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Abstract

Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated 

with resistance to cisplatin-based chemotherapy. Enhancer of Zeste Homolog 2 (EZH2) is the 

catalytic subunit of Polycomb Repressive Complex 2 (PRC2), which silences transcription through 

trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic 

target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we 

show that EZH2 has a non-catalytic and PRC2 independent role in stabilizing DDB2 to promote 

nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic 

lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including 

EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner 
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with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by 

impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating 

DDB2 localization to cyclobutane pyrimidine dimer (CPD) crosslinks to govern their repair. 

Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors 

to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in 

promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its 

catalytic activity for overcoming cisplatin resistance in SCLC.
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INTRODUCTION

SCLC is a highly aggressive malignancy with a 5-year survival rate of only 7 percent [1]. 

The first-line treatment regimen for SCLC consists of platinum-based EP chemotherapy: 

cisplatin or carboplatin, DNA crosslinking agents, in combination with etoposide, a 

topoisomerase II inhibitor. While most SCLC patients will initially respond to EP treatment, 

the majority will ultimately develop treatment resistance [2]. Response rates for second-line 

topoisomerase I inhibitors for SCLC are much lower [3], and SCLC currently lacks any 

FDA-approved targeted therapies. Therefore, novel therapeutic approaches for SCLC 

treatment are urgently needed.

The DNA damage response (DDR) is critical for responding to DNA damage induced by 

chemotherapy. Cisplatin primarily induces cytotoxicity by creating 1,2-intrastrand d(GpG) 

adducts. The major mechanism for repair of these DNA intrastand crosslinks is nucleotide 

excision repair (NER), which is also involved in the repair of other helix-distorting DNA 

lesions, including UV-induced CPD and 6–4 pyrimidine-pyrimidone photoproducts (6–4PP) 

[4]. The Damage Specific DNA Binding Protein 1 and 2 (DDB1-DDB2) heterodimer is a 

component of the CUL4-RING E3 ubiquitin ligase complex (CRL4), which promotes the 

repair of NER lesions through the global genome branch of the NER pathway. DDB2 

recognizes DNA lesions [5] and recruits downstream NER factors to repair the lesion [6]. 

Upon lesion detection, DDB2 is ubiquitinated and targeted for degradation by CRL4 [6-8], 

although the mechanism by which DDB2 ubiquitination is regulated is not fully understood.

EZH2 is the catalytic subunit of the PRC2, which functions together with Embryonic 

Ectoderm Development (EED) and Suppressor of Zeste 12 (SUZ12) as a histone 

methyltransferase to silence areas of active transcription through H3K27me3. EZH2 is an 

oncogene that is overexpressed in many cancer types, including SCLC [9-11], and high 

EZH2 expression is correlated with tumorigenesis, cancer progression, metastasis, and poor 

prognoses [10, 12-19]. As such, EZH2 has emerged as an important therapeutic target. 

Several EZH2 inhibitors targeting its methyltransferase activity have been developed [20-25] 

and are currently undergoing clinical trial testing. However, it is unclear if inhibiting EZH2’s 

catalytic activity is sufficient to impair its activities governing cancer cell survival, as non-
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catalytic and PRC2-independent roles for EZH2, largely involving transcriptional regulation 

independent of H3K27me3, have also been reported [26-32]. EZH2 has also been shown to 

directly methylate non-histone proteins to promote their degradation [29, 33].

A role for EZH2 in genome maintenance has previously been described. EZH2 has been 

reported to mediate resistance to DNA damaging agents, including etoposide in SCLC 

[34-37] and cisplatin in several other cancer cell types [9, 38-41], localize to DNA damage 

sites [42, 43], and promote DNA double-strand break (DSB) repair [42, 44], degradation of 

stalled replication forks [45], and checkpoint signaling [46]; however, these functions have 

largely been attributed to H3K27Me3, either through transcriptional repression or a recently-

described function for H3K27Me3 in the recruitment of MUS81 [45]. Significantly, a role 

for EZH2 in promoting NER, as well as in promoting genome maintenance independent of 

its catalytic activity or PRC2, has previously not been shown.

Here, we define a novel role for EZH2 in governing cisplatin resistance in SCLC by 

promoting NER. We show that EZH2 has a non-catalytic and PRC2-independent role in 

stabilizing DDB2 by impairing its ubiquitination, thereby facilitating DDB2 localization to 

CPD crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with 

DZNep strongly sensitizes SCLC cells and tumors to cisplatin, revealing a potential 

rationale-driven approach for overcoming cisplatin resistance in SCLC.

MATERIALS AND METHODS

Cell lines

All cell lines were originally purchased from the American Type Culture Collection (ATCC, 

Manassas, VA). Human SCLC cell lines (H128, H146, H187, H69, DMS114 and DMS153) 

were provided by the laboratory of Dr. Taofeek Owonikoko [47]. H128, H187, H69, and 

H146 cells were grown in RPMI 1640 (Gibco) with 7.5% fetal bovine serum (FBS). 

DMS114 and DMS153 cells were grown in Waymouth’s medium (Gibco) with 5% FBS. 

HeLa, U2OS, HEK293T, and HCT116 cells were grown in DMEM (Gibco) with 7.5% FBS. 

BEAS-2B were cultured in DMEM/F-12 medium with 10% FBS. Primary small airway 

epithelial cells (HSAEC) were grown in Airway Basal Medium (ATCC PCS-300-030) with 

one Bronchial Epithelial Growth Kit (ATCC PCS-300-040) according to manufacturer’s 

instructions. All cell lines were grown at 37°C under humidified conditions with 5% CO2 

and 95% air.

