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Abstract
1.	 Several key processes in freshwater ecology are governed by the connectivity 

inherent to dendritic river networks. These have extensively been analyzed from 
a geomorphological and hydrological viewpoint, yet structures classically used 
in ecological modeling have been poorly representative of the structure of real 
river basins, often failing to capture well-known scaling features of natural rivers. 
Pioneering work identified optimal channel networks (OCNs) as spanning trees 
reproducing all scaling features characteristic of natural stream networks world-
wide. While OCNs have been used to create landscapes for studies on metapopu-
lations, biodiversity, and epidemiology, their generation has not been generally 
accessible.

2.	 Given the increasing interest in dendritic riverine networks by ecologists and evo-
lutionary biologists, we here present a method to generate OCNs and, to facilitate 
its application, we provide the R-package OCNet. Owing to the stochastic process 
generating OCNs, multiple network replicas spanning the same surface can be 
built; this allows performing computational experiments whose results are irre-
spective of the particular shape of a single river network. The OCN construct 
also enables the generation of elevational gradients derived from the optimal net-
work configuration, which can constitute three-dimensional landscapes for spatial 
studies in both terrestrial and freshwater realms. Moreover, the package provides 
functions that aggregate OCNs into an arbitrary number of nodes, calculate sev-
eral descriptors of river networks, and draw relevant network features.

3.	 We describe the main functionalities of the package and its integration with other 
R-packages commonly used in spatial ecology. Moreover, we exemplify the gen-
eration of OCNs and discuss an application to a metapopulation model for an in-
vasive riverine species.

4.	 In conclusion, OCNet provides a powerful tool to generate realistic river network 
analogues for various applications. It thereby allows the design of spatially realis-
tic studies in increasingly impacted ecosystems and enhances our knowledge on 
spatial processes in freshwater ecology in general.
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1  | INTRODUC TION

The central goal of ecology is to causally understand patterns and 
processes in ecological systems, such as species coexistence, biodi-
versity patterns, or the unfolding of species invasions (Elton, 1958; 
Gause, 1934). Much of early ecological theory and empirical work 
has either focused on local patterns and dynamics or has taken a 
spatially implicit perspective. However, virtually all natural ecosys-
tems are spatially structured, and the relevance of the spatial di-
mension on ecological systems can hardly be overestimated (Hanski 
& Gaggiotti,  2004; Holyoak, Leibold, & Holt,  2005; Levin,  1992). 
Consequently, over the last decades, ecologists have started to ac-
count for spatial processes on population and community dynamics 
as well as biodiversity. Theoretical, comparative, and experimen-
tal studies have increasingly been done in a spatially explicit per-
spective (e.g., Altermatt, Schreiber, & Holyoak,  2011; Cadotte & 
Fukami, 2005; Dale & Fortin, 2014; Gilarranz & Bascompte, 2012; 
Hanski & Ovaskainen, 2000; Holyoak et  al.,  2005), especially 
promoted by theories on metapopulation and metacommunity 
dynamics.

A direct consequence of this spatial approach to ecology is the 
need to describe and understand the spatial structure and layout 
of natural ecosystems. While initial models of spatial dynamics as-
sumed spatially implicit networks of populations or communities 
(Levins, 1970), all natural ecosystems follow spatially explicit struc-
tures. These structures, such as those typically found in coral reefs 
and atolls, mountainous landscapes and their elevational gradients, 
or tidal pools, are shaped by general geophysical processes resulting 
in characteristic landscape structures. Arguably the most iconic (but 
also among the most widespread) landscape structure is found in riv-
erine networks (Leopold, Wolman, & Miller, 1964; Rodriguez-Iturbe 
& Rinaldo, 2001): erosional forces balancing uplift create dendritic 
networks of rivers and streams following universal patterns. These 
networks are characterized by their fractal, scale-free structure, as 
well as by universally applicable laws regarding many geomorpho-
logical and hydrological variables of direct relevance to ecology, such 
as catchment area, river bed width and depth, or variation in dis-
charge (Horton, 1945; Leopold & Maddock, 1953; Rodriguez-Iturbe 
& Rinaldo,  2001). In contrast to these specific features of natural 
landscape structures, much of ecological and evolutionary theory 
and experiments, but also much of the species-distribution model-
ing has assumed either random networks or simply structured linear, 
circular or Cartesian networks, in which local patches are connected 
to their 2, 4, or 8 nearest neighbors (e.g., Bascompte & Solé, 1996; 
Bell & Gonzalez,  2011; Holland & Hastings,  2008). This oversim-
plification of spatial network structures may limit the plausibility 
and relevance of the findings. An application to more realistic net-
work structures has, however, often been hindered by the lack of 

formalized, spatially correct, and generalizable network structures 
as well as easily accessible tools generating them.

