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Aims: To evaluate whether low level left vagus nerve stimulation (LLVNS) in early stage

of myocardial infarction (MI) could effectively prevent ventricular arrhythmias (VAs) and

protect cardiac function, and explore the underlying mechanisms.

Methods and Results: After undergoing implantable cardioverter defibrillators (ICD)

and left cervical vagal stimulators implantation and MI creation, 16 dogs were randomly

divided into three groups: the MI (n = 6), MI+LLVNS (n = 5), and sham operation (n = 5)

groups. LLVNS was performed for 3 weeks. VAs, the left ventricular function, the density

of the nerve fibers in the infarction area and gene expression profiles were analyzed.

Compared with the MI group, dogs in the MI+LLVNS group had a lower VAs incidence

(p < 0.05) and better left ventricular function. LLVNS significantly inhibited excessive

sympathetic nerve sprouting with the evidences of decreased density of TH, GAP43 and

NF positive nerves (p < 0.05). The gene expression profiling found a total of 206 genes

differentially expressed between MI+LLVNS and MI dogs, mainly involved in cardiac

tissue remodeling, cardiac neural remodeling, immune response and apoptosis. These

genes, including 55 up-regulated genes and 151 down-regulated genes, showed more

protective expressions under LLVNS.

Conclusions: This study suggests that LLVNS was delivered without altering heart

rate, contributing to reduced incidences of VAs and improved left ventricular function.

The potential mechanisms included suppressing cardiac neuronal sprouting, inhibiting

excessive sympathetic nerve sprouting and subduing pro-inflammatory responses by

regulating gene expressions from a canine experimental study.

Keywords: vagus nerve stimulation, myocardial infarction, ventricular arrhythmia, gene expression, cardiac neural

remodeling, heart failure

INTRODUCTION

Acute myocardial infarction (MI) is a major cause of morbidity and mortality worldwide and
continues to pose significant therapeutics challenges (1). Although timely myocardial reperfusion
is the most effective therapeutic to reverse myocardial damage, the abrupt restoration of blood
flow to ischemic tissue can induce ventricular arrhythmias (VAs) (2). The incidence of VAs is
high especially during the first month after MI (3). Implantable cardioverter defibrillators (ICDs)
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have been proven to be an effective treatment to terminate VAs.
However, no trials have shown benefits on long-term mortality
due to ICD implantation after MI (4).

Left vagus nerve stimulation (VNS) is a safe and effective
treatment for neurological disorders (5). In recent years, VNS
treatment before or during ischemia has been shown an
antiarrhythmic effect and protect against cardiac remodeling in
animal models (6–9). However, two large clinical trials failed
to demonstrate that VNS could improve cardiac function or
reduce mortality (10, 11). Another study showed VNS was a
promising therapy in heart failure (HF) (12–16). The interfaces
and stimulation protocols used among the abovementioned
studies were various, probably contributing to different results
(17–19). Ardell et al. (18) described an approach to optimal
dosing, yielding physiological augment of vagus nerve activity. In
addition, all the published trails focused on refractory HF rather
than the onset of HF.

In the present study, low level left VNS (LLVNS) using optimal
dosing was performed at the onset of HF. The objective was to:1)
evaluate whether LLVNS could be an effective therapeutics for
preventing VAs and improving cardiac function; and 2) explore
the underlying mechanisms using a canine model.

MATERIALS AND METHODS

The experimental preparations and protocols were approval by
the Animal Care and Use Committee of the Chinese Academy of
Medical Sciences, Peking UnionMedical College, Fuwai Hospital
and Cardiovascular Institute, Beijing, China. Adult mongrel dogs
of either sex (n = 19, 17–22 kg) were used in this study. The
investigation conforms to the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes
of Health (NIH Publication No. 85–23, revised 1985). At the
end of the experiment, all animals were euthanized with a
lethal dose of sodium pentobarbital. The experimental protocol
is shown in Figure 1.

