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Purpose: To isolate multipotent precursors from the rabbit corneal stroma and to compare the distribution and proliferative
capacity of keratocyte precursors obtained from the central and peripheral regions of the corneal stroma.
Methods: The rabbit corneal stroma was divided into a peripheral region (6.0–10.0 mm in diameter) and a central region
(6.0 mm in diameter). A sphere-forming assay was then performed to isolate precursors from the stroma of each region.
To promote differentiation, isolated sphere colonies were plated in wells with a medium containing fetal bovine serum.
Expression of various markers by the sphere colonies and their progeny was examined using immunocytochemistry and/
or reverse-transcription polymerase chain reaction (RT–PCR).
Results: The rate of primary sphere formation by cells from the peripheral stroma (51.4±10.1/10,000 cells) was
significantly higher than by cells from the central stroma (35.9±3.0/10,000 cells; p=0.00021). Secondary sphere formation
rate was significantly higher in the peripheral stroma (45.6±6.4/10,000 cells) than in the central stroma (33.4±2.1/10,000
cells; p=0.00002). Cells from the spheres were positive for CD34 and nestin. Their progeny showed a keratocyte-like
spindle shape and expressed vimentin, α-smooth muscle actin, and two neural differentiation markers (microtubule-
associated protein-2 and neuron-specific enolase). Expression of nestin and vimentin was confirmed by RT–PCR.
Conclusions: Our findings demonstrate that both the peripheral and central regions of the corneal stroma contain a
significant number of precursors, but the peripheral stroma has more precursors with a stronger proliferative capacity than
that of cells from the central stroma.

Stem cells or progenitor cells are defined by their capacity
for self-renewal and the ability to generate different types of
cells (multipotentiality), which leads to the formation of
mature tissues, whereas precursor cells are unipotent cells
with limited proliferative activity. Regenerative stem cells or
precursors can be detected by the sphere-forming assay in
various adult tissues, including the central nervous system
[1], bone marrow [2], skin [3,4], retina [5], corneal stroma
[6-8], and corneal endothelium [7-13].

Corneal stromal cells (keratocytes) as well as corneal
endothelial cells are derived from the neural crest [14-16].
Since healing occurs by the proliferation and migration of
residual keratocytes from the peripheral part of the stroma
[17], keratocyte precursors may have a role in the healing of
corneal stromal wounds. Keratocyte precursors may have
sufficient self-renewal potential to supply the large number of
cells required for wound healing. Corneal stromal wound
healing can be expected to be influenced by the location and
severity of the corneal injury, but the availability of a pool of
viable precursor cells and their proliferative activity could be
important determinants of the outcome. Thus, the distribution
of keratocyte precursors and their capacity to proliferate has
the potential to play an important role in treating corneal
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stromal diseases, but very little information is available about
the distribution and self-renewal capacity of keratocyte
precursors in living corneal stroma.

We have used primary sphere formation to isolate
keratocyte precursors from the corneas of older donors, which
were shipped from the United States two weeks after
enucleation. However, no secondary colonies were generated
because the proliferative capacity of these cells was not as
high as that of younger and fresher donor cells [6]. In the
present study, we used rabbit corneas to examine the
distribution of corneal keratocyte precursors at a younger age.
We isolated precursors with the propensity to develop into
corneal keratocyte-like cells from the stroma of rabbit corneas
and investigated the distribution and proliferative capacity of
precursor cells derived from the central and peripheral regions
of the cornea by the sphere-forming assay.