Details of additional methodologies can be found in Supplementary Materials and Methods.

RESULTS

A siRNA screen targeting nuclear enzymes identifies genes that mediate cisplatin 
resistance in SCLC

To identify genes critical for governing platinum resistance in SCLC, we performed a 

cisplatin sensitivity screen with siRNAs targeting 1,006 genes, biased towards nuclear 

enzymes for future translational application, in SCLC cells. We have previously used our 

nuclear enzyme siRNA library to perform drug sensitivity screens in other cancer cell types 
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to identify novel regulators of the DDR [48, 49]. We chose the SCLC cell line H128, a cell 

line with intact DNA repair pathways from a treatment-refractory tumor. H128 cells are 

strongly resistant to cisplatin, with over 80 percent viability 72 hours following continuous 

cisplatin treatment at 5 μM, the upper threshold of cisplatin dose achievable in patients. The 

screen was conducted in triplicate in 96-well plates using siRNA targeting ERCC1 and ATR 

as positive controls and a non-targeting (NT) siRNA as a negative control. Cells were 

transfected with the siRNA library, treated after 48 hours with or without cisplatin for 72 

hours, and assayed for cell viability with resazurin reagent (Fig. 1A). Sensitivity results from 

the screen are shown as a volcano plot of log2-transformed average viability against strictly 

standardized mean difference (SSMD) (Fig. 1B, Supplementary Table S1). We identified 

118 cisplatin sensitization hits based on the following criteria: an average cell viability of 

<0.6, an average SSMD of <−2, and a two-tailed t-test p-value of <0.05 (Supplementary 

Table S2). The Z-factor of the screen, an indicator of screen quality, was 0.556, which is in 

the excellent range, indicating that our screen is robust.

To characterize common pathways and potential interactions of our cisplatin sensitization 

hits, we performed gene ontology (GO) analysis (Fig. 1C, Supplementary Fig. S1A) and 

network analysis (Supplementary Fig. S1B). As anticipated, DNA repair pathways, 

including NER, DNA replication, interstrand cross-link repair, and UV protection, emerged 

as key processes among the cisplatin sensitization hits, demonstrating that our screen can 

yield DDR proteins previously defined for mediating cisplatin resistance. We also identified 

histone modification, ubiquitination, chromosome separation, DNA geometric change, and 

peptidyl-arginine N-methylation, among other processes associated with the cisplatin 

sensitization hits.

Indeed, a number of NER factors emerged as cisplatin sensitization hits in our primary 

screen: ERCC1, ERCC2, ERCC4 and ERCC6. EZH2 was among the most efficient 

sensitizing hits identified, which when silenced, sensitized H128 cells to cisplatin to a 

similar magnitude as the NER hits. EZH2 is intriguing because it was the only cisplatin 

sensitization hit that showed significant overexpression in SCLC tissue compared to normal 

lung epithelial tissue [50, 51], and EZH2 overexpression has been shown to mediate 

cisplatin resistance in several other cancer cell types [38-41]. One microarray expression 

dataset reported that EZH2 mRNA was expressed 21 (p=6.01E-9)* fold greater in SCLC 

versus normal lung tissue [50], while another reported that EZH2 mRNA was expressed 3.9 

(p=3.01E-4)* fold greater in SCLC versus normal lung tissue [51]. We also found that EZH2 

protein level was overexpressed in SCLC cell lines compared to nontumorigenic BEAS-2B 

and HSAEC lung epithelial cells (Supplementary Fig. S2A). Thus, EZH2 may be a 

promising therapeutic target for overcoming cisplatin resistance in SCLC.

EZH2 mediates cisplatin resistance in SCLC

From the primary screen, 23 hits were selected for further validation based on previous 

identification in other high-throughput DNA damage sensitivity screens, putative 

interactions with known DNA repair proteins by mass spectrometry (MS), or potential 

disease relevance, including in SCLC (Supplementary Table S3). To validate each target, we 

tested if the cisplatin sensitization phenotype could be achieved across more than one 
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individual siRNA to rule out off-target effects of the pooled siRNA used in the primary 

screen. Of the 23 hits tested, 13 were validated, including EZH2 (Supplementary Table S4). 

Two unique siRNAs targeting EZH2 sensitized H128 cells to cisplatin (Fig. 2A, 

Supplementary Fig. S2B, Supplementary Table S4) and western blot confirmed successful 

EZH2 knockdown (Fig. 2B). We validated this phenotype in H146 SCLC cells (Fig. 2C-D), 

though the results were not as strong as H128 cells, perhaps due to the lower EZH2 levels in 

H146 cells (Fig. 2E). Of note, a correlation between the degree of EZH2 knockdown with 

cisplatin sensitization was observed between the two siRNAs (Fig. 2A-D and Supplementary 

Fig. S2B), providing additional support that the cisplatin sensitization phenotype following 

EZH2 depletion in SCLC cells is not due to an off-target effect.

EZH2 expression level positively correlates with cisplatin resistance across SCLC

Because EZH2 is highly expressed in SCLC and EZH2 depletion in SCLC cells causes 

cisplatin hypersensitivity, we hypothesized that EZH2 levels could be an important 

determinant of cisplatin resistance in SCLC. To this end, we examined a panel of six SCLC 

cell lines for EZH2 protein expression compared to cisplatin IC50 [47] (Fig. 2E-F). We 

found a positive correlation between EZH2 expression and cisplatin IC50 trending towards 

significance, suggesting that as EZH2 expression increases, SCLC cells become more 

resistant to cisplatin.

