correlation between model-related genes with β-secretase

activity and Aβ-42 levels in another external AD cohort, thus

providing novel insights into the prediction of AD clusters

and risk.
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Materials

Data acquisition and pre-processing

Four microarray datasets (GSE33000, GSE5281, GSE122063,

and GSE106241) related to AD were obtained from the GEO

website database (GEO, www.ncbi.nlm.nih.gov/geo) using the

“GEOquery” R package (version 2.60) (Davis and Meltzer,

2007). The GSE33000 dataset (GPL4372 platform) including

157 healthy (age: 22 to 106 years) and 310 AD (age: 53 to 100

years) cortex tissue samples were selected for further analysis.

The GSE5281 dataset (GPL570 platform), which included brain

tissues from 74 normal (age: 68 to 97 years) subjects and 87

AD (age: 63 to 102 years) samples; the GSE122063 dataset

(GPL16699 platform), which included cortex tissues from 44

normal (age: 60 to 91 years) samples and 56 AD (age: 63–

91 years) samples, and the GSE106241 dataset (GPL24170

platform), which included cortex tissues from 40 AD (age: 50–

100 years) samples, were selected for validation analysis. The raw

gene expression profiles of these GEO datasets were processed

and normalized using the Robust Multiarray Average (RMA)

method (“affy” R package, version 1.70.0).

Evaluating the immune cell infiltration

The CIBERSORT algorithm (https:/cibersort.stanford.edu/)

and LM22 signature matrix were applied for estimating the

relative abundances of 22 types of immune cells in each sample

based on the proceeded gene expression data. CIBERSORT uses

Monte Carlo sampling to obtain an inverse fold product p-

value for each sample. Only samples with p-values <0.05 were

considered to be accurate immune cell fractions. The sum of the

22 immune cells proportions in each sample was 1 (Newman

et al., 2015).

Correlation analysis between CRGs and
infiltrated immune cells

To further demonstrate the association between CRGs

and AD-related immune cell properties, we analyzed the

correlation coefficients between the CRGs expression and the

relative percentage of immune cells. According to the spearman

correlation coefficient, p-values below 0.05 represented a

significant correlation. Finally, the results were exhibited using

the “corrplot” R package (version 0.92).

Unsupervised clustering of AD patients

Initially, a total of 13 CRGs were obtained according to the

previous report by Tsvetkov et al. (2022). Based on 13 CRGs

expression profiles, we applied the unsupervised clustering

analysis (“ConsensusClusterPlus” R package, version 2.60)

(Wilkerson and Hayes, 2010) classifying the 310 AD samples

into different clusters by using the k-means algorithm with

1,000 iterations. We chose a maximum subtype number k (k

= 6) and the optimal cluster number was comprehensively

evaluated based on the cumulative distribution function

(CDF) curve, consensus matrix, and consistent cluster

score (>0.9).

Gene set variation analysis (GSVA)
analysis

GSVA enrichment analysis was conducted to elucidate

the differences in enriched gene sets between different CRGs

clusters using the R package of “GSVA” (version 2.11). The

“c2.cp.kegg.v7.4.symbols” and “c5.go.bp.v7.5.1.symbols” files

were obtained from the MSigDB website database for further

GSVA analysis. The “limma” R package (version 3.52.1)

was utilized to identify the differentially expressed pathways

and biological functions by comparing GSVA scores between

different CRGs clusters. The |t value of GSVA score| more than

2 was considered as significantly altered.

Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed to identify co-expression modules

using the R package of “WGCNA” (version 1,70.3) (Langfelder

and Horvath, 2008). The top 25% of genes with the highest

variance were applied for subsequent WGCNA analyses to

guarantee the accuracy of quality results. We selected an

optimal soft power to construct a weighted adjacency matrix

and further transformed it into a topological overlap matrix

(TOM). Modules were obtained using the TOM dissimilarity

measure (1-TOM) based on the hierarchical clustering tree

algorithm when the minimum module size was set to 100.

Each module was assigned a random color. Module eigengene

represented the global gene expression profiles in each module.

The relationship between modules and disease status was

exhibited by the modular significance (MS). Gene significance

(GS) was described as the correlation between a gene with

clinical phenotype.