METHODS
Primary sphere-forming assay: Rabbits were handled in
accordance with the ARVO Statement on the Use of Animals
in Ophthalmic and Vision Research. Twelve-week-old male
New Zealand white rabbits (weighing 2.0-2.4 kg) were
obtained from Saitama Experimental Animals Inc. (Saitama,
Japan). The animals were anesthetized with intramuscular
injections of ketamine hydrochloride (60 mg/kg; Sankyo,
Tokyo, Japan) and xylazine (10 mg/kg; Bayer, Leverkusen,
Germany) and killed with an overdose of pentobarbital
(Nembutal; Dainippon, Osaka, Japan) after which the eyes
were enucleated. The eyes were then washed three times with
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sterile saline and immersed for 5 min in saline containing 10%
povidone-iodine (Meiji, Tokyo, Japan) and 50 mg/ml
gentamicin (Sigma-Aldrich, St Louis, MO). After further
rinsing with saline, the cornea was excised from each eye
along the scleral rim. Then, the epithelium was carefully
removed from the corneal stroma by scraping the outer surface
of the cornea while the corneal endothelium and Descemet’s
membrane were peeled away in a sheet from the periphery to
the center of the inner surface of the cornea with fine forceps.
Samples of corneal stroma were excised from the periphery
of the cornea (6.0-10.0 mm in diameter) and from the central
region (6.0 mm in diameter) using appropriate trephines
(Biopsy Punch, Kai Medical, Gifu, Japan) and forceps as
shown Figure 1. These stromal samples were cut into small
pieces approximately 1.0 mm in diameter, which were
incubated overnight at 37 °C in a basal medium, containing
0.02% collagenase (Sigma-Aldrich). Subsequently, the tissue
pieces were washed with phosphate-buffered saline (PBS),
incubated in PBS containing 0.2% EDTA for 5 min at 37 °C,
and dissociated into single cells by trituration with a fire-
polished Pasteur pipette. After centrifugation at 800x g for 5
min, the cells were resuspended in basal medium. The basal
medium was Dulbecco’s modified Eagle’s medium (DMEM)/
F12 medium supplemented with B27 (Invitrogen, Carlsbad,
CA), 20 ng/ml epidermal growth factor (EGF; Sigma-
Aldrich), and 40 ng/ml basic fibroblast growth factor (bFGF;
Sigma-Aldrich). Isolated keratocytes were counted with a
hemocytometer. Viability of the isolated cells was greater than
90% as shown by trypan blue staining (Wako Pure Chemical
Industries, Osaka, Japan). The sphere-forming assay was
employed for primary culture of the cells [18]. The basal
medium, containing a methylcellulose gel matrix (0.8%;
Wako Pure Chemical Industries), was used to prevent
reaggregation of the cells as described previously [14,19].
Plating was done at a density of 10 viable cells/μl (50,000
cells/well or 2,500 cells/cm2) in the uncoated wells of 60 mm
culture dishes. To measure the diameter of sphere colonies,
culture dishes were observed under an inverted phase-contrast
microscope (ELWD 0.3; Nikon, Tokyo, Japan) with a 10×
objective lens, and images were analyzed using the NIH image
program developed at the United States National Institutes of
Health (n=10). The number of spheres per 10,000 cells was
calculated for each well. To distinguish growing spheres from
dying cell clusters, only those with a diameter of more than
50 μm were counted.

Secondary sphere formation from primary spheres: For
passaging, primary spheres (day 7) were treated with 0.5%
EDTA and were dissociated into single cells that were plated
into the wells of 60 mm culture dishes at a density of 10 cells/
μl. The culture was continued for seven days in a basal
medium containing methylcellulose gel matrix to prevent
reaggregation. Experiments were performed twice and
representative results are shown (n=10).

Differentiation of sphere colonies: Individual primary spheres
(day 7) were transferred to 13-mm glass cover slips coated
with 50 μg/ml poly-L-lysine (PLL; Sigma-Aldrich, Tokyo,
Japan) and 10 μg/ml fibronectin (BD Biosciences, Billerica,
MA) in separate wells as described elsewhere [18]. To
promote differentiation, 1% FBS was added to the basal
medium, and the culture was continued for another seven
days.

Immunocytochemistry: Immunocytochemical examination of
the seven-day spheres and their progeny was performed after
seven days of adherent culture on the glass cover slips. Cells
were fixed with 4% paraformaldehyde (Wako Pure Chemical
Industries) in PBS for 10 min. After washing in PBS, the cells
were incubated for 30 min with 3% bovine serum albumin
(BSA; Sigma-Aldrich) in PBS, containing 0.3% Triton X-100
(BSA/TBST; Rohm & Haas, Philadelphia, PA), to block non-
specific binding. Next, the cells were incubated for 2 h at room
temperature with the following primary antibodies diluted in
BSA/PBST: mouse anti-cytokeratin 3 monoclonal antibody
(mAb, AE-5, Progen Biotechnik GMBH, Heidelberg,
Germany), mouse anti-\alpha-smooth muscle actin (α-SMA)
mAb (1:400; Sigma-Aldrich), mouse anti-vimentin mAb
(1:400; Dako, Glostrup, Denmark), mouse anti-nestin mAb
(1:400; BD Biosciences), mouse anti-microtubule–associated
protein (MAP)-2 mAb (1:400; Chemicon, Temecula, CA),
mouse anti-neuron–specific enolase mAb (NSE, 1:400;