EZH2 localizes to UV damage sites and promotes repair of UV-induced CPD lesions

Cisplatin and UV-induced damage can be repaired by multiple DNA repair pathways, 

including NER. To determine if EZH2 plays a role in NER, we examined if EZH2 

knockdown sensitizes SCLC cell lines to UV damage, which is primarily repaired by NER. 

We found that EZH2 depletion sensitized H128, H146 and U2OS cells to UV (Fig. 3A-D, 

Supplementary Fig. S3A-E). EZH2 has been reported to localize to DSBs and DNA damage 

sites induced by laser microirradiation [42, 43]. We similarly found that GFP-EZH2 

expressed in cells localizes to DNA damage sites induced by laser microirradiation at 365 

nm (Fig. 3E), which causes multiple forms of DNA damage, including CPDs, DSBs, single-

strand breaks, crosslinks, and ROS-DNA damage. To determine if EZH2 responds more 

specifically to lesions repaired by NER, we examined if EZH2 could comparably localize to 

damage sites induced by a UVC lamp filtered through a micropore membrane overlaying the 

cells. Indeed, GFP-EZH2 localized to UV damage sites marked by the NER lesion CPD as 

well as γH2AX (Fig. 3F, Supplementary Fig. S3F), suggesting that EZH2 may have a role in 

the repair of UV damage requiring its direct localization. A number of factors involved in 

the NER pathway are established to localize to the chromatin soluble fraction of 

internucleosomal DNA in response to UV, including DDB1, DDB2, and XPC [52]. As 

expected, EZH2 was associated with a chromatin insoluble fraction both before and after 

UV damage, likely due to its canonical role in PRC2 (data not shown). Interestingly, we 

found that a population of EZH2 was recruited to the chromatin soluble internucleosomal 

fraction in response to UV damage (Fig. 3G). Given that EZH2 co-localizes with CPD at 

UV damage sites, we then examined if EZH2 could promote the resolution of CPD lesions. 

Using slot blot analysis, we found that EZH2 knockdown impaired the resolution of CPD 

lesions in response to UV (Fig. 3H, 3I). More directly, we observed that EZH2 knockdown 

caused a reduction in NER repair capacity using a fluorescence based multiplex host cell 
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reactivation (FM-HCR) assay [53] (Fig. 3J). Collectively, these data indicate that EZH2 

mobilizes to and governs the repair of CPD crosslinks induced by UV irradiation.

EZH2 interacts with and is epistatic with DDB1-DDB2 in sensitizing SCLC cells to cisplatin 
and UV

To provide insight into how EZH2 governs cisplatin and UV resistance, we performed MS 

analysis of GFP-EZH2 purified from cells treated with cisplatin (Fig. 4A). As expected, we 

found enrichment of EZH2 as well as key members of the PRC2 complex, SUZ12 and EED 

(Fig. 4B). Interestingly, we also found enrichment of DDB1, a member of the NER pathway. 

Co-IP of GFP-EZH2 pulled down HA-DDB1 (Fig. 4C), and similarly, reciprocal co-IP of 

HA-DDB1 pulled down GFP-EZH2 in cells (Fig. 4D). This interaction was preserved 

following benzonuclease treatment (Supplementary Fig. S4A), suggesting that the 

interaction is not mediated through DNA. No change in interaction was observed following 

cisplatin treatment (Supplementary Fig. S4B), implying that the interaction is not regulated 

by DNA damage in this context. Co-IP of GFP-EZH2 also pulled down both endogenous 

DDB1 and DDB2, its interacting partner (Fig. 4E). We also validated the endogenous 

interaction of EZH2 with DDB1-DDB2 in H128 cells by co-IP (Fig. 4F), confirming that 

EZH2 complexes with DDB1-DDB2 in SCLC cells. To identify the region of DDB2 that 

interacts with EZH2, we generated FLAG-DDB2 deletion mutants and performed co-IP of 

FLAG-DDB2 WT and mutants with GFP-EZH2 in HEK293T cells. FLAG-DDB2 1-196 but 

not DDB2 Δ40 co-IP’d with GFP-EZH2 (Fig. S4C), indicating that DDB2 1-196 is 

sufficient and DDB2 1-40 is necessary for interaction with EZH2 and suggesting that EZH2 

interacts with the N-terminus of DDB2. Because EZH2 and DDB1-DDB2 mediate 

resistance to UV [4] we performed epistasis experiments to determine if they function 

together in a common pathway. Indeed, combined knockdown of EZH2 and DDB1/DDB2 

caused no further sensitization of SCLC cells to UV and cisplatin compared with 

knockdown of EZH2 or DDB1/DDB2 alone (Fig. 4G-K), implying that EZH2 and DDB1-

DDB2 function together in governing UV and cisplatin resistance in SCLC cells.

EZH2 promotes DDB2 stability independent of its catalytic activity and PRC2

Given that EZH2 complexes with and is epistatic with DDB1-DDB2 in mediating cisplatin 

and UV resistance in SCLC and promotes CPD crosslink repair, we sought to determine if 

EZH2 plays a specific role in the NER pathway. Interestingly, EZH2 knockdown decreased 

DDB2 but not DDB1 protein levels both at baseline and more prominently in response to 

UV and cisplatin treatment in H128 and HCT116 cells (Fig. 5A-B, Supplementary Fig. 