Riverine ecosystems are not only of high interest to ecologists 
due to their universal network structure, but also due to the con-
siderable biodiversity inhabiting them (Altermatt,  2013; Altermatt 
et al., 2020; Balian, Segers, Lévèque, & Martens, 2008). River net-
works cover <1% of the landmasses, but contain up to 10% of all 
species. However, this high biodiversity, as well as the associated 
ecosystem functions, is threatened by various anthropogenically in-
duced causes, including pollution, biological invasions, or damming 
and modification of the network structure (Darwall et  al.,  2018; 
Vörösmarty et al., 2010). An understanding of many of these pro-
cesses requires a spatially explicit approach, such as how pollution 
and chemicals are transported in riverine networks (Helton, Hall, 
& Bertuzzo,  2018), how organisms spread along rivers and invade 
riverine ecosystems (Giometto, Altermatt, & Rinaldo,  2017; Mari, 
Casagrandi, Bertuzzo, Rinaldo, & Gatto, 2014), or how the modifi-
cation of network structures across drainage basins affects local 
diversity (Leuven et  al.,  2009). Consequently, there has been a 
rapid increase in ecological and evolutionary studies considering 
the effect of river-like network structures on ecological dynamics 
over the last two decades (Altermatt, 2013; Campbell Grant, Lowe, 
& Fagan, 2007; Fagan, 2002), paralleled by an increase in method-
ological tools to analyze such spatial datasets (Duarte et al., 2019; 
Muneepeerakul et al., 2008; Paz-Vinas & Blanchet, 2015; Peterson 
et  al.,  2013; Rinaldo, Gatto, & Rodriguez-Iturbe,  2020; Rodriguez-
Iturbe, Muneepeerakul, Bertuzzo, Levin, & Rinaldo, 2009; Welty, 
Torgersen, Brenkman, Duda, & Armstrong, 2015).

While all of these works acknowledge the importance of study-
ing rivers in a spatially explicit perspective, a large part of them is 
built on networks that do not factually capture many of the inherent 
characteristics of true riverine networks. Notable examples range 
from the River Continuum Concept (Vannote, Minshall, Cummins, 
Sedell, & Cushing, 1980), which describes rivers as a single, linear 
array of patches, to slightly more complex bifurcation networks or 
alterations thereof (Anderson & Hayes, 2018; Brown & Swan, 2010; 
Chaput-Bardy, Fleurant, Lemaire, & Secondi,  2009; Fagan,  2002; 
Morrissey & De Kerckhove,  2009; Paz-Vinas, Loot, Stevens, & 
Blanchet,  2015; Seymour & Altermatt,  2014; Seymour, Fronhofer, 
& Altermatt, 2015; Yeakel, Moore, Guimarães, & de Aguiar, 2014). 
All of these studies use networks that may at first sight look like 
“river” networks, but do not satisfy the necessary constraint posed 
by draining a given surface (Figure 1). Furthermore, these constructs 
do not adequately represent the connectivity and several geomet-
ric properties (like the distributions of upstream and downstream 
lengths, and of total contributing area at a point) inherent to nat-
ural river networks, and lack the space-filling attribute of small to 
smallest streams not only incrementally flowing into larger streams, 
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but also the common direct inflow of very small streams into large 
streams. As such, all of this work has been ignoring the extensive and 
long-lasting knowledge from geomorphology that has appropriately 
acknowledged and formalized the spatial unfolding of dendritic river 
networks.

In particular, the fractal character of river networks, epitomized 
by Horton's laws (Horton,  1945) on bifurcation and length ratios, 
was observed with regard to several morphological and hydrologi-
cal characteristics of river basins and expressed by means of a num-
ber of power-law relationships, which are the signatures of fractal 
behavior (Mandelbrot,  1983; Maritan, Rinaldo, Rigon, Giacometti, 
& Rodríguez-Iturbe,  1996). Notable examples are Hack's law 
(Hack, 1957) L∼Ah, linking the maximum upstream channelized length 
L at any location in the river with the corresponding drainage area 
A; the slope–area relationship s∼A�−1, where s is the channel slope 
(Tarboton, Bras, & Rodriguez-Iturbe, 1989); the scaling of the prob-
ability distribution of drainage areas P (A≥a)∼ a−� (Rodriguez-Iturbe, 
Ijjász-Vásquez, Bras, & Tarboton, 1992). Typical values observed in 
real rivers for the scaling exponents are h≈0.57, � ≈0.5, and �≈0.43 
(Rinaldo, Rigon, Banavar, Maritan, & Rodriguez-Iturbe, 2014). From 
a hydraulic geometry viewpoint, Leopold's relationships (Leopold & 
Maddock, 1953) express how mean river depth, width, and velocity 
change, both at-a-station and along the river's course, as power-law 
functions of discharge, which in turn scales linearly with drainage 
area (strictly speaking, this applies to landscape-forming discharges; 
Rodriguez-Iturbe & Rinaldo, 2001).