Figure 1. Anterior view of a rabbit cornea and a diagram of the
corneal epithelium and stroma. The epithelium was removed from
the rabbit corneal stroma by scraping the outer surface of the cornea
while the corneal endothelium and Descemet’s membrane were
peeled away with fine forceps. To compare the distribution and
proliferative capacity of keratocyte precursors obtained from the
central and peripheral regions, stromal keratocytes were isolated
from tissue specimens obtained from both the peripheral (6.0-10.0
mm in diameter) and central regions (6.0 mm in diameter) using
trephines and forceps.
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Dako), mouse anti-CD34 mAb (NCL-END 1:100;

Figure 2. Primary sphere formation by keratocytes from the
peripheral and central regions of the rabbit cornea. (A, B) Stromal
cells from the peripheral or central cornea form spheres. Stromal
tissue was disaggregated into single cells, which were plated at a
density of 10 viable cells/μl in a basal medium containing
methylcellulose gel matrix to prevent reaggregation. More than 99%
of the cells were single cells on day 0. Growth of a representative
sphere is shown until day 7. Scale bar=200 μm. (C) The number of
primary spheres derived from stromal tissue was compared between
the periphery and center of the cornea. The number of sphere colonies
obtained from samples of the peripheral stroma (n=10) was
significantly higher than that for samples of the central stroma (n=10)
after seven days of culture (The asterisk indicates that p=0.00021 and
unpaired t-test was performed). (D) The size of primary sphere
colonies derived from samples of peripheral (n=10) and central
(n=10) corneal stroma was compared. The mean size of spheres from
both regions gradually increased during culture to exceed 250 μm on
day 7 (periphery: 258±63 μm versus center: 203±71 μm after seven
days, mean±SD). n.s.=not significant.

Novocastra Laboratories Ltd., Newcastle upon Tyne, UK),
and FITC-conjugated mouse anti-5-bromo2’-deoxyuridine
(BrdU)/fluorescence mAb (1:100; Roche Diagnostics, Basel,
Switzerland). Mouse IgG (1:1000, Sigma-Aldrich) or normal
rabbit serum (1:1000, Dako) was used as the control in place
of the primary antibody. After being washed in PBS, the cells
were reacted for 1 h at room temperature with fluorescence-
labeled goat anti-mouse IgG (Alexa Fluor 488, 1:2000;
Molecular Probes, Eugene, OR) and fluorescence-labeled
goat anti-rabbit IgG (Alexa Fluor 594, 1:400; Molecular
Probes) as the secondary antibodies. Finally, fluorescence was
detected by observation under a fluorescence microscope
(model BH2-RFL-T3 and BX50, Olympus, Tokyo, Japan).

Extraction of total RNA and reverse-transcription polymerase
chain reaction: Total RNA was isolated from keratocytes
derived from corneal stroma, primary sphere colonies, and
their progeny with a kit (Isogen; Nippon Gene, Tokyo, Japan)
according to the manufacturer’s instructions. The isolated
RNA was treated with RNase-free DNase I (Stratagene, La
Jolla, CA) for 30 min, and cDNA was then obtained with
reverse transcriptase (Super Script II; Invitrogen-Gibco,
Grand Island, NY). The T12VN primer (25 ng/μl) was used
to make the first-strand cDNA. RT–PCR was performed in
the absence of reverse transcriptase to act as the negative
control. The PCR buffer contained 1.5 mM MgCl2 with
0.2 mM of each dNTP (Applied Biosystems, Branchburg, NJ),
0.2 mM of each primer, and 25 unit/l of Amp Taq Gold
(Applied Biosystems). After the initial 9 min of denaturing at
95 °C, amplification was performed using a thermal cycler (I-
Cycler; Bio Lad Laboratories, Hercules, CA) as follows: 30
cycles in 30 s at 94 °C, 30 s at 60 °C, and 45 s at 72 °C followed
by a final 7 min of elongation. The PCR primers were based
on the sequences of nestin, ketarin-3, glial fibrillary acidic
protein (GFAP), α-SMA, and glyceraldehyde-3-phosphate
dehydrogenase (G3PDH). The nestin primers were 5′- TTG
AGA C(A/T)C CTG TG(C/A) CAG CCT −3′ (sense) and 5′-
CTC TAG AC (T/C) CAC (T/C)GG ATT CT −3′ (antisense);
the keratin-3 primers were 5′- GCA GCA GCA GGA TGA
GCT G −3′ (sense) and 5′- GTT GAG GGT CTT GAT CTG
−3′ (antisense); the keratin-12 primers were 5′- GAG CTG
GCC TAC ATG AAG −3′ (sense) and 5′- TTG CTG GAC
TGA AGC TGC TC −3′ (antisense); the vimentin primers
were 5′- CTT CTC AGC ATC ACG ATG ACC −3′ (sense)
and 5′- ATC TAT CTT GCG CTC CTG −3′ (antisense); and
the G3PDH primers were 5′- CAT CAC CAT CTT CCA GGA
GC −3′ (sense) and 5′- ACA ATG CCG AAG TGG TCG −3′
(antisense). Products were separated by electrophoresis on 1%
agarose gel and visualized by staining with ethidium bromide.