S5A). Quantitative RT-PCR revealed no corresponding significant decrease in DDB2 mRNA 

levels following EZH2 knockdown (Fig. 5C, Supplementary Fig. S5B), suggesting that the 

EZH2-mediated decrease in DDB2 protein levels is likely not through EZH2’s canonical 

role in transcription. Consistently, the DDB2 degradation phenotype was alleviated by 

proteasomal inhibition with MG132 (Fig. 5D), implying that the decrease in DDB2 levels 

are a result of proteasomal degradation and that EZH2 promotes DDB2 stability. 

Overexpression of GFP-EZH2 in HCT116 cells also increased DDB2 protein levels at 

baseline and in response to UV (Fig. 5E).
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To determine if EZH2 methyltransferase activity promotes DDB2 stability, we 

overexpressed catalytically inactive GFP-EZH2 H689A and found a similar increase in 

DDB2 levels (Fig. 5E, Supplementary Fig. S5C). Furthermore, the decrease in DDB2 levels 

resulting from EZH2 depletion in H128 cells was rescued by expression of GFP-EZH2 WT 

and H689A (Fig. 5F), suggesting that EZH2 has a non-catalytic role in promoting DDB2 

stability. Consistently, treatment of H128 and HCT116 cells with EPZ-6438, a S-Adenosyl-

l-methionine (SAM) competitive EZH2 inhibitor, which targets its catalytic activity but does 

not deplete EZH2 levels, did not decrease DDB2 levels at baseline or in response to UV 

(Fig. 5G, Supplementary Fig. S5D). We also found that the cisplatin hypersensitivity of 

H128 cells depleted of EZH2 is alleviated by expression of GFP-EZH2 WT and to a lesser 

extent H689A (Supplementary Fig. S5E), suggesting that EZH2 also has a catalytically 

inactive role in mediating cisplatin resistance; however, because GFP-EZH2 H689A only 

partially rescued the cisplatin hypersensitivity of EZH2 depletion, EZH2’s noncatalytic role 

in promoting DDB2 stability may not fully account for its effects on mediating cisplatin 

resistance.

To determine if EZH2 promotes DDB2 stability in association with PRC2, we overexpressed 

phospho-mimetic FLAG-EZH2 T311E, which impairs its interaction with SUZ12 and its 

methyltransferase activity [54]. Overexpression of FLAG-EZH2 T311E but not non-

phosphorylatable FLAG-EZH2 T311A strongly increased DDB2 levels, indicating that when 

EZH2 is decoupled from PRC2, it is able to participate in stabilizing DDB2 and promoting 

NER. (Fig. 5H). Moreover, SUZ12 knockdown in H128 cells failed to decrease DDB2 levels 

at baseline or in response to UV (Fig. 5I). Given that DDB2 is targeted for degradation by 

ubiquitination, we tested the effect of EZH2 depletion on DDB2 ubiquitination and found 

that it was enhanced in response to UV damage (Fig. 5J). DDB2 has been reported to 

negatively regulate p21 levels in NER [55, 56] so, we examined if EZH2 depletion results in 

p21upregulation. Indeed, EZH2 knockdown also caused a corresponding increase in p21 

levels with a decrease in DDB2 levels at baseline and in response to cisplatin treatment (Fig. 

S5F), providing further support that EZH2 promotes DDB2 stability and that EZH2 may 

promote NER through DDB2. Collectively, our findings suggest that EZH2 promotes DDB2 

stability by impairing its ubiquitination independent of its catalytic activity and PRC2.

DDB2 functions downstream of EZH2 in promoting NER

To determine if EZH2 facilitates DDB2 function in NER, we examined DDB2 localization 

to UV micropore-generated CPD foci. EZH2 knockdown significantly impaired DDB2 

localization to CPD foci (Fig. 6A-B), suggesting that EZH2 promotes DDB2 localization to 

CPD lesions. Furthermore, the expression of FLAG-DDB2 rescued the impairment in 

resolution of CPD lesions following EZH2 knockdown (Fig. 6C-D), showing unequivocally 

that EZH2 promotes the repair of CPD lesions through DDB2. The expression of FLAG-

DDB2 also alleviated the cisplatin hypersensitivity of EZH2 depletion (Fig. 6E-F), 

suggesting that EZH2 mediates cisplatin resistance at least in part through DDB2.

EZH2 depletion with DZNep sensitizes SCLC cells and tumors to cisplatin

Given that siRNA mediated depletion but not catalytic inhibition of EZH2 decreases DDB2 

levels, we tested the effect of DZNep, an EZH2 inhibitor that depletes EZH2 [21], on 
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cisplatin sensitization and found that DZNep strongly sensitized H128 cells to cisplatin (Fig. 

7A). In contrast, we observed no significant effect on cisplatin sensitization when cells were 

treated with EPZ-6438. In addition, we tested the impact of DZNep on DDB2 levels in 

SCLC cells. DZNep treatment depleted EZH2 levels in H128 cells, leading to decreased 

DDB2 levels, phenocopying EZH2 depletion by knockdown (Fig. 7B). Furthermore, the 

expression of GFP-EZH2 WT and H689A partially rescued the DZNep mediated decrease in 

DDB2 (Fig. S6A), suggesting that DZNep targets a noncatalytic function of EZH2 in 

depleting DDB2 levels. DZNep treatment was also epistatic with DDB2 knockdown in 

sensitizing SCLC cells to cisplatin and UV damage (Fig. S6B-C). Together, these data 

indicate that targeting DDB2 stability can be achieved by depleting EZH2 through DZNep to 

sensitize SCLC cells to cisplatin.