Animal Preparation
All dogs were anesthetized with 40 mg/kg sodium pentobarbital
and ventilated with room air by a positive pressure respirator
(ACM619, Beijing Aerospace Changfeng Co., Ltd, Beijing,
China). Additional maintenance doses of 2 mg/kg sodium
pentobarbital were administered at the end of each hour during
the procedure. Ringer’s lactate solution was continuously
infused through the ear vein. Continuous body surface
electrocardiograms (ECGs) were recorded. A heating
pad was used to maintain the core body temperature at
36.5 ± 1.5◦C. In addition, percutaneous arterial oxygen
saturation (SpO2) and blood pressure (BP) were monitored
throughout the procedures.

Implantable Cardioverter Defibrillator
Implantation
Under fluoroscopic guidance, passive fixation pacing (4574,
Medtronic, USA) and defibrillation (6935, Medtronic, USA)
leads were placed through the right internal jugular vein into the
right atrial appendage and right ventricular apex, respectively.

The leads were connected to an ICD (Protecta DR D364DRM,
Medtronic, USA), and the system was subsequently implanted
in the neck region. The device was maintained in the DDD
mode with a lower pacing rate of 60 bpm. The arrhythmia
detection zones were set at 230 bpm for ventricular tachycardia
(VT) and 250 bpm for ventricular fibrillation (VF). The device
therapies were enabled to deliver full device output (35 J) for
VT/VF detection during the infarction and first 24 h after MI
and were disabled at all other times. Counts of the VF, VT,
nonsustained ventricular tachycardia (NSVT) and premature
ventricular contraction (PVC) recorded by the ICD were
determined for the data analysis.

Creation of MI and Experimental Groups
A left thoracotomy was performed in the third to fourth
intercostal space. The left anterior descending coronary artery
(LAD) was isolated in all dogs, except for those in the sham
operation group, and the occlusion was performed between the
first and second diagonal branches to produce the MI model. All
major diagonal branches were ligated to decrease collateral flow
to the infarct area. The LAD was partially occluded for 10min
and then tied off completely. Animals in the sham operation
group (n = 5) were served as controls, the chest cavities of
them were opened without LAD isolated. MI was confirmed
by the appearance of an acute ST-segment elevation in the
ECG. The dogs were subsequently monitored for 60min to
detect arrhythmias. Then, the chest was closed in layers, and the
pneumothorax was reduced. Three dogs died of VF that occurred
immediately after the induction of LAD occlusion that was not
terminated by electrical defibrillation attempts. The remaining
11 dogs were randomly divided into 2 groups [the MI (n = 6)
and MI+LLVNS (n = 5) groups] with a follow-up period up to
3 weeks.

Low Level Left Vagus Nerve Stimulation
(LLVNS)
The vagus nerve in the left neck of the 16 dogs was
separated, and a cervical VNS cuff electrode was inserted.
The other end of the electrode was connected to a nerve
stimulator (Ensense Biomedical Technology Co., Ltd., China)
buried in a pocket at the neck area. In the VNS+MI
group, the stimulators were turned on for 120min after LAD
occlusion with the following stimulus parameters, which were
described as optimal dosing by a previous study (18): the
output amplitude was set at the stimulation threshold of
minus 1 volt and did not cause a heart rate (HR) change
(the threshold was the output which could cause an abrupt
decrease in the baseline HR by 20%); the pulse width was
0.5ms; and the frequency was programmed at 10Hz with
continuous recurring cycles of 12 s on and 60 s off. The average
voltage used for VNS was 1.2 ± 0.4V (range from 0.8 to
1.6V). The devices implanted in the MI and sham operation
groups remained off. The HRs were recorded at baseline,
before the VNS device implantation and at 1 h after the VNS
device implantation.
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FIGURE 1 | Timeline of the experimental protocol. ICD, implantable cardioverter defibrillators; LAD, left anterior descending coronary artery; VNS, vagus nerve

stimulation; VF, ventricular fibrillation; LLVNS, low level left vagus nerve stimulation; MI, myocardial infarction.