Construction of predictive model based
on multiple machine learning methods

Based on two different CRGs clusters, we applied the “caret”

R packages (version 6.0.91) for establishing machine learning
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models including random forest model (RF), support vector

machine model (SVM), generalized linear model (GLM), and

eXtreme Gradient Boosting (XGB). RF is an ensemble machine

learning approach utilizing various independent decision trees

for the prediction of classification or regression (Rigatti, 2017).

SVM algorithm enables to generate a hyperplane in the

characteristic space with a maximum margin to distinguish

between positive and negative instances (Gold and Sollich,

2003). GLM, an extension of multiple linear regression models,

could flexibly evaluate the relationship between normally

distributed dependent features and categorical or continuous

independent features (Nelder and Wedderburn, 1972). XGB

is an ensemble of boosted trees based on gradient boosting,

which can make a careful comparison between classification

error and model complexity (Chen et al., 2015). The distinct

clusters were considered as the response variable, and the

cluster-specific DEGs were selected as explanatory variables. The

310 AD samples were randomly classified into a training set

(70%, N = 217) and a validation set (30%, N = 93). The caret

package automatically tuned the parameters in these models

by grid search, and all of these machine learning models were

performed with default parameters and assessed via 5-fold cross-

validation. The “DALEX” package (version 2.4.0) was carried out

to interpret the aforementioned four machine learning models

and visualize the residual distribution and feature importance

among these machine learning models. The “pROC” R package

(version 1.18.0) was performed to visualize the area under

ROC curves. Consequently, the optimal machine learningmodel

was determined and the top five important variables were

considered as the key predictive genes associated with AD.

Finally, The ROC curves analysis were performed in GSE5281

and GSE122063 datasets to verify the diagnostic value of the

diagnostic model.

Construction and validation of a
nomogram model

A nomogram model was established to evaluate the

occurrence of AD clusters using the “rms” R package

(version 6.2.0). Each predictor has a corresponding score,

and the “total score” represents the sum of the scores

of the above predictors. The calibration curve and DCA

were utilized to estimate the predictive power of the

nomogram model.

Independent validation analysis

Two external brain tissue datasets, GSE5281 and

GSE122063, were applied for validating the ability of the

prediction model to distinguish AD from non-AD controls

by using the ROC analyses. ROC curves were visualized

using the “pROC” R package. In addition, we performed

the spearman correlation analysis to explore the associations

between prediction model-related genes with Aβ-42 levels and

β-secretase activity. A value of p < 0.05 was considered as

statistically significant.

Results

Dysregulation of cuproptosis regulators
and activation of the immune responses
in AD patients

To clarify the biological functions of cuproptosis regulators

in the occurrence and progression of AD, we first systematically

evaluated the expression profiles of 13 CRGs between AD

and non-AD controls using the GSE33000 dataset. A detailed

flow chart of the study process was exhibited in Figure 1.

A total of 12 CRGs were determined as the differentially

expressed cuproptosis genes. Among them, the expression levels

of CDKN2A, SLC31A1, ATP7B, LIPT1, and MTF1 were higher,

whereas FDX1, GLS, PDHA1, DLD, DLAT, PDHB, and LIAS

gene expression levels were largely lower in AD cortex tissues

than that in non-AD controls (Figures 2A–C). Subsequently, we

performed the correlation analysis between these differentially

expressed CRGs to explore whether cuproptosis regulators

functioned essentially in the progression of AD. Surprisingly,

some cuproptosis modulators, such as PDHB and DLAT,

presented a strong synergistic effect (coefficient = 0.83).

Simultaneously, CDKN2A and DLAT exhibited an apparent

antagonistic action (coefficient = 0.54). In addition, we

further investigated the correlation patterns of these CRGs

and found both DLAT and DLD were significantly correlated

with other regulators (Figure 2D). The gene relationship

network diagram further demonstrated the closeness of

the relationship among these differentially expressed CRGs

(Figure 2E).

To elucidate whether there is variation in the immune

system between the AD and non-AD controls, immune

infiltration analysis was performed to show a difference in the

proportions of 22 infiltrated immune cell types between AD and

non-AD control subjects based on the CIBERSORT algorithm

(Figure 2F). The results revealed that AD patients presented

higher infiltration levels of naïve B cells, resting memory CD4+

T cells, gamma delta T cells, resting NK cells, Monocytes,

M1 macrophages, M2 macrophages, activated dendritic cells,

and neutrophils (Figure 2G), suggesting that the alternations in

the immune system may be a major cause for the occurrence

of AD. Meanwhile, correlation analysis results indicated that

both resting NK cells and CD8+ T cells were correlated with

cuproptosis modulators (Figure 2H). These results suggested
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FIGURE 1

The study flow chart.

that CRGs may be the critical factors involved in regulating the

molecular and immune infiltration status of AD patients.

Identification of cuproptosis clusters
in AD

To elucidate the cuproptosis-related expression patterns in

ASD, we grouped the 310 AD samples based on the expression

profiles of 13 CRGs using a consensus clustering algorithm. The

cluster numbers were most stable when the k value was set to

two (k = 2), and the CDF curves fluctuated within a minimum

range at a consensus index of 0.2 to 0.6 (Figures 3A,B). When

k = 2 to 6, the area under the CDF curves exhibited the

difference between the two CDF curves (k and k-1) (Figure 3C).

Furthermore, the consistency score of each subtype was >0.9

only when k= 2 (Figure 3D). Conjoined with the heatmap of the

consensus matrix, we finally grouped 310 AD patients into two

clusters, including Cluster1 (n = 112) and Cluster2 (n = 198)

(Figure 3E). The results of the t-Distributed Stochastic Neighbor

Embedding (tSNE) analysis demonstrated that there was a

significant difference between these two clusters (Figure 3F).

Di�erentiation of cuproptosis regulators
and immune infiltration characteristics
between cuproptosis clusters

To explore themolecular characteristics between clusters, we

first comprehensively assessed the expression differences of 13

CRGs between Cluster1 and Cluster2. Distinct CRGs expression

landscapes were observed between the two cuproptosis patterns
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FIGURE 2

Identification of dysregulated CRGs in AD. (A) The expression patterns of 13 CRGs were presented in the heatmap. (B) Boxplots showed the

expression of 13 CRGs between AD and non-AD controls. ****p < 0.0001, ns, no significance. (C) The location of 13 CRGs on chromosomes. (D)

Correlation analysis of 12 di�erentially expressed CRGs. Blue and Red colors represent positive and negative correlations, respectively. The

correlation coe�cients were marked with the area of the pie chart. (E) Gene relationship network diagram of 12 di�erentially expressed CRGs.

(F) The relative abundances of 22 infiltrated immune cells between AD and non-AD controls. (G) Boxplots showed the di�erences in immune

infiltrating between AD and non-AD controls. *p < 0.05, ***p < 0.001, ****p < 0.0001, ns, no significance. (H) correlation analysis between 12

di�erentially expressed CRGs and infiltrated immune cells.

(Figure 4A). Cuproptosis Cluster1 revealed high expression

levels of FDX1, DLD, DLAT, PDHA1, PDHB, and GLS,

while cuproptosis Cluster2 was characterized by enhanced

expressions of LIPT1, MTF1, CDKN2A, and SLC31A1

(Figure 4B). Moreover, the results of immune infiltration

analysis showed that an altered immune microenvironment

was presented between cuproptosis Cluster1 and Cluster2

(Figure 4C). Cluster1 exhibited higher proportions of CD8+

T cells, follicular helper T cells, activated NK cells, resting

dendritic cells, and eosinophils, whereas the abundance of naïve

B cells, Plasma cells, naïve CD4+ T cells, resting memory CD4+

T cells, resting NK cells, Monocytes, M0 macrophages, and M1

macrophages were relatively greater in Cluster2 (Figure 4D).

Consistently, Cluster2 also presented elevated immune scores

(Figure 4E), which revealed that cuproptosis Cluster2 might

possess a more dominant level of immune infiltration.
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FIGURE 3

Identification of cuproptosis-related molecular clusters in AD. (A) Consensus clustering matrix when k = 2. (B–E) Representative cumulative

distribution function (CDF) curves (B), CDF delta area curves (C), the score of consensus clustering (D), and heatmap of non-negative matrix (E).

(F) t-SNE visualizes the distribution of two subtypes.

Gene modules screening and
co-expression network construction

To identify the key gene modules associated with AD, we

utilized the WGCNA algorithm to establish a co-expression

network and modules for the normal and AD subjects. We

calculated the variance of each gene expression in GSE33000

and then selected the top 25% genes with the highest variance

to further analysis. Co-expressed gene modules were identified

when the value of soft power was set to 9 and the scale-free

R2 was equal to 0.9 (Figure 5A). A total of 10 distinct

co-expression modules with different colors were acquired

using the dynamic cutting algorithm and the heatmap of

the topological overlap matrix (TOM) was also presented

(Figures 5B–D). Subsequently, these genes in the 10 color

modules were continuously applied for analyzing the similarity

and adjacency of module-clinical features (Control and AD)

co-expression. Finally, the turquoise module exhibited the

strongest relationship with AD, which included 1,609 genes

(Figure 5E). Moreover, we observed a positive association
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FIGURE 4

Identification of molecular and immune characteristics between the two cuproptosis clusters. (A) Clinical features and expression patterns of 13

CRGs between two cuproptosis clusters were presented in the heatmap. (B) Boxplots showed the expression of 13 CRGs between two

cuproptosis clusters. ***p < 0.001, ****p < 0.0001, ns, no significance. (C) the relative abundances of 22 infiltrated immune cells between two

cuproptosis clusters. (D) Boxplots showed the di�erences in immune infiltrating between two cuproptosis clusters. *p < 0.05, **p < 0.01 ***p <

0.001, ****p < 0.0001, ns, no significance. (E) Boxplots showed the estimated immune score between the two cuproptosis subtypes.

between the turquoise module and module-related genes

(Figure 5F).

In addition, we also analyzed the critical gene modules

closely related to cuproptosis clusters using the WGCNA

algorithm. We screened β = 7 and R2 = 0.9 as the most

suitable soft threshold parameters to construct a scale-free

network (Figure 6A). Specifically, 11 modules containing 4,422

genes were determined as significant modules and the heatmap

portrayed the TOM of all module-related genes (Figures 6B–D).

Module-clinical features (Cluster1 and Cluster2) relationship
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FIGURE 5

Co-expression network of di�erentially expressed genes in AD. (A) The selection of soft threshold power. (B) Cluster tree dendrogram of

co-expression modules. Di�erent colors represent distinct co-expression modules. (C) Representative of clustering of module eigengenes. (D)

Representative heatmap of the correlations among 10 modules. (E) Correlation analysis between module eigengenes and clinical status. Each

row represents a module; each column represents a clinical status. (F) Scatter plot between module membership in turquoise module and the

gene significance for AD.

analysis demonstrated the high correlation between the

turquoise module (1,115 genes) and AD clusters (Figure 6E).

The correlation analysis suggested that turquoise module

genes had a significant relationship with the selected module

(Figure 6F).

Identification of cluster-specific DEGs
and functional annotation

A total of 909 cluster-specific DEGs were identified by

analyzing the intersections between module-related genes of
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FIGURE 6

Co-expression network of di�erentially expressed genes between the two cuproptosis clusters. (A) The selection of soft threshold power. (B)

Cluster tree dendrogram of co-expression modules. Di�erent colors represent distinct co-expression modules. (C) Representative of clustering

of module eigengenes. (D) Representative heatmap of the correlations among 11 modules. (E) Correlation analysis between module eigengenes

and clinical status. Each row represents a module; each column represents a clinical status. (F) Scatter plot between module membership in

turquoise module and the gene significance for Cluster1.

cuproptosis clusters and module-related genes of AD and non-

AD individuals (Figure 7A). The GSVA analysis was utilized

to further explore the functional differences associated with

cluster-specific DEGs between the two clusters. The results

indicated that oxidative phosphorylation, RNA degradation,

long-time potentiation, and metabolism signaling activity

were reinforced in Cluster1, while the TCA cycle, immune

responses, cytokine receptor, TGF-β, and Notch signaling
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FIGURE 7

Identification of cluster-specific DEGs and biological characteristics between two cuproptosis clusters. (A) The intersections between

module-related genes of cuproptosis clusters and module-related genes in the GSE33000 dataset. (B) Di�erences in hallmark pathway activities

between Cluster1 and Cluster2 samples ranked by t-value of GSVA method. (C) Di�erences in biological functions between Cluster1 and

Cluster2 samples ranked by t-value of GSVA method.

activity were upregulated in Cluster2 (Figure 7B). Otherwise,

functional enrichment results revealed that Cluster1 was

remarkably related to the regulation of synapse and axon

outgrowth, the development of the dendritic spine development,

and mitochondrial localization. However, immune-related

pathways, such as T-cell activation, B-cell differentiation,

and beta-interferon production, were enriched in Cluster2

(Figure 7C). Thus, we hypothesized that Cluster2 may be

involved in various immune responses.

Construction and assessment of machine
learning models

To further identify subtype-specific genes with high

diagnostic value, we established four proven machine learning

models [random forest model (RF), support vector machine

model (SVM), generalized linear model (GLM), and eXtreme

Gradient Boosting (XGB)] based on the expression profiles

of 909 cluster-specific DEGs in the AD training cohort. The

“DALEX” package was applied for explaining the four models

and plotting the residual distribution of each model in the

test set. RF and GLM machine learning models presented a

relatively lower residual (Figures 8A,B). Subsequently, the top

15 important feature variables of each model were ranked

according to the root mean square error (RMSE) (Figure 8C).

Moreover, we evaluated the discriminative performance of the

fourmachine learning algorithms in the testing set by calculating

receiver operating characteristic (ROC) curves based on 5-fold

cross-validation. The RF machine learning model displayed the

highest area under the ROC curve (AUC) (GLM, AUC= 0.9743;

SVM, AUC = 0.9587; RF, AUC =0.9829; XGB, AUC = 0.9446,

Figure 8D). Overall, combined with these results, the RF model

was demonstrated to best distinguish patients with different

clusters. Finally, the top five most important variables (MYT1L,

PDE4D, SNAP91, NPTN, and KCNC2) from the RF model were

selected as predictor genes for further analysis.

To further assess the predictive efficiency of the RF model,

we first constructed a nomogram to estimate the risk of

cuproptosis clusters in 310 AD patients (Figure 9A). The
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FIGURE 8

Construction and evaluation of RF, SVM, GLM, and XGB machine models. (A) Cumulative residual distribution of each machine learning model.

(B) Boxplots showed the residuals of each machine learning model. Red dot represented the root mean square of residuals (RMSE). (C) The

important features in RF, SVM, GLM, and XGB machine models. (D) ROC analysis of four machine learning models based on 5-fold

cross-validation in the testing cohort.

calibration curve and decision curve analysis (DCA) were

applied for assessing the predictive efficiency of the nomogram

model. According to the calibration curve, the error between

the actual AD clusters risk and the predicted risk was very

small (Figure 9B), and the DCA indicates that our nomogram

has a high accuracy, which may provide a basis for clinical

decision-making (Figure 9C). Subsequently, we validated our

5-gene prediction model on two external brain tissue datasets

including normal subjects and AD patients. ROC curves

showed satisfactory performance of the 5-gene prediction model

with an AUC value of 0.8529 in the GSE5281 dataset and

0.8333 in the GSE122063 dataset (Figures 9D,E), indicating our

diagnosis model is equally efficacious in distinguishing AD from

normal individuals.

Furthermore, we enrolled another external dataset

(GSE106241) to validate the correlation between the predictor

genes and biomarkers of AD that have been widely reported

(Aβ-42 levels and β-secretase activity). We found that MYT1L,

PED4D, SNAP91, and KCNC2 were negatively correlated

with Aβ-42 levels (MYT1L, R = −0.27; PED4D, R = −0.31;

SNAP91, R = −0.27; KCNC2, R = −0.31) and β-secretase

activity (MYT1L, R=−0.52; PED4D, R=−0.58; SNAP91, R=

−0.59; KCNC2, R = −0.57), while NPTN was only negatively

associated with β-secretase activity (R = −0.29, Figures 10A–J).
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FIGURE 9

Validation of the 5-gene-based RF model. (A) Construction of a nomogram for predicting the risk of AD clusters based on the 5-gene-based RF

model. (B,C) Construction of calibration curve (B) and DCA (C) for assessing the predictive e�ciency of the nomogram model. (D,E) ROC

analysis of the 5-gene-based RF model based on 5-fold cross-validation in GSE5281 (D) and GSE122063 (E) datasets.

FIGURE 10

Validation of correlation analysis based on GSE106241 dataset. (A-E) Correlation between MYT1L (A), PDE4D (B), SNAP91 (C), NPTN (D), KCNC2

(E), and Aβ-42 levels. (F–J) Correlation between MYT1L (F), PDE4D (G), SNAP91 (H), NPTN (I), KCNC2 (J), and β-secretase activity.

This result has proven the outstanding pathological diagnostic

value of the 5-gene prediction model.

Discussion

Due to the heterogeneity of AD pathology, the current

treatment for AD lacks adequate efficacy (Lam et al., 2013;

Byun et al., 2015). In the past decades, increasing advances have

been made in anti-neurodegenerative therapy for AD, whereas

the conventional classification based on histology allows for

frequent drug resistance (Nandigam, 2008). Therefore, the

identification of more appropriate molecular clusters is essential

to guide the individualized treatment of AD. Cuproptosis, a

recently reported form of copper-dependent cell death mainly

evidenced by the aggregation of lipoylated mitochondrial
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enzymes, has been strongly implicated in the progression of the

disease (Tang et al., 2022; Tsvetkov et al., 2022). However, the

specific mechanisms of cuproptosis and its regulatory roles in

various diseases have not been further investigated. Therefore,

we attempted to elucidate the specific role of cuproptosis-related

genes in AD phenotyping and the immune microenvironment.

Additionally, gene signatures related to cuproptosis were utilized

to predict the AD subtypes.

In this study, we comprehensively analyzed the expression

profiles of cuproptosis regulators for the first time in brain

tissues between normal subjects and AD patients. The

dysregulated CRGs were found in AD patients more than

those in normal individuals, suggesting a critical role of CRGs

in the occurrence of AD. Subsequently, we calculated the

correlation among CRGs to clarify the association between

cuproptosis regulators and AD. We discovered that some

cuproptosis modulators presented significant synergistic or

antagonistic effects, which are evidenced by the existence of

CRG interactions in AD patients. The abundance of immune

cells were altered between control subjects and patients with

AD. AD patients exhibited higher infiltration levels of B

cells, T cells, neutrophils, resting NK cells, and macrophages,

which were consensus with the previous studies verified in

blood or brain tissues (Dey and Hankey Giblin, 2018; Dai

and Shen, 2021; Paranjpe et al., 2021; Wang et al., 2022a).

Further, we utilized unsupervised cluster analysis to illustrate

the different cuproptosis regulation patterns in AD patients

based on the expression landscapes of CRGs, and two distinct

cuproptosis-related clusters were identified. Cluster2 exhibited

elevated immune scores and relatively higher levels of immune

infiltration. Cluster-specific DEGs indicated that Cluster1 was

primarily enriched in mitochondrial localization, nerve growth,

and development-related biological processes, while Cluster2

was characterized by immune cell activation and differentiation.

It was reported that TGF-β signaling and Notch signaling were

essential for the activation and differentiation of B cells and T

cells (Cortez et al., 2016; Tsukumo and Yasutomo, 2018; Garis

and Garrett-Sinha, 2020). Consistently, Cluster2 had a stronger

activity of TGF-β signaling and Notch signaling. Taken together,

it would be reasonable to believe that Cluster2 may possess more

activated B cells and T cells to counteract the progression of AD

and therefore showed a better prognosis.

In recent years, machine learning models based on

demographic and imaging metrics have been increasingly

applied for the prediction of AD prevalence (Falahati et al.,

2014), and these studies confirm that multifactorial analyses

have taken into account the relationships between variables, thus

having a lower error rate and more reliable results compared

to univariate analysis. In our current study, we compared

the predictive performance of four selected machine learning

classifiers (RF, SVM, GLM, and XGB) based on the expression

profiles of cluster-specific DEGs and established an RF-based

prediction model, which presented the highest predictive

efficacy in the testing cohort (AUC = 0.9829), suggesting

the RF-based machine learning has satisfactory performance

in predicting the subtypes of AD. Subsequently, we selected

five important variables (MYT1L, PDE4D, SNAP91, NPTN,

and KCNC2) to construct a 5-gene-based RF model. MYT1L

is a gene expressed exclusively in neurons that reprograms

embryonic and infant fibroblasts into functional neurons and

therefore acts as the critical regulator in the development of the

nervous system, suggesting that MYT1L might be a potential

treatment strategy for AD patients (Li et al., 2012). PDE4D

is a member of the cAMP phosphodiesterase superfamily and

is mainly involved in the regulation of cAMP activity. The

role of PDE4D in AD is still controversial. It is reported that

PDE4D inhibitors can improve cognitive function in the elderly

and have mild gastrointestinal side effects, suggesting that

PDE4D may be an effective therapeutic target for age-related

neurodegenerative diseases (Bruno et al., 2011). However,

another study demonstrated that the expression levels of PDE4D

protein are negatively correlated with age and phosphorylated

tau and positively correlated with the performance on frontal

association cortex-related working memory tasks. Inhibition

of PDE4D would make the frontal association cortex more

vulnerable to degeneration (Leslie et al., 2020). Bioinformatics

analysis indicated that SNAP91 could serve as a primary

biomarker for Parkinson’s disease and AD (Yemni et al., 2019;

Hu et al., 2020). As a housekeeper of neuroplasticity, NPTN is

closely associated with the regulation of synaptic plasticity, thus

playing an important role in facilitating learning and memory.

Studies have found that elevated KCNC2 might be implicated

in the maturation of neuronal electrical activity during

nervous system development, and a decrease in KCNC2 may

aggravate the impairment of cognitive function in AD patients

(Boda et al., 2012).

The 5-gene-based RF model can accurately predict AD in

two external validation datasets (AUC = 0.8529 and 0.8333),

which provides new insights into the diagnosis of AD. More

importantly, we then constructed a nomogram model for

the diagnosis of AD subtypes by using the MYT1L, PDE4D,

SNAP91, NPTN, and KCNC2. We found this model exhibited

remarkable predictive efficacy, indicating the value of this

prediction model for clinical applications. Additionally, an

increasing number of studies have confirmed that Aβ-42

levels and β-secretase activity are key pathological mechanisms

contributing to the progression and poor prognosis of AD

(Hampel et al., 2021; Cho et al., 2022). Therefore, we performed

the correlation analysis between these five predictor genes with

Aβ-42 levels and β-secretase activity in 60 AD samples from

another external dataset. The results suggested that NPTN was

negatively associated with β-secretase activity, while the other

four predictor genes were negatively correlated with Aβ-42 levels

and β-secretase activity. Taken together, the 5-gene-based RF

model is a satisfactory indicator to assess AD subtypes and the

pathological outcome of AD patients.
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Some limitations need to be emphasized in this study.

First, our current study was performed based on comprehensive

bioinformatics analysis, and additional clinical or experimental

assessment would be necessary to validate the expression levels

of CRGs. Furthermore, more detailed clinical characteristics

are required to confirm the performance of the prediction

model. In addition, a greater number of AD samples are

needed to clarify the accuracy of cuproptosis-related clusters

and the potential correlation between CRGs and immune

responses requires further exploration. Furthermore, though

we applied an external dataset for additional validation, more

experiments are necessary to prove the association between

feature genes and Aβ-42 levels and β-secretase activity in

AD pathology.

Conclusion

In total, our study disclosed the correlation between CRGs

and infiltrated immune cells and elucidated the significant

heterogeneity of immune between AD patients with distinct

cuproptosis clusters. A 5-gene-based RF model was selected as

the optimal machine learningmodel, which can accurately assess

AD subtypes and the pathological outcome of AD patients. Our

study identifies for the first time the role of cuproptosis in AD

and further elucidates the underlying molecular mechanisms

leading to AD heterogeneity.
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