To determine if DZNep sensitizes SCLC tumors to cisplatin in vivo, we generated tumor 

xenografts using H128 cells in Nu/Nu mice. Treatment of the mice with the combination of 

DZNep and cisplatin strongly suppressed the growth of tumors compared with treatment 

with DZNep or cisplatin alone (Fig. 7C-D), providing in vivo validation that DZNep 

sensitizes SCLC tumors to cisplatin. Consistent with findings in other tumor types [57, 58] 

treatment of the mice with DZNep alone also significantly delayed tumor growth but to a 

lesser extent than combined treatment with DZNep and cisplatin. No significant difference 

in body weight was observed in treatment groups compared to controls, indicating 

treatments were well tolerated. (Fig. 7E).

DISCUSSION

Our findings reveal a non-catalytic and PRC2 independent function for EZH2 in promoting 

NER through DDB2 stabilization to govern cisplatin resistance in SCLC. Using a synthetic 

lethality screen of a siRNA library biased towards nuclear enzymes, we identified a number 

of important regulators of cisplatin resistance in SCLC cells, including EZH2. We found that 

EZH2 depletion in SCLC cells causes cellular cisplatin and UV hypersensitivity in an 

epistatic manner with DDB1-DDB2, and moreover that EZH2 mobilizes to damage sites to 

govern the repair of CPD crosslinks, supporting a novel role for EZH2 in promoting NER. 

Mechanistically, we showed that EZH2 complexes with DDB1-DDB2 and promotes DDB2 

stability by impairing its ubiquitination independent of its methyltransferase activity or 

PRC2, thereby facilitating DDB2 localization to CPD lesions, defining a novel paradigm for 

EZH2 in promoting the stability of proteins independent of its canonical role in H3K27Me3. 

Furthermore, we found that targeting EZH2 for depletion with DZNep but not inhibiting its 

catalytic activity with EPZ-6438 strongly sensitizes SCLC cells and tumors to cisplatin. 

Thus, our findings reveal a non-catalytic and PRC2 independent function for EZH2 in 

promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 

beyond its catalytic activity to overcome cisplatin resistance in SCLC.

Based on our findings, we propose a model whereupon following genotoxic insults by 

cisplatin or UV, EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by 

preventing its ubiquitination independent of its methyltransferase activity or PRC2, thereby 

facilitating DDB2 localization to CPD crosslinks to govern their repair (Fig. 7F). Since 

EZH2 interacts with the N-terminus of DDB2 where the majority of its autoubiquitination 
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sites are located [59], EZH2 interaction in this region may prevent DDB2 autoubiquitination. 

EZH2 stabilization of DDB2 may facilitate its binding and assembly of CRL4 at the site of 

the NER lesion. There, the E3 ligase complex promotes ubiquitination of critical 

downstream NER targets, including XPC, H3, H4, and DDB2 itself before DDB2 is 

degraded and the E3 ligase complex disassembles. Our data support a PRC2 independent 

function for EZH2 in stabilizing DDB2 as SUZ12 knockdown failed to decrease DDB2 

levels similarly to EZH2, and overexpression of FLAG-EZH2 T311E, which has impaired 

interaction with SUZ12 [54], but not FLAG-EZH2 T311A, stabilizes DDB2 levels. Our data 

suggest that when EZH2 is constitutively phosphorylated, it is able to more efficiently 

participate in stabilizing DDB2 and promote NER, potentially by becoming decoupled from 

SUZ12/PRC2. In contrast, overexpression of FLAG-EZH2 T311A, which is functional in its 

role with PRC2, destabilized DDB2, potentially acting as a dominant negative when EZH2 

is not uncoupled from PRC2.

Our data suggest a non-catalytic role for EZH2 in promoting NER by stabilizing DDB2 that 

is distinct from its canonical role in H3K27Me3-mediated transcriptional silencing. Indeed, 

EZH2 depletion did not decrease DDB2 mRNA levels and inhibiting the catalytic activity 

but not total levels of EZH2 with EPZ-6438 decreased H3K27Me3 but failed to decrease 

DDB2 protein levels or sensitize SCLC cells to cisplatin. Furthermore, the decrease in 

DDB2 levels following EZH2 knockdown was rescued by expression of GFP-EZH2 H689A. 

However, because GFP-EZH2 H689A and FLAG-DDB2 only partially rescued the cisplatin 

hypersensitivity of EZH2 depletion, our results suggest that the noncatalytic role of EZH2 in 

promoting DDB2 stability may not fully account for its effects on mediating cisplatin 

resistance. Interestingly, it has been reported that EZH2 is capable of silencing XPA at its 

promoter through H3K27Me3, thereby impairing NER in nasopharyngeal carcinoma cells 

[60]. It is possible that EZH2 could have roles in both activating and inactivating NER that 

are cancer subtype dependent, which will be critical in assessing whether EZH2 should be 

targeted to overcome cisplatin resistance.