Echocardiographic Evaluation
Transthoracic echocardiography was performed at baseline and
3 weeks after MI. Standard 2-dimensional short- and long-
parasternal views and 4-, 2-, and 3-chamber apical views
were obtained via standard procedures using a 3S transducer
coupled to a Vivid 7 echocardiographic machine (GE Medical,
Milwaukee, Wisconsin). The left ventricular (LV) end-diastolic
dimension (LVEDD), LV end-systolic dimension, and LV
ejection fraction (LVEF) were measured twice according to the
modified American Society of Echocardiography guidelines by
two different physicians trained in ultrasound technology. The
averages were used in the final data processing.

Immunohistochemistry
Hearts were cut and fixed in 4% formalin for 48–72 h at 4◦C.
Sectioning was performed longitudinally (along the direction of
blood flow). The segments of the peripheries of the myocardial
scars and perivascular regions were processed into paraffin
blocks, and oriented to clearly visualize the epicardial and
endocardial surfaces. The paraffinized tissue blocks were cut
into 3 µm-thick sections. For each paraffin block, one slide
each was stained with hematoxylin-eosin (HE) to accentuate
muscle and connective tissues. Then, immunohistochemical
staining was performed to detect growth-associated protein 43
(GAP43), tyrosine hydroxylase (TH) and neurofilament (NF)
(Proteintech Group, Rosemont, USA) and evaluate the nerve
density according to standard procedures.

The density of the TH, NF, and GAP43 positive nerve fibers
was assessed using the images of 20X magnification areas,
which was obtained under a light microscope equipped with a
computerized image system (Leica QWin V3, Germany). The
density was expressed as the average of ten randomly selected
fields (µm2/mm2). The average density of all the nerves in the
field of view was regarded as the average density of nerves of the
slices. Computer aided Bioanalysis Image Software 2012 (CEWEI

Co., Ltd. Shanghai, China) was applied to calculate the density of
the nerves.

Gene Expression Profiling
Preparation of Myocardial Tissue
In accordance with previous studies, (20) we used sample
pooling strategies for microarray analysis. Three dogs from the
MI group and three dogs from the MI+LLVNS group were
randomly chosen and sacrificed 3weeks after MI following the
echocardiographic assessment. Remote zone tissues of the LV
free wall were collected and stored in liquid nitrogen; then, total
RNA was extracted and used for the microarray and real-time
PCR experiments.

Microarray Data Analysis
Total RNA was isolated using a Takara RNAiso Plus Kit
(Takara, DaLian, LiaoNing, CN) according to the manufacturer’s
instructions. RNA integrity was analyzed by standard agarose gel
electrophoresis and ethidium bromide staining. Qualified total
RNA was further purified by using an RNeasy Micro Kit (Qiagen,
GmBH, Germany). RNA samples from each group were then
used to generate biotinylated cRNA targets for the Affymetrix
Canine Genome 2.0 array (Affymetrix, Santa Clara, CA, US).
The array was hybridized and washed using GeneChip R©

Hybridization, Wash and Stain Kit (Affymetrix, Santa Clara, CA,
US), a Hybridization Oven 645 (Affymetrix, Santa Clara, CA,
US) and a Fluidics Station 450 (Affymetrix, Santa Clara,
CA, US) according to manufacturer’s instructions. Slides were
scanned by a GeneChip R© Scanner 3000 (Affymetrix, Santa
Clara, CA, US) and Command Console Software 4.0 (Affymetrix,
Santa Clara, CA, US) using default settings. Raw data was
normalized by the MAS 5.0 algorithm, Gene Spring Software
12.6.1 (Agilent technologies, Santa Clara, CA, US). The raw
data was normalized using Genespring software (Agilent).
Genes with a fold change of at least 1.5 and have statistically
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significant (p< 0.05) were grouped in functional categories based
on Gene Ontology database (GO: http://www.geneontology.
org/). Functional pathways (Kyoto Encyclopedia of Genes and
Genomes, KEGG) were also analyzed in genes with a fold change
of at least 2 between two groups.