Such scale-invariant properties of river networks prompted 
the development of a model of idealized stream networks: optimal 
channel networks (OCNs). OCNs are “optimal” inasmuch as their 
configuration corresponds to a minimum of total energy expen-
diture and reproduces all scaling features of real rivers (Maritan 

et  al.,  1996; Rinaldo et  al.,  1992, 2014; Rodriguez-Iturbe, Rinaldo, 
et al., 1992). Importantly, OCNs are exact stationary solutions of the 
general equation describing landscape evolution (Banavar, Colaiori, 
Flammini, Maritan, & Rinaldo, 2001). The OCN construct allows the 
generation of an unlimited number of different network replicas 
spanning the same drainage domain, therefore enabling one to run 
computational experiments and derive results that are independent 
of the shape of a single river network, which would not be the case 
if real rivers were used as landscapes. Moreover, OCNs enable the 
investigation of spatial processes occurring not only in dendritic 
river networks, but also along the elevational gradients of fluvial 
landscapes (Bertuzzo et al., 2016; Giezendanner, Bertuzzo, Pasetto, 
Guisan, & Rinaldo,  2019). To this regard, it is worthwhile to note 
that the elevational landscape generated by an OCN is such that the 
graph obtained by following the steepest descent directions repro-
duces the OCN structure (Balister et al., 2018).

OCNs have been used to investigate a number of ecological is-
sues, ranging from metapopulation structure in riverine (Bertuzzo, 
Rodriguez-Iturbe, & Rinaldo,  2015; Fronhofer & Altermatt,  2017; 
Mari et al., 2014) and terrestrial landscapes (Bertuzzo et al., 2016; 
Giezendanner et al., 2019); habitat fragmentation (Sarker, Veremyev, 
Boginski, & Singh, 2019); spreading of human (Bertuzzo, Casagrandi, 
Gatto, Rodriguez-Iturbe, & Rinaldo, 2010; Gatto et al., 2013; Mari, 
Casagrandi, Bertuzzo, Rinaldo, & Gatto, 2019) and animal (Carraro, 
Mari, Gatto, Rinaldo, & Bertuzzo,  2018) waterborne pathogens; 
ecosystem processes, such as carbon (Bertuzzo, Helton, Hall, & 
Battin,  2017; Koenig et  al.,  2019) and nitrogen cycling (Helton 
et al., 2018); migration fronts of human populations (Campos, Fort, 
& Méndez,  2006); cross-ecosystem subsidies (Harvey, Gounand, 
Fronhofer, & Altermatt, 2020); sampling strategies for environmen-
tal DNA in rivers (Carraro, Stauffer, & Altermatt, 2020); riverine 

F I G U R E  1   Examples of river network analogues with increasing level of resemblance with real river networks. Line width increases 
toward the downstream direction. (a) Linear array of patches (Vannote et al., 1980). (b) Binary-fission-like tree (Fagan, 2002; Paz-Vinas 
et al., 2015). (c) An OCN spanning a 50 × 100 lattice, aggregated with a threshold area equal to 25 pixels. (d) A real river (Thur, Switzerland), 
spanning an area of 740 km2, extracted from a digital elevation model with a threshold area equal to 4 km2
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biodiversity patterns from a theoretical viewpoint (Muneepeerakul, 
Bertuzzo, Rinaldo, & Rodriguez-Iturbe,  2019); or by means of me-
socosm experiments (Carrara, Altermatt, Rodriguez-Iturbe, & 
Rinaldo,  2012; Carrara, Rinaldo, Giometto, & Altermatt,  2014; 
Harvey, Gounand, Fronhofer, & Altermatt, 2018).

Despite the long-standing establishment of the OCN concept, its 
application especially in ecology and evolutionary biology has been 
lagging behind, likely because easily accessible code or appropriate 
tools have been lacking. This is particularly regrettable considering 
the recent bloom of tools allowing the statistical analysis of data from 
real dendritic networks (e.g., the R-package SSN; Ver Hoef, Peterson, 
Cliord, & Shah, 2014). However, such tools are specifically designed for 
real river networks, while their applicability to virtually generated net-
works is limited. To fill this gap, we here describe the methodological 
and mathematical frameworks that underly OCNet, an R-package for 
the generation and analysis of optimal channel networks, and provide 
guidelines and examples to facilitate the use of this tool.

2  | THE OCNET PACK AGE

The OCN concept is based on the assumption that river network 
configurations occurring in nature correspond to a minimum of total 
energy dissipation across the landscape. Both this assumption and 
the ensuing algorithm generating OCNs are well supported by a 
comparison with river networks globally (Rinaldo et al., 1992, 2014; 
Rodriguez-Iturbe, Rinaldo, et al., 1992). This section is structured as 
follows: first, we provide an overview on the theoretical background 
underlying the generation of an OCN; second, we outline the struc-
ture of the OCNet package; third, we clarify some concepts concern-
ing the various aggregation levels at which an OCN can be defined 
and used.

2.1 | Theoretical background

Let us consider a regular lattice made up of N cells, where each cell 
represents the generic node i of the network. Each node i is con-
nected via a link to one of its nearest neighbors. The energy dissipa-
tion across the ith network link is proportional to QiΔhi, where Qi 
is the landscape-forming discharge in the link (Rinaldo et al., 2014), 
and Δhi= siLi the corresponding elevation drop, with si identify-
ing slope and Li link length. By assuming Qi

∼Ai (Rodriguez-Iturbe & 
Rinaldo, 2001), where Ai is the area drained by link i, and the slope–
area relationship si∼A

�−1

i
 (Tarboton et al., 1989), the functional rep-

resenting total energy expenditure across a landscape formed by N 
cells reads.