Statistical analysis: The unpaired t-test was used to compare
mean values. Significance was defined as p<0.05, and all
analyses were performed using a statistical software package
(StatView Version 5; Abacus Concepts, Berkeley, CA).
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Figure 3. Formation of secondary sphere. (A, B) Secondary spheres
were generated after the dissociation of primary spheres derived from
peripheral or central keratocytes. Scale bar=100 μm. (C) The re-
plating efficiency from primary to secondary colonies was higher for
spheres derived from the peripheral stroma than for those from the
central stroma (p=0.000025, unpaired t-test).

RESULTS
Isolation of sphere colonies: When keratocytes were
disaggregated into single cells and cultured for seven days,
viable spheres grew larger during that period and non-
proliferating cells were eliminated. To compare the density of
precursors between the peripheral and central regions of the
cornea, primary spheres were isolated separately from the
peripheral and central stroma. Photographs of representative
spheres obtained from the peripheral, and central regions are
shown in Figure 2Aand B. Significantly more spheres
(51.4±10.1 per 10,000 cells, mean±SD) were obtained from
the peripheral corneal stroma compared with the central
stroma (35.9±3.0 per 10,000 cells; p=0.00021; unpaired t-test;
Figure 2C). No significant differences were noted with respect
to the size of primary spheres derived from the two regions
after culture for three, five, and seven days, suggesting that
there was no difference in the proliferative capacity of
precursors obtained from each region (Figure 2D).
Secondary sphere formation: To further evaluate the
proliferative capacity of the keratocytes, cells from the
primary spheres were passaged under the same culture
conditions as those used for the initial growth of the spheres.
Secondary spheres were generated after the dissociation of the
primary spheres that were derived from the peripheral or
central stroma. Photographs of representative secondary
spheres are shown in Figure 3A and B. The number of
secondary spheres per 10,000 cells was significantly higher
when primary spheres that were derived from the peripheral

Figure 4. Immunocytochemical analysis
of sphere colonies from the peripheral
stroma on day 7. Bright-field images
and immunostaining of spheres are
shown. The spheres were stained for
vimentin (a mesenchymal cell marker),
\alpha-smooth muscle actin (α-SMA, a
mesenchymal cell marker), cytokeratin
3 (a differentiated epithelial cell
marker), nestin (a neural stem cell
marker), microtubule-associated
protein 2 (MAP2, a differentiated neural
cell marker), neuron-specific enolase
(NSE, a differentiated neural cell
marker, and CD34 (a stem cell marker).
Each colony is also labeled by BrdU. As
a negative control, IgG was used instead
of the primary antibody. Scale bar=100
μm.
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stroma were passaged than spheres from the central stroma
(45.6±6.4 versus 33.4±2.1, respectively; p=0.000025;
unpaired t-test; Figure 3C). Re-plating to generate secondary
sphere colonies was less efficient than the generation of
primary spheres, indicating that the precursor cells had a
limited proliferative capacity.
Immunocytochemistry and reverse-transcription polymerase
chain reaction findings: Nestin has been used as a marker for
the detection of immature neural progenitor cells within
multipotential sphere colonies derived from the brain [20],
skin [3], inner ear [21], retina [22], corneal stroma [6], and
endothelium [9-11]. In addition, the stem cell marker, CD34,
was recently suggested to be a useful cell surface marker for
human keratocytes [23]. Most cells in the spheres were
immunopositive for nestin, CD34, and BrDU (Figure 4). In
the normal rabbit’s cornea, CD34 was expressed in the
peripheral stroma while a little expression of CD34 was
detectable in the central stroma (data not shown). Next, we
examined whether the sphere colonies could give rise to cells
expressing neural lineage markers. Some cells in the sphere
colonies and their progeny expressed microtubule-associated
protein 2 (MAP-2; a neural cell marker) and neuron specific
enolase (NSE; a marker of neural differentiation; Figure 4 and
Figure 5). Most of the cells in the spheres and their progeny
were immunoreactive for vimentin (a marker of mesenchymal
cells) or αSMA (a marker of fibroblasts) while all were
negative for staining by the control, IgG, and the differentiated
epithelial cell marker, cytokeratin 3 (Figure 4 and Figure 5).
Expression of nestin and vimentin by the spheres and their
progeny was confirmed using RT–PCR (Figure 6). Both

spheres derived from the peripheral and central regions of the
cornea and their progeny displayed the same patterns of
immunostaining (data not shown) and mRNA expression
(Figure 6).

DISCUSSION
In this study, we isolated progenitor cells from the rabbit
corneal stroma and then investigated the distribution and
proliferative capacity of keratocyte precursors derived from
the peripheral or central regions of the cornea. As a result, we
demonstrated that stroma from both the peripheral and central
regions of the cornea contains precursor cells in rabbits,
although the peripheral stroma contains significantly more
precursors than the central stroma. In addition, secondary
sphere formation was significantly more common with cells
from the peripheral cornea than with cells from the central
region. Despite such differences of their properties, cells
derived from keratocyte spheres obtained from the peripheral
and central regions of the cornea did not show any differences
in the expression of mesenchymal and neural cell markers
(data not shown). These findings imply that rabbit keratocyte
precursors preferentially reside in the peripheral corneal
stroma and have a stronger proliferative capacity compared
with cells from the central stroma while precursors from both
regions demonstrate similar multipotentiality.

During embryonic development, neural crest cells (from
which keratocytes originate) [14,15] show two waves of
migration and differentiation related to corneal growth [24,
25]. In the first wave, the corneal epithelium forms and
synthesizes the primary stroma (such as the periocular

Figure 5. Immunocytochemical analysis
of differentiated cells from spheres
derived from the peripheral cornea.
Cells migrating out from the spheres
express α-SMA, MAP2, and NSE,
indicating that the colonies contain
differentiated mesenchymal and
neuronal cells. There is no staining with
the control IgG. Scale bar=100 μm.
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mesenchymal cells of neural crest origin) after which neural
crest cells migrate to the margin of the optic cup and also
migrate between the lens and the corneal epithelium to
contribute to the development of the corneal stroma and
trabecular meshwork. During the second wave of migration,
neural crest cells invade the primary stroma and then undergo
differentiation into keratocytes. These embryological
processes may be compatible with our finding that more
precursors with a high proliferative activity reside near the
edge of the corneal stroma, and suggest that these precursors
may supply differentiated cells to the central cornea during
development.

We evaluated both the proliferative capacity and
multilineage potential of keratocyte progenitors and their
progeny derived from the peripheral and central corneal
stroma. Spheres derived from both the peripheral and central

Figure 6. Reverse-transcription polymerase chain reaction analysis
of corneal stromal tissue, spheres, and sphere progeny. G3PDH gene
expression can be detected in all samples except those processed
without reverse-transcriptase (RT). Vimentin is expressed by the
corneal stromal tissues and the spheres derived from the peripheral
or central regions and their progeny but is not detected by PCR of
total RNA without RT. Expression of nestin by the progeny is lower
than by the spheres from both the peripheral and central regions of
the cornea. No expression of keratin 3 or 12 is detected in any of
these samples.

regions of the rabbit cornea showed a high proliferative
activity as indicated by BrdU uptake. Their capacity for self-
renewal was also demonstrated by the ability of the progeny
of individual spheres to form secondary spheres. Moreover,
cells in the primary spheres expressed a stem cell marker
(CD34) and a neural stem cell marker (nestin) while their
progeny expressed mesenchymal markers (vimentin and α-
SMA) and neural lineage markers (MAP2 and NSE). These
findings indicate that spheres isolated from the corneal stroma
of rabbits contained bi-potential precursors and that their
progeny displayed the morphologic characteristics of
keratocytes. Taken together, these results suggest that
precursors from the corneal stroma remain close in nature to
the tissue of origin and undergo differentiation into corneal
keratocytes. Thus, precursors obtained from the corneal
stroma may be more appropriate than multipotential stem cells
for tissue regeneration or cell transplantation because such
precursors should efficiently differentiate to produce their
tissue of origin.

In conclusion, we demonstrated that stroma from the
peripheral region of the rabbit cornea contains a higher density
of precursors with a stronger proliferative capacity than
stroma from the central cornea and that these keratocyte
precursors can differentiate into both mesenchymal
fibroblasts and neural cells.
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