Real-Time Quantitative PCR Analysis
To validate the gene expression data obtained through the
microarray analysis, a real-time quantitative PCR analysis
was performed. Total RNA from the same samples were
acquired. First strand cDNA was synthesized using cDNA
Reverse-Transcription Kit (Revert Aid First Strand cDNA
Synthesis Kit, K1622, Thermo). Quantitative PCR was performed
with GoTaq qPCR Master Mix (Promega, A6001, USA). The
expression levels of the target sequences were normalized to
those of an endogenous control, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH).

Statistical Analysis
All continuous variables are presented as mean ± standard
deviation, and categorical data are expressed as frequencies and
percentages. The data were tested for a normal distribution
using the Shapiro-Wilk normality test. In cases where the
data fulfilled normality test, Student’s t-test was used to assess
the significant differences, and in cases where the data failed
the normality test, the non-parametric Mann-Whitney test
was used. A two–tailed P ≤ 0.05 was considered to indicate
statistical significance. ANOVA analysis was conducted for three
group comparisons in Echo and others whenever necessary.
Statistical significance was indicated by p < 0.05. The microarray
data was imported into online an SAS analysis system for
gene expression data analysis. All statistical analyses were
performed using IBM SPSS Statistics 22.0 (SPSS, IBM, USA)
and GraphPad Prism software (version 6.0; GraphPad Software,
LaJolla, CA).

RESULTS

Effect of LLVNS on the Heart Rate
The HR values at baseline, before the VNS device implantation,
at 1 h after the VNS device implantation and before sacrifice are
shown in Table 1. The HRs were compared between baseline
and before sacrifice, and between before and 1 h after the
implantation of the VNS stimulators. LLVNS did not show
any significant effects on the HR at 1 h after the VNS device
implantation and before sacrifice.

LLVNS Reduced the Occurrence of
Ventricular Arrhythmias
As shown in Figure 2, the episodes continuously recorded via
ICDs revealed that compared with theMI group, theMI+LLVNS
group exhibited significantly fewer VF (0.25 ± 0.21 vs. 1 ± 0.44,
p= 0.045) and VT (12.3± 5.4 vs. 74.7± 7.5, p< 0.001) episodes,
and the number of NSVT (176.8± 70.1 vs.329.2± 52.1, p= 0.11)
and PVC (62.9± 17.3 per hour vs. 90.6± 4.8 per hour, p= 0.18)
episodes appeared to be lower but without reaching statistical
significance. An example of an intracardiac electrocardiogram of
VF detected by the ICD and terminated by an ICD shock is shown
in Figure 2B.

Effect of LLVNS on the Left Ventricular
Function
The echocardiography results in the three groups are presented
in Table 2. The left ventricular function in both the VNS+MI
and MI groups was significantly deteriorated when compared
with that in the sham operation group. After 3 weeks of LLVNS,
the LVEF in the MI+LLVNS group was significantly higher
(44.5 ± 0.4% vs. 26.3 ± 7.5%, p = 0.006), and the LVEDD was
significantly lower (3.4± 0.2 cm vs. 4.2± 0.9 cm, p= 0.001) than
those in the MI group.

LLVNS Suppressed Cardiac Neural
Remodeling
Typical examples of TH-, GAP43- and NF staining on the
border of the myocardial injury in the MI+LLVNS and MI
groups are shown in Figure 3. Nerve sprouting was observed
in both groups; however, compared with the MI+LLVNS
group, the density of the TH, GAP43 and NF positive nerve
fibers was higher in the MI group. The densities of the
nerve fibers in the infarct area between the three groups are
illustrated in Figure 3. Compared with the sham operation
group, TH, GAP43 and NF positive nerves were increased in
the MI+LLVNS and MI groups 3 weeks after MI. Compared
with the MI group, the density of the TH positive (15,411
± 8,955 vs. 38,180 ± 18725 µm2/mm2, p = 0.023), GAP43
positive (20,436 ± 7,497 vs. 40,870 ± 3701 µm2/mm2, p <

0.001) and NF positive (74,473 ± 14,141 vs. 103,966 ± 12313
µm2/mm2, p = 0.003) nerves in the MI+LLVNS group was
remarkably reduced.