Note that link lengths do not appear in the above formula, as 
they can be considered constant with no loss of generality. The 

OCN configuration is defined by an adjacency matrix W whose 
corresponding set of drainage areas A=

[

A1,…,AN

]

 yields a local, 
dynamically accessible minimum of Equation (1). Note that the cor-
respondence between A and the adjacency matrix W of a tree is 
subsumed by the relationship IN−W

T
A=1, where I N is the identity 

matrix of order N, and 1 a N-dimensional vector of ones (Bertuzzo 
et al., 2015).

Minimization of Equation (1) is operated by means of a simulated 
annealing technique: starting from a feasible initial flow configuration 
(i.e., a spanning tree, see Figure 2a,e), a link at a time is rewired to one 
of its nearest neighbors; if the obtained configuration is a spanning 
tree, H is computed; the new configuration is accepted if it lowers 
total energy expenditure; if this is not the case, the new configura-
tion can still be accepted with a probability controlled by the cooling 
schedule of the simulated annealing algorithm. Such myopic search, 
which only explores close configurations, actually mimics the type 
of optimization that nature performs, at least in fluvial landscapes 
(Rinaldo et  al.,  2014). Notably, restricting the search of a network 
yielding a minimum of Equation (1) to spanning, loopless configura-
tions entails no approximation, because every spanning tree is a local 
minimum of total energy dissipation (Banavar, Colaiori, Flammini, 
Maritan, & Rinaldo, 2000). The shape of the so-obtained OCN retains 
the heritage of the initial flow configuration, although the extent to 
which this occurs is partly controlled by the cooling schedule adopted 
(Figure 2). This underpins the concept of feasible optimality, that is, 
the search for dynamically accessible configurations.

2.2 | Overall setup of the package

The OCNet package consists of a series of functions that allow con-
structing river-analogue networks as well as calculating a number of 
metrics and descriptors commonly used in spatial ecology. The net-
works constructed by the package are built at several levels of aggrega-
tion. At each level, they are generally defined by a number of nodes, an 
adjacency matrix, a vector of contributing areas and two vectors with 
longitudinal and latitudinal coordinates of the nodes. The functions 
constituting the OCNet package are intended to be applied in sequen-
tial order, and the respective output can be directly used to visualize 
the created networks and linked to other commonly used R-packages.

The first function, create_OCN, only requires the longitudinal and 
latitudinal dimensions of the lattice as necessary inputs, while sev-
eral other parameters can be optionally tuned to obtain customized 
results. Some examples are provided in the following section; ex-
tensive further information is given in the package documentation. 
The output of create_OCN is a list containing a sublist termed FD 
that, in turn, encloses key information on the topology of the net-
work, among which the adjacency matrix (written in sparse form via 
the spam format (Furrer & Sain, 2010)) and a vector of contributing 
areas. The subsequent functions landscape_OCN (generation of the 
three-dimensional landscape derived from the network configura-
tion), aggregate_OCN (aggregation of the OCN at various levels—see 
Aggregation levels), paths_OCN (evaluation of paths among network 

(1)H=

N
∑

i=1

A
�

i
.
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nodes, and lengths thereof), rivergeometry_OCN (hydraulic geometry 
of the river network, following Leopold and Maddock (1953)) require 
as necessary input the output list produced by the previous function, 
in the aforementioned order (except rivergeometry_OCN, which can 
be executed after aggregate_OCN). The output of these functions is 
a list where all objects of the input list are copied, and to which new 
objects are added. Note that output lists contain all input values, to 
avoid inconsistencies in the sequential application of functions. A 
group of functions (identified by the prefix “draw_”, see examples in 
Figure 3) are devoted to graphical representations of the OCN.

2.3 | Aggregation levels

Before moving to the illustration of some possible applications of 
the package, we here clarify some concepts and terminology with 

respect to the aggregation of OCNs. Additional details are provided 
in the package documentation. Networks produced by the OCN al-
gorithm can be used in a variety of fashions (see Table 1 for a review) 
by exploiting different connectivity metrics that are embedded in 
the OCN construct. At a first, nonaggregated level, each cell of the 
lattice (also termed as pixel) constitutes a node of the network (see 
Figure  4), and the connectivity among nodes is ruled by the flow 
direction pattern (represented by the adjacency matrix) obeying the 
OCN principle. This is here referred to as the flow direction level 
(FD).