Consistent with our findings, increased DDB2 levels were associated with cisplatin 

resistance in melanoma cells [61]. On the other hand, DDB2 overexpression has been 

reported to lead to cisplatin sensitivity in ovarian cancer, and DDB2 has been reported not to 

be required for the repair of cisplatin-induced DNA damage [62]. Thus, it is possible that the 

role of DDB2 in responding to cisplatin may also be cancer cell type specific, perhaps 

depending on dysregulation of other DDR genes. In addition, these contrasting findings may, 

in part be attributed to the idea that to facilitate NER, DDB2 levels must be tightly and 

dynamically regulated, as DDB2 must first be stabilized and then degraded in order to 

promote NER lesion resolution [63]. Thus, while EZH2 knockdown causes cisplatin 

hypersensitivity in SCLC cells at least in part through DDB2 degradation, it is also possible 

that too much DDB2 could also impair NER and thus paradoxically lead to cisplatin 

hypersensitivity. In addition, while our data show that EZH2 promotes DDB2 stability, 

DDB2 has been reported to recruit EZH2 to the promoters of NEDD4L and RNF43 [64, 65] 

suggesting a possible feed-forward mechanism of EZH2 in regulating DDB2 stability, which 

in turn regulates EZH2’s function in transcriptional repression.
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EZH2 has been reported to have a non-canonical role in directly methylating non-histone 

proteins to promote their degradation [29, 33] Our data suggest a new role for EZH2 in 

promoting protein stability independent of its methyltransferase activity or PRC2. DDB2 

ubiquitination has previously been shown to be regulated by the COP9 signalosome (CSN), 

XPC, Ku, PARP1, and USP24 [59, 66-69]. Our data indicate that EZH2 also impairs DDB2 

ubiquitination, highlighting the importance of tight regulation of DDB2 levels in controlling 

its functions in NER. Of note, EZH2 was recently reported to recruit USP7 to mediate 

neuronal gene expression [70]; however, whether this is mediated through its 

methyltransferase activity, PRC2, or H3K27Me3 such as it is for MUS81 [45] was not 

explored. It is possible that the non-catalytic and PRC2 independent function of EZH2 in 

stabilizing DDB2 may be a more generalized mechanism in control of the stability of other 

proteins in addition to DDB2.

Beyond our main findings with EZH2, many hits from the primary screen were largely 

consistent with the existing literature, however, there were also some surprising results. 

Arginine methylation, for example, was the most enriched pathway among the cisplatin 

sensitization hits. Arginine methylation is emerging as a key pathway involved in cell cycle 

regulation [71], and dysregulation of the cell cycle can render cancers vulnerable to cisplatin 

treatment. In addition, many reports have demonstrated that BRCA1 and POLQ are 

promising therapeutic targets that, when depleted, sensitize cancer to cisplatin or other DNA 

damaging agents. This has been predominantly explored in pancreatic, breast and ovarian 

cancers [72-75]. Data from our H128 screen, however, indicates that BRCA1 and POLQ 

depletion promotes cisplatin resistance in H128 cells. Taken together, our data suggest that 

targeting BRCA1 and POLQ may be advantageous but only in specific cancer subtypes or 

molecular contexts.

When viewed through a therapeutic lens, our finding that EZH2 has a non-catalytic and 

PRC2 independent role in promoting NER has important implications in the rationale design 

and application of EZH2 inhibitors that are currently being investigated for cancer therapy. 

While EZH2 does govern the repair of some types of DNA damage through H3K27Me3 [34, 

35, 37] our data suggest that catalytic inhibition of EZH2 may not fully suppress its role in 

governing cisplatin resistance. Our assembled data provide rationale for the therapeutic 

potential of novel anti-cancer strategies including targeting EZH2 with depleting agents such 

as with DZNep, or disrupting the EZH2-DDB2 interaction with small molecule inhibitors, to 

overcome cisplatin resistance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A siRNA screen targeting nuclear enzymes identifies genes that mediate cisplatin resistance 

in SCLC. a Primary screen format: H128 cells were transfected with a siRNA library biased 

towards targeting nuclear enzymes. 48 hours post-transfection, cells were treated with or 

without 10 μM cisplatin for 72 hours prior to measuring cell viability. b Primary screen 

results: the normalized cell viability was plotted against the strictly standardized mean 

difference (SSMD) for each gene targeted by the library. Normalized viability was 

calculated as the log2 ratio of treated versus untreated cell viability relative to the non-

targeting (NT) siRNA control. c Summary of most enriched categories from Gene Ontology 

(GO) analysis of cisplatin sensitization hits (n = 118). The top 10 significant processes (p ≤ 

0.01) are shown, sorted by the percent associated genes found.
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Fig. 2. 
EZH2 mediates cisplatin resistance in SCLC. a H128 and c H146 cells were transfected with 

siRNA targeting EZH2, ATR, or a NT control. 72 hours after transfection, cells were treated 

with cisplatin for 72 hours prior to measuring cell viability. b and d Western blot analysis of 

EZH2 expression in b H128 and d H146 cells, respectively, demonstrating EZH2 

knockdown. e Western blot analysis of EZH2 expression across a panel of SCLC cell lines. f 
Densitometry quantification of EZH2 expression corresponding to e was plotted against 

cisplatin IC50 [47] across a panel of SCLC cell lines, with a correlation of 0.7355. (For a 
and c, mean and standard deviation of three replicas is shown.) *** indicates p < 0.001.
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Fig. 3. 
EZH2 localizes to and promotes repair of UV-induced CPD lesions. a H128 and c H146 

cells were transfected with siRNAs targeting EZH2, ERCC1, or a NT control. 72 hours after 

transfection, cells were treated with UV. Cell viability was measured 72 hours after UV 

irradiation. b and d Western blot analysis of EZH2 expression (for b H128; and d H146 

cells) demonstrating knockdown. e HeLa cells were transiently transfected with GFP-EZH2 

or GFP-RPA1. 72 hours post-transfection, cells were subjected to laser microirradiation at 