TABLE 1 | The effect of low level vagus nerve stimulation on heart rate.

HR (beats min−1) Sham operation (n = 5) MI (n = 6) MI+LLVNS (n = 5)

Baseline 128 ± 9 131 ± 14 130 ± 17

Before sacrificed 129 ± 15 133 ± 16 127 ± 15

Before LLVNS device implanted 130 ± 13 140 ± 18 141 ± 20

1 h after LLVNS device implanted 132 ± 13 142 ± 12 138 ± 13

LLVNS, low level left vagus nerve stimulation; MI, myocardial infarction; HR, heart rate.
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FIGURE 2 | The occurrence of VAs in the MI and MI+LLVNS groups. (A) The occurrence of VF, VT, NSVT, and PVC between the MI group (n = 6) and the MI+LLVNS

group (n = 5) (*p < 0.05). (B) Example of an IEGM of ventricular fibrillation detected by the ICD and terminated by an ICD shock. The blue arrow shows the VF

detected; the red arrow indicates the shock by the device, which restores the sinus rhythm. VAs, ventricular arrhythmias; VF, ventricular fibrillation; VT, ventricular

tachycardia; NSVT, non-sustained ventricular tachycardia; PVC, premature ventricular contraction; ICD, implantable cardioverter defibrillators; LLVNS, low level left

vagus nerve stimulation; MI, myocardial infarction.

TABLE 2 | Echocardiographic measurements between the 3 groups.

Measurement Time Sham operation (n = 5) MI (n = 6) MI+LLVNS (n = 5)

LVEF (%) Baseline 61.5 ± 2.4 59.7 ± 4.1 60.4 ± 2.4

3 weeks after MI 61.5 ± 3.2 26.3 ± 7.5# 44.5 ± 0.4*#

LVEDD (cm) Baseline 3.3 ± 0.3 3.2 ± 0.9 3.1 ± 0.4

3 weeks after MI 3.1 ± 0.5 4.2 ± 0.9# 3.4 ± 0.2*

LVESD (cm) Baseline 2.1 ± 0.5 2.8 ± 1.0 2.2 ± 0.3

3 weeks after MI 1.99 ± 0.36 2.8 ± 0.6# 2.5 ± 0.3#

#compared with those in the sham operation, p < 0.05; *compared with those in MI group p < 0.05.

LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; LLVNS, low level left vagus nerve stimulation;

MI, myocardial infarction.

Gene Expression Profiles and Real-Time
PCR Confirmation
The microarray analysis identified 206 genes out of 20,000 non-
redundant predicted genes that were significantly altered by at

least 1.5 folds between the two groups (p < 0.05) (Figure 4A).
Among them, the levels of 151 genes were decreased, and

the levels of 55 genes were increased in the MI+LLVNS

group, compared with MI group. The results are shown
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FIGURE 3 | Typical examples and densities of of TH-, GAP43- and NF-positive nerve fibers. (A) Border of myocardial injury was stained with hematoxylin and eosin

(HE) as revealed by infiltration of inflammatory cells. (B–D): Increased density of TH-, GAP 43- and NF-positive nerve fibers at the border of myocardial injury,

respectively. (E–G): Densities of TH-, GAP43- and NF-positive nerve fibers in three groups. The asterisk (*) indicates an artery in the cardiac tissue. Arrows in (A)

indicate infiltration of inflammatory cells. Arrows in (B–D) indicate of TH-, GAP 43- and NF-positive nerve fibers separately. #compared with those in the sham

operation, p < 0.05. +compared with those in MI group p < 0.05. TH, tyrosine hydroxylase; GAP43, growth associated protein 43; NF, neurofilament; LLVNS, low

level left vagus nerve stimulation; MI, myocardial infarction. MI group (n = 6), MI+LLVNS group (n = 5), Sham operation group (n = 5).