As customary in hydrology when extracting a river network 
based on digital elevation models of the terrain (O'Callaghan & 
Mark,  1984), a threshold AT on drainage area can be imposed to 
identify those pixels of the lattice that constitute nodes of the river 
network (RN, second level—see Terui et al.  (2018) for an example 
of an ecological application of non-OCN synthetic networks akin 

F I G U R E  2   (a)Effect of initial network state (rows) and cooling schedule (columns) on the final OCN configuration. (b, c, d) OCNs on 
250 × 250 lattices generated from the initial state shown in panel (a. f, g, h) As above but with initial state as shown in panel e. (i) Dynamics 
of total energy expenditure H (Equation (1)) and temperature T (i.e., cooling schedule of the simulated annealing algorithm) for the 6 OCNs 
displayed above. Values of H and T are normalized by the energy of the initial network state. Note that, for graphical reasons, the initial 
states shown in panels (a, e) refer to 25 × 25 lattices
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to OCNs at the RN level). In a third, aggregated level (AG), nodes 
correspond to sources, confluences and outlet(s) of the river net-
work identified at the RN level. The whole lattice is then partitioned 
into areas that directly drain into the nodes at the AG level, or the 
edges departing from them, thereby constituting the fourth, sub-
catchment level (SC).

A fifth level (catchment, CM) partitions the lattice into regions 
that are drained by different outlets, when the multiple-outlet op-
tion in create_OCN is enabled (see following section). Finally, in an 
optional, zero-level spatial structure, all lattice pixels are treated 
as nodes, but connectivity follows the Von Neumann (4 near-
est neighbors, level N4) or Moore (8 nearest neighbors, level N8) 

F I G U R E  3   Examples of outputs from OCNet's graphical functions. (a) Representation of an OCN generated on a 250 × 250 lattice 
(draw_simple_OCN). Note that the network spans the whole lattice; for graphical reasons, the portion of network exceeding a given AT is 
plotted in blue. (b) Planar representation of the elevational landscape generated by the OCN of panel a (draw_elev2D_OCN). (c) Partitioning 
of the lattice into subcatchments for the OCN of panel a (draw_subcatchments_OCN); blue dots indicate locations of the nodes at the AG 
level. (d) Representation of an OCN generated on a 400 × 400 lattice, with all perimetral pixels as outlets (draw_contour_OCN); black solid 
lines display partitioning among catchments; the gray background identifies the largest catchment. (e) 3D representation of the largest 
catchment within the OCN of panel (d) (draw_elev3Drgl_OCN). (f) Strahler stream order values for the largest catchment within the OCN 
of panel (d) (draw_thematic_OCN). (g) Representation of an OCN generated on a 300 × 300 lattice, with 4 outlets (shown by black squares) 
and periodic boundaries (draw_contour_OCN). (h) Perspective 3D representation of the OCN of panel (g) (draw_elev3D_OCN). (i) Real-shaped 
representation of the OCN of panel (g) (draw_contour_OCN)
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neighborhoods, as in the green network described by Altermatt 
(2013). In this case, the OCN was used to generate a realistic eleva-
tion gradient governed by fluvial erosion, on which, for instance, the 
structure of terrestrial metapopulations can be studied (Bertuzzo 
et al., 2016; Giezendanner et al., 2019).

The final output of the OCNet functions is a list of lists, each of which 
named after the corresponding aggregation level (N4/N8, FD, RN, AG, 
SC, CM) and containing relevant topological and morphological infor-
mation for that level. Variables may vary in number, type, and definition 
among the sublists, although the adjacency matrix is defined for all lev-
els, while the drainage area vector is defined for all levels but N4/N8.

3  | OVERVIE W OF PACK AGE FE ATURES

3.1 | Number of outlets, boundary types, and 
elevational gradients

Although the OCN principle is primarily intended to be applied 
to networks spanning the whole drainage domain (where the area 
drained by the outlet is equal to the lattice area, see an example in 
Figure 3a–c), the generalization to the case of multiple networks—
each of which subsumed by a different outlet—within the same 
lattice is straightforward. Indeed, the very same mathematical 

Aggregation References

N4/N8 Bertuzzo et al. (2016) (N4 neighbourhood); Giezendanner et al. (2019) 
(dispersal kernel)

FD Bertuzzo et al. (2010); Bertuzzo et al. (2015); Campos et al. (2006); Gatto 
et al. (2013); Mari et al. (2014); Muneepeerakul et al. (2019); Sarker 
et al. (2019)

RN Bertuzzo et al. (2017); Carraro et al. (2020)

AG Carrara et al. (2012), Carrara et al. (2014); Carraro et al. (2018); Carraro et al. 
(2020); Fronhofer and Altermatt (2017); Harvey et al. (2018); Harvey et al. 
(2020); Helton et al. (2018); Koenig et al. (2019); Mari et al. (2019)

SC Helton et al. (2018)

TA B L E  1   Types of OCN aggregation 
schemes used in previous studies

F I G U R E  4   Representation of the different aggregation levels. Top row: example from a single-outlet 8 × 8 lattice describing how the 
aggregation procedure operated by aggregate_OCN works. Letter ‘O’ identifies the outlet pixel. Arrows on the other pixels identify flow 
directions; note that the these are not representative of an OCN, but are here presented only for illustrative purposes. Numbers represent 
the cumulative drainage area (in number of pixels). At the FD level, all 64 pixels belong to the network. To obtain the RN level, a threshold 
area AT = 5 pixels is applied to distinguish pixels belonging to the river network. Bottom row: the same procedure is applied to a single-outlet, 
20 × 20 OCN (obtained via the script presented in Generation of an OCN). Aggregation is performed with AT = 5 pixels. Note that river width 
is proportional to the square root of drainage area (Leopold & Maddock, 1953)
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formulation presented in Theoretical background holds when mul-
tiple-outlet pixels are imposed. Technically, this is done by pre-
venting these pixels to drain into their neighboring pixels. In this 
case, the sum of the areas drained by all outlet pixels is equal to 
the lattice area. In the package, the multiple-outlet option can 
be activated by means of the optional input nOutlet of function 
create_OCN. In the limiting case, all pixels at the lattice boundary 
can be treated as outlets (Bertuzzo et  al.,  2017; Sun, Meakin, & 
Jøssang,  1994). This is done by setting nOutlet  =  “All” in create_
OCN. A graphical representation of an OCN obtained for the latter 
case is shown in Figure 3d.