365 nm wavelength. Representative images of GFP localization as seen before and seconds 

after laser microirradiation are shown. Scale bars represent 10 μm. f HeLa cells were 

transfected with GFP-EZH2 and 24 hours post transfection, cells were UV irradiated at 100 

J/m2 through a 5 μm micropore membrane. Cells were fixed and stained with the indicated 

markers after one hour recovery. Representative images are shown. g HeLa cells were left 

untreated or UV irradiated at 30 J/m2. Cells were lysed and fractionated to obtain the 

chromatin soluble fraction by salt extraction followed by 10 minutes of MNase digestion at 

room temperature. This fraction was run on SDS-PAGE and probed for EZH2 and H3 for 

loading. h and i Slot blot analysis of the repair of CPD lesions over time in H128 cells in 

response to 30 J/m2 of UV. h Quantitation of percent of CPD lesions remaining over time. i 
Representative slot blot. SYBR Gold signal indicates total DNA loaded. (For a, c, and h, 

mean and standard deviation of three replicas is shown. j NER repair capacity as measured 

by FM-HCR was quantified in cells transfected with siRNAs targeting EZH2, ERCC1, XPA 

Koyen et al. Page 18

Oncogene. Author manuscript; available in PMC 2020 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or NT control. Relative NER repair capacity was normalized to a NT control. *** indicates 

p<0.001. For g and i-j, representative blots from 3 independent experiments (n=3) is shown).
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Fig. 4. 
EZH2 interacts with and is epistatic with DDB1-DDB2 in sensitizing SCLC cells to cisplatin 

and UV. a HeLa cells were transiently transfected with GFP-EZH2. 72 hours post-

transfection, cells were treated with 25 μM cisplatin and harvested 4 hours later, and GFP-

EZH2 was immunoprecipitated (IP’d) with protein A agarose beads. Beads were washed and 

processed for mass spectrometry (MS) analysis for protein-protein interactions. b Summary 

of IP-MS results for GFP-EZH2. c and d HeLa cells were transfected with HA-DDB1 and 

GFP-EZH2 or empty vector and IP’d with an anti-GFP antibody (c) or anti-HA antibody (d) 

respectively, run on SDS-PAGE, and immunoblotted with indicated antibodies. e HeLa cells 

were transfected with GFP-EZH2. Cells were harvested, lysed, and IP’d with an anti-EZH2 

antibody or IgG as indicated. Samples were run on SDS-PAGE and immunoblotted with 

indicated antibodies. f H128 cells were lysed and IP’d with an anti-EZH2 antibody or IgG as 

indicated. Samples were run on SDS-PAGE and immunoblotted with indicated antibodies. g, 
h and j H128 cells were transfected with siRNAs targeting EZH2, DDB1, DDB2, ATR, 

ERCC1, or a NT control. 72 hours after transfection, cells were treated with cisplatin or UV. 
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Cell viability was measured 72 hours after treatment. i Western blot analysis of samples 

corresponding to g and h. k Western blot analysis of samples corresponding to j. (For g, h 
and j, mean and standard deviation of three replicas is shown. For c-f, representative blots 

from 3 independent experiments (n=3) is shown).
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Fig. 5. 
EZH2 promotes the stability of DDB2 independent of its catalytic activity and PRC2. a-d 
EZH2 promotes the stability of DDB2. H128 cells were transfected with siRNAs targeting 

EZH2 or a NT control. 72 hours after transfection, cells were pre-treated with cycloheximide 

(CHX) for 2 hours, and UV irradiated at 30 J/m2 (a), treated with 15 μM cisplatin (b), or left 

untreated (−). Cells were harvested after treatment as indicated. Whole cell lysates were run 

on SDS-PAGE and immunobloted with the indicated antibodies. c EZH2 knockdown does 

not alter mRNA levels of DDB2. H128 cells were transfected with siRNAs targeting EZH2 

or a NT control and RT-PCR analysis was performed to measure DDB2 and GAPDH mRNA 

levels. The relative ratio of DDB2 to GAPDH mRNA level is represented. Mean and 

standard deviation of three replicas is shown. d H128 cells were transfected with siRNAs 
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targeting EZH2 or a NT control. 72 hours post transfection, cells were pre-treated with 5 μM 

MG132 for 4 hours, and CHX for 2 hours for all groups. Cells were then UV irradiated at 30 

J/m2 and harvested at the indicated timepoints prior to SDS-PAGE and western blot analysis 

with indicated antibodies. e-i EZH2 stabilization of DDB2 is independent of its PRC2 

function. e HCT116 cells were transfected with GFP-EZH2 WT or GFP-EZH2 catalytic 

inactive mutant (H689A) plasmids. 24 hours post transfection, cells were pre-treated with 

CHX for 2 hours, and left untreated (−) or UV irradiated at 30 J/m2, harvested after UV 

treatment as indicated, run on SDS PAGE, and probed with indicated antibodies. f H128 

cells were knocked down with siRNAs targeting the EZH2 5’UTR (EZH2-3) or a NT 

control, and the following day, transfected with GFP-EZH2 WT or GFP-EZH2 catalytic 

inactive mutant (H689A) or mock transfected. 48 hours post-transfection, groups were pre-

treated with CHX for 2 hours, harvested, run on SDS PAGE, and probed with the indicated 

antibodies. g HCT116 cells were pre-treated with 1 μM SAM-competitive EZH2 inhibitor 

EPZ-6438 or DMSO for 4 days. Cells were then pre-treated with CHX for 2 hours. Cells 

were left untreated (−) or UV irradiated at 30 J/m2 and harvested after 3 hours recovery. 

Whole cell lysates were run on SDS-PAGE and immunobloted with the indicated antibodies. 

h HeLa cells were transfected with with FLAG-EZH2 WT or PRC2 mutants (FLAG-EZH2 

T311E/A). 48 hours post transfection, cells were pre-treated with CHX for 2 hours, and 

harvested. Whole cell lysates were run on SDS-PAGE and immunobloted with the indicated 

antibodies. i HCT116 Cells were transfected with siRNAs targeting SUZ12 or a NT control. 

72 hours after transfection, cells were pre-treated with CHX for 2 hours, and left untreated 

(−) or UV irradiated at 30 J/m2, and harvested after UV treatment as indicated. Whole cell 

lysates were run on SDS-PAGE and immunobloted with the indicated antibodies. j His-Ubi 

HEK-293T cells were transfected with indicated siRNA and 72 hours post transfection, cells 

were pre-treated with CHX and MG132 where indicated. Ubiquitinated DDB2 was 

measured. (For a-b and d-j, representative blots from 3 independent experiments (n=3) is 

shown).

Koyen et al. Page 23

Oncogene. Author manuscript; available in PMC 2020 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
DDB2 functions downstream of EZH2 in NER and in mediating cisplatin resistance in 

SCLC. a and b EZH2 knockdown impairs DDB2 recruitment to CPD lesions. HeLa cells 

were transfected with siRNAs targeting EZH2 or a NT control. The following day, both 

groups were transfected with FLAG-DDB2. Cells were UV-irradiated at 100J/m2 through a 

micropore membrane, fixed, and stained for CPD lesions and FLAG-DDB2. Relative 

percent of CPD stained lesions that were positive for DDB2 staining, normalized to NT, was 

quantified (a). Representative images are shown (b). c and d FLAG-DDB2 rescues impaired 

resolution of CPD lesions that occur through EZH2 knockdown. H128 cells were transfected 

with siRNAs targeting EZH2 or a NT control. The following day, both groups were 

transfected with FLAG-DDB2. Cells were UV irradiated, and harvested immediately (0h) or 

after 12h of repair time. Slot blot analysis was performed. c Quantitation of percent of CPD 

lesions remaining over time as normalized to 0 hrs of repair time. d Representative slot blot. 

SYBR Gold signal indicates total DNA loaded. e FLAG-DDB2 alleviates the sensitization of 

SCLC to cisplatin upon EZH2 knockdown. H128 cells were transfected with siRNAs 

corresponding to EZH2, ERCC1 or a NT control. The following day, groups were 

transfected with FLAG-DDB2 or mock control. 48 hours post overexpression, cell viability 
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analysis was performed. f Western blot of FLAG-DDB2 expression achieved in H128 

corresponding to panels c-e. For a-b, quantification was achieved through 3 independent 

experiments counting at least 50 independent CPD lesion events per group (n=50) and 

representative images are shown. c-d, representative blots from 3 independent experiments 

(n=3) is shown). *** indicates p<0.001.
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Fig. 7. 
EZH2 depletion with DZNep sensitizes SCLC to cisplatin in vitro and in vivo and model for 

EZH2 in NER. a H128 cells are sensitized to cisplatin through EZH2 depletion but not 

through S-Adenosyl-l-methionine (SAM) competitive inhibition. H128 cells were treated 

with DZNep, EPZ-6438, or DMSO for 72 hours followed by cisplatin treatment for 72 hours 

prior to assaying for cell viability. b DZNep-mediated EZH2 depletion destabilizes DDB2. 

H128 cells were treated with DZNep or DMSO for 6 days followed by 2 hours of CHX 

pretreatment and 30 J/m2 UV damage, and allowed to recover at the times indicated. Cells 

were then harvested, lysed, and run on SDS-PAGE. c-e The combination of DZNep and 

cisplatin synergistically suppresses SCLC tumor growth in vivo. c and d Nu/Nu mice with 

H128 lung cancer xenografts were treated with DZNep (2.5mg/kg; 2 times per week), 

cisplatin (2.5mg/kg; 2 times per week), or the combination i.p. for 28 days. Each group 

included 5 mice. Tumor volumes were measured once every 2 days. The error bars indicate 

± SD. e Weights corresponding to figure c were measured once every 2 days. The error bars 

indicate ± SD. * indicates p<0.05, by 2-tailed t test. **indicates p<0.01, by 2-tailed t test. f 
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Model for EZH2 function in NER. Following cisplatin or UV damage, EZH2 mobilizes to 

DNA damage sites where it complexes with DDB1-DDB2 and promotes DDB2 stability by 

preventing its ubiquitination independent of its methyltransferase activity or PRC2. EZH2 

stabilization of DDB2 may facilitate DDB2 binding and assembly of CRL4 at the site of the 

NER lesion, which in turn promotes the ubiquitination of critical downstream NER targets to 

facilitate NER. In the absence of EZH2 or with EZH2 depletion by DZNep, there is 

increased ubiquitination of DDB2 leading to its degradation and impaired NER and thereby 

causing sensitization to cisplatin and UV damage. (For b, a representative blot from 3 

independent experiments (n=3) is shown).
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