in Supplemental Table 1. The differentially expressed genes
(DEGs) were grouped into functional categories based on the
Gene Ontology database (GO: http://www.geneontology.org/).
The results showed that the majority of DEGs were involved in
the regulation of immune system processes, apoptosis processes,
programmed cell death processes, the ERK1 and ERK2 cascades,
responses to nitrogen compounds, organonitrogen compounds,
stress and developmental processes (Figure 4C). Ten expression
DEGs identified by the microarray were re-confirmed using

quantitative real-time PCR. The relative expression of all the
examined genes determined by microarray and real-time PCR
were comparable (Figure 4B). Genes with a fold change of at least
2 were defined as functional pathways (KEGG). Based on KEGG
pathways, distinct functional classes identified for transcripts
were expressed differentially among dogs between the MI and
MI+LLVNS groups. Figure 5 shows the relative distribution of
10 KEGG pathways, expressed as the percentage of up- and
down-regulated transcripts, between the MI and MI+LLVNS
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FIGURE 4 | LLVNS regulates the expression of genes. (A) The heat map of DEGs in the cardiac tissue (p < 0.05, 1.5 fold or more) between the MI and MI+LLVNS

groups. (B) The verification of some DEGs identified in microarray analyses by RT-PCR analyses. (C) A pie chart of gene ontology clustering for the DEGs shown in (A).

*p < 0.05. DEGs, differentially expressed genes; LLVNS, low level left vagus nerve stimulation; MI, myocardial infarction. MI group (n = 6), MI+LLVNS group (n = 5).

groups. The LLVNS down-regulated transcripts involved in Toll-
like receptor signaling, JAK-STAT, NF-κB, TNF, MAPK, and
AGE-RAGE pathway.

DISCUSSION

The main findings of the present canine experimental study are
as follows: (1) LLVNS applied at 2 h afterMI significantly reduced
VAs with improved left ventricular function but without HR
changes; (2) LLVNS caused 206 cardiac DEGs, and the effects
of LLVNS were likely associated with cardiac neuronal sprouting
suppression and decreased inflammation reaction, which could
also be explained by the patterns of gene expressions.

In the present study, LLVNS significantly prevented the
incidence of VAs, which was consistent with published findings

of VNS during myocardial ischemia in animal models (6–9, 21).
Lately, Nearing et al. found VNS provided cardiac electrical
stability and significantly prevented non-sustained VT in the
ANTHEM-HF study (14). In contrast to previous studies, the
dose of LLVNS without HR changes in this study could reach
the therapeutic target zone reported by previous studies and
contributed to satisfactory autonomic engagement for cardiac
control (18, 22). The study reported by Shen et al. (23)
demonstrated a reduction in atrial fibrillation by LLVNS, while
the present study showed a reduction in post MI VAs. Since
HR alterations can be avoided using LLVNS, the intracardiac
electrode of the stimulator, which was designed to sense the HR
in the previous implantable device, (24) may not be necessary.
LLVNS simplified the method to achieve better VAs prevention.

Post-MI LV remodeling has already been identified as an
important substrate for triggering VAs (25). In the present
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FIGURE 5 | KEGG pathway analysis of up and down regulated genes with a

fold change of at least 2 in the dogs of MI+LLVNS group (n = 5) compared

with MI group (n = 6). KEGG, Kyoto encyclopedia of genes and genomes;

LLVNS, low level left vagus nerve stimulation; MI, myocardial infarction.

study, LLVNS improved cardiac function with the evidence of
improved LVEF and reduced LVEDD, which was consistent with
the outcomes of previous studies (8, 9, 24). VNS has been applied
as a therapy for patients with heart failure (24). However, large
clinical studies on VNS have had mixed results (10–16). A post-
hoc analysis showed that various neural targets, VNS doses and
HR responses may explain the reasons for different results (17).
The optimal dose of VNS is critical in achieving efficacy. Ardell
et al. (18) described an approach to determine the optimal dose,
yielding physiological augment of vagus nerve activity. Different
from previous clinical trials, we used optimal LLVNS dose.
Additionally, we explored the onset of HF instead of refractory
HF, because nerve and tissue remodeling is always irreversible in
refractory HF.