When a pixel's flow direction is rewired during the search for 
an optimal network configuration, possible directions are generally 
those toward the eight neighboring pixels. This is not the case for 
the outlet pixels (which cannot be rewired) and the pixels at the lat-
tice boundaries, which can be rewired to either three (corner pixels) 
or five (side pixels) neighboring cells. This latter assumption can be 
relaxed by allowing pixels at the boundary to drain into eight neigh-
bors, by also considering pixels at the opposite sides as feasible 
directions. In OCNet, periodic boundaries can be enabled via the op-
tional input periodicBoundaries of create_OCN. An example is shown 
in Figure 3g–i. Such option can be useful when the OCN lattice is to 
be considered as the periodic unit of an infinite landscape (Bertuzzo 
et al., 2016; Giezendanner et al., 2019), or when one aims at building 
OCNs spanning domains that are not lattice-shaped (see Figure 3f,i).

Once an OCN has been created by the simulated annealing al-
gorithm, the iterative application of the slope–area relationship 
starting from the outlet node and moving in the upstream direc-
tions enables the derivation of the elevation field subsumed by the 
OCN (up to two constants, e.g., the elevation and slope of the outlet 
pixel). Some examples of elevational landscapes built on OCNs are 
provided in Figure 3b,e,h. Importantly, the slope–area relationship 
only holds for the channeled portion of the domain, which implies, 
strictly speaking, that the OCN must not be aggregated if one aims 
at making use of a three-dimensional landscape generated by an 
OCN. Moreover, the slope–area relationship is actually multiscaling 
(Tarboton et al., 1989), therefore the simple recursive application of 
si
∼A

�−1

i
 (as performed by the function landscape_OCN) to yield an el-

evational landscape is to be considered as a first approximation, suit-
able for ecological applications. Methods to account for the scaling 
of the variance of the slope–area relationship exist (Grimaldi, Teles, 
& Bras, 2005), but are beyond the scope of this work.

3.2 | Relationship between threshold 
drainage area and number of nodes

Owing to the somewhat heuristic procedure for the definition of an 
aggregated network based on a threshold drainage area value AT, 
it is not possible to establish a priori how many nodes at the AG 
level correspond to a given AT. This in fact depends on the configu-
ration of the OCN at the FD level, which is the result of a stochas-
tic process. This issue is particularly relevant when OCNs are used 

in experiments where practical reasons enforce a limitation on the 
number of nodes that can be handled, or when several OCN replicas 
with the same number of aggregated nodes are required.

To help overcome this issue, OCNet includes the function find_
area_threshold_OCN, which requires as input a nonaggregated OCN 
(produced by landscape_OCN) and evaluates the number of nodes 
resulting from the aggregation procedure for different values of 
AT. Such a function can therefore be used prior to aggregate_OCN 
to assess which threshold has to be used to obtain a network with 
the desired aggregation structure. Additionally, find_area_threshold_
OCN also evaluates other variables that help characterize the net-
work structure from a hydrological perspective, such as maximum 
stream order and drainage density. Maximum stream order can be of 
interest in some studies, when patch sizes need to be related to the 
structure of the underlying network but only few discrete dimen-
sions are available, so that it is convenient to employ different patch 
sizes for different stream order values of the corresponding nodes 
(e.g., Harvey et al., 2018). Drainage density is relevant because it 
allows the assessment of hydrological characteristics of the aggre-
gated OCN for a given metric resolution (i.e., the length in meters 
attributed to a pixel length—corresponding to the optional input 
cellsize of create_OCN), such as aridity and timing of the hydrologic 
response (Pallard, Castellarin, & Montanari, 2009).