The underlying effect of LLVNS is likely associated
with cardiac neuronal sprouting suppression, subduing
pro-inflammatory responses and cardiac remodeling during MI.

MI can result in nerve injury (26). Cardiac neural remodeling
is one of the important underlying mechanisms of incident
VAs after MI. Cao et al. (27) previously confirmed that the
increase in sympathetic neural activity after MI and the density
of these sympathetic nerves are directly correlated with the
incident life-threatening VAs. VNS has been widely studied used
for preventing VAs. However, no previous study has observed
the effect of LLVNS on post-MI cardiac neural remodeling
and related underlying mechanisms. GAP43 is a protein that is
expressed when the nerve terminal develops. NF is expressed
by axonal and dendritic processes (27). TH is an enzyme that

catalyzes the conversion from L-tyrosine to L-DOPA and is a
rate-determining enzyme for catecholamine synthesis; thus, TH
is used as a marker of sympathetic nerves. In the present study,
LLVNS could significantly reduce the density of TH, GAP43 and
NF positive nerves in the peripheries of myocardial scars as well
as perivascular regions.

While some studies have investigated the protective effects of
VNS, regulatory pathways at molecular and gene levels have not
been explored. Gene array technologies provide an opportunity
to elucidate complex pathophysiologic mechanisms at the gene-
expression level. In the present study, the different patterns
of gene expressions in the remote zone tissues of the LV free
wall in response to LLVNS were found, e.g., 206 genes were
considered to be DEGs, and 155 out of which were down-
regulated and 51 were up-regulated during LLVNS, compared
with the MI group without LLVNS. Many of these DEGs
were involved in biological processes, which played important
roles in the development and progression of diseases, such as
apoptotic process, immune system process, programmed cell
death, response to nitrogen compound, stress and negative
regulation of ERK1 and ERK2 cascade. These findings may
indicate new areas for investigating the potential mechanisms
related to VNS. Some of the DEGs were involved in cardiac
tissue remodeling, neural remodeling and inflammatory reaction,
such as NF-κBia, LITAF, TNFR1A and STAT3 (28–30). However,
lots of DEGs were not previously reported in the investigation
of VNS, such as CD163, CD48, DDit4, and ADAMTS1, which
have been demonstrated close association with ischemic heart
disease (31, 32). The present study investigated the possible
underlying mechanisms by determining gene expressions at
transcription level with an advantage over previous studies. Thus,
more ivestigation is warranted to evaluate the consequences of
the observed altered gene expressions during MI and LLVNS in
the present study (33).

LIMITATIONS

There are four potential limitations we have to admit. First, we
didn’t measure the the infarct size; second, only remote zone
tissues of the LV free wall were analyzed with the method of
microarray analysis, but peripheral myocardial scar samples were
not. Further studies should be conducted to analyze whether
more DEGs exist between the LLVNS+MI and MI groups
using peripheral myocardial scar tissue samples; third, the MI
mechanism distinctly differs from that responsible for MI among
patients in clinical practice. Thus, further research in subjects
under different conditions after MI are demanded to confirm
the results of this study; fourth, a similar analysis using a larger
sample size should be conducted to verify the results of this study.

CONCLUSION

The present study demonstrates that LLVNS applied for 2 h
after MI significantly reduces the incidence of VAs without
HR changes and improves the left ventricular function over a
3-week follow-up period. The potential mechanism is closely
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associated with suppressing cardiac neuronal sprouting, in
addition to the differentially expressed genes involved in cardiac
tissue remodeling, cardiac neuronal sprouting and inflammatory
reaction. LLVNS delivered without altering HR in early stage of
MI may be a novel therapeutic strategy for preventing VAs and
protecting cardiac function after MI.
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