Figure  5 shows results from the application of find_area_
threshold_OCN to several OCNs built on large lattices. When AT is 
lower than 2% of the lattice size, the number of nodes scales fairly 
well as a power law of the normalized threshold area (Figure 5a). 
This relationship allows qualitatively assessing the relevant range 
of AT corresponding to a sought number of nodes at the AG level, 
which can be used as input in find_area_threshold_OCN to speed 
up its execution, especially for large networks. Scaling relation-
ships with AT are also found for maximum Strahler stream order 
(Figure 5b) and drainage density (Figure 5c). To provide an exam-
ple, if a threshold AT = 20 pixels is applied to a 200 × 200 OCN, the 
expected number of nodes at the AG level is 1,052.4, the expected 
maximum stream order is 5.56, and the expected drainage density 
is Dd = 0.1454 inverse planar units, which corresponds to a rela-
tively wet catchment (Dd = 2.91/km) of area 100 km2 (when 1 pla-
nar unit represents 50 m), or to a rather arid catchment (Dd = 1.46/
km) of area 400 km2 (if 1 planar unit is equal to 100 m). Notably, 
the relationship between drainage density and threshold area AT 
mirrors the scaling behavior of drainage areas (Figure 5d), which 
is characterized by an exponent __ in the range [0.42;0.45] (see 
Introduction and Rinaldo et al. (2014)). Indeed, drainage density for 
a given AT is roughly (i.e., if differences in lengths between verti-
cal/horizontal and diagonal flow directions are neglected) equal 
to the number of pixels whose area is greater than or equal to 
AT. Figure 5d also represents how the number of nodes at the RN 
level (NRN) scales with varying AT: to this end, it suffices to replace 
a with AT and P (A≥a) with NRN‘∕N.

The scaling behavior of OCNs displayed in Figure 5 can also pro-
vide useful information with respect to the choice of values of relevant 
parameters N and AT that allow generating an OCN of adequate size for 
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F I G U R E  5   Effect of choice of threshold area AT on OCN configuration. Aggregation of four large OCNs is performed ∀AT={1,…,N} via 
function find_area_threshold_OCN. For all panels, vertical lines indicate the cutoff value AT=0.02 ⋅N; only points corresponding to threshold 
area values below the cutoff are used to estimate the (dashed) regression lines, whose equations and R2 values are reported. (a) Number of 
nodes at the AG level scales as a power-law function of the normalized threshold area aT=AT∕N. (b) Maximum Stahler stream order value as 
a function of normalized threshold area aT. (c) Drainage density scales as a power-law function of threshold area AT. (d) Scaling behavior of 
OCNs: probability P (A≥a) of randomly sampling a pixel within the lattice whose drainage area A is not greater than a given value a

F I G U R E  6   Compatibility of OCNet with packages igraph and SSN. Examples are built on the OCN obtained in Generation of an OCN. (a) 
The OCN, aggregated at the AG level, is transformed into an igraph object (via OCN_to_igraph), and plotted via the function plot.igraph of 
igraph. (b) The same OCN is plotted via draw_thematic_OCN. (c) The same OCN is transformed into an SSN object (via OCN_to_SSN) and 
plotted via the function plot.SpatialStreamNetwork of SSN. Here, 50 observation points have been sampled along the network by means of a 
binomial design, and their distance from the outlet is displayed
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practical applications. To this extent, it is worthwhile to note that the 
OCN construct is invariant under coarse graining (Rinaldo et al., 2014; 
Rodriguez-Iturbe & Rinaldo, 2001), which means that the choice of the 
lattice dimension N does not affect the scaling of drainage areas. As in 
the example above, such choice should rather be based on geomor-
phological arguments, that is, the answers to the questions: What is 
the area that the OCN is supposed to drain? What are the expected 
values of maximum stream order and drainage density on this area? 
However, as a rule-of-thumb indication, we suggest to perform aggre-
gation with a threshold not greater than AT=0.02 ⋅N, such that the 
obtained configuration is not affected by the finite-size scaling effect; 
this corresponds to an expected NAG  ≥  30 (see Figure 5a).

3.3 | Compatibility with existing R-packages

Specific functions of OCNet enable transformation of OCNs into 
objects that can be used by other commonly used R-packages in 
spatial ecology. In particular, compatibility with igraph (Csardi & 
Nepusz, 2006), a package for network analysis and visualization, is 
provided by function OCN_to_igraph. Moreover, function OCN_to_
SSN transforms an OCN at a desired aggregation level into an object 
that can be read by SSN, a package on spatial statistical modeling 
and prediction for data on stream networks (Ver Hoef et al., 2014). 
Examples for these functions are shown in Figure 6. Finally, output 
from OCNet can be used in combination with R-packages for geo-
statistical modeling such as gstat (Pebesma,  2004), based on the 
coordinates of nodes of an OCN given at any aggregation level. 
Remarkably, adjacency matrices and other information can easily 
be extracted as base R objects, which guarantees compatibility with 
virtually every R-package and even other programming languages.

4  | APPLIC ATION E X AMPLE: A 
METAPOPUL ATION MODEL

In order to show a possible application of the OCNet package, we 
now apply a simple metapopulation model for an invasive riverine 
species to an OCN.

4.1 | Generation of an OCN

Let us build an OCN with the following assumptions: it spans a 
20 × 20 lattice, with a single outlet located close to the southwest-
ern corner of the lattice, and each pixel represents a square of side 
500 m (total size of the catchment is therefore 100 km2); the eleva-
tion, slope and channel width of the outlet node are 0 m a.s.l., 0.01, 
and 5 m, respectively; the threshold area used to aggregate the net-
work is equal to 1.25 km2. The code lines to build such network are 
the following:

set.seed(1) # use fixed random number generator.
OCN <- create_OCN(20, 20, outletPos = 3, cellsize = 500).

OCN <- landscape_OCN(OCN, slope0 = 0.01).
OCN <- aggregate_OCN(OCN, thrA = 1.25e6).
OCN <- paths_OCN(OCN, pathsRN = TRUE).
OCN <- rivergeometry_OCN(OCN, widthMax = 5).
The resulting OCN is shown in Figure 4.

4.2 | Metapopulation model

Let us build a discrete-time, deterministic metapopulation model 
on the previously built OCN, according to the following assump-
tions: (a) the model is run on the OCN aggregated at the RN level 
(consisting of Nn nodes); (b) population growth at each node follows 
the Beverton-Holt model (Beverton & Holt, 1957), with baseline fe-
cundity rate r = 1.05 constant for all nodes, and carrying capacity 
Ki=10 ⋅Wi, where Wi is the river width of the network node i; (c) at 
each time step t, the number of individuals moving from node i is 
equal to gPi (t), where g = 0.1 is a mobility rate constant for all nodes, 
and Pi (t) is the (expected) population size at node i and time t; (d) at 
each time step, individuals at node i can only move to a node that is 
directly connected to i, either downstream or upstream; (e) pd and 
pu=1−pd identify the probability to move downstream or upstream, 
respectively; (f) if the indegree of node i is larger than 1 (namely the 
node has multiple upstream connections), individuals moving up-
stream are split among the possible destination nodes into fractions 
Yi proportional to their drainage areas; (g) as initial condition, all net-
work nodes are uninhabited barring the node f that is farthest from 
the outlet (where Pf,1=1). The model equation hence reads. 

where wij is a generic entry of the adjacency matrix W expressing OCN 
connectivity at the RN level; Di (Ui) is equal to one if there is a down-
stream (upstream) connection available from node i and is null other-
wise. Weights Yi are defined as 

where i′ is such that wii′  = 1, and Ai is the drainage area at node i.
We performed two model simulations to investigate the effect 

of parameters pd, pu on the time elapsed until the system reaches a 
steady state; in a first (default) run, no preferential direction of move-
ment was assumed (pd = pu = 0.5); in the second run, a preference for 
downstream movement (pd = 0.7, pu = 0.3) was hypothesized. Results 
are shown in Figure 7. When pd = 0.5, the invading species rapidly 
reaches the equilibrium in the initially occupied node, while coloni-
zation of the downstream patches is delayed. When a preference for 
downstream movement is attributed (pd = 0.7), local population growth 
in the onset (green) node is slower, whereas invasion of the outlet node 
occurs faster, both in terms of initial growth and establishment of the 
equilibrium (see colored vertical lines in Figure 7a). Colonization of the 
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headwater that is farthest from the onset node is also delayed with re-
spect to the default case. As a result, when pd = 0.7, the metapopulation 
size initially grows faster than when pd = 0.5, due to fast invasion of the 
downstream nodes and growth of the local populations therein (see 
Figure 7b); in a second phase, the growth rate of the metapopulation is 
reduced, because invasion of the upstream nodes is hampered by the 
low pu value, and the establishment of the equilibrium is delayed. As for 
the spatial spread of the metapopulation, when a preference for down-
stream movement is adopted, local population sizes at equilibrium tend 
to increase in the downstream nodes and decrease in the upstream 
nodes with respect to the default case (Figure 7a), resulting in a slightly 
lower overall metapopulation size at equilibrium (Figure 7b).

5  | CONCLUSIONS

The importance of adequately representing spatial processes in eco-
logical and evolutionary studies cannot be overstated. In the realm 
of freshwater ecology in particular, it is essential to consider how 
geomorphology shapes the structure of dendritic river networks 
and the ensuing connectivity configuration, which in turn control 

the variability of physical habitats and environmental variables, the 
dispersal of species and pathogens, and the spatial patterns of biodi-
versity and ecosystem processes. To this end, we presented OCNet, 
an R-package that enables the generation of optimal channel net-
works, spanning trees that reproduce all scaling features of real river 
networks throughout the globe. These can be used as realistic river-
ine landscape analogues for a number of ecological, epidemiological, 
ecohydrological and evolutionary studies. We reviewed the theoret-
ical background of the OCN concept and the existing applications on 
problems of ecological relevance, provided an overview of the main 
functionalities of the package, and proposed an example of applica-
tion in the context of an invasive riverine species. We believe that 
this tool will allow a leap forward in the way spatial processes in river 
networks are investigated.
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F I G U R E  7   Results from the application of a metapopulaton model on an OCN. (a) Dynamics of local population size in three nodes: green 
represents the headwater that is invaded at the beginning of the simulation; red, the outlet; blue, the headwater that is farthest from the 
green node (see circles in the top-left corner of panel c). Colored vertical lines represent the time steps when the respective local population 
has reached the equilibrium (arbitrarily imposed as 99% of the population size at t=800). Black solid lines identify the time steps used in 
panel (c). (b) Dynamics of the overall metapopulation size. Line styles as in panel (a). (c) Snapshots (obtained via draw_thematic_OCN) of 
spatial spread of the metapopulation at 3 different time